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A QUANTILE GOODNESS–OF–FIT TEST
APPLICABLE TO DISTRIBUTIONS
WITH NON–DIFFERENTIABLE DENSITIES

Frantǐsek Rubĺık

Asymptotic distribution of the random vector of differences between theoretical prob-
abilities and their estimates, based on the sample quantiles and on an estimate of the
unknown parameter, is derived in a setting not requiring differentiability of the densities.
By means of this result asymptotically chi-square distributed goodness-of-fit test statistics
are constructed for the exponential distribution and for the Laplace distribution.

1. INTRODUCTION

In this paper we deal with testing goodness of fit for probabilities defined on the
Borel subsets of the real line. Tests of the null hypothesis that the underlying
distribution P belongs to the given family {Pθ; θ ∈ Θ} of distributions can be
constructed in various ways. Not aiming to make a detailed list of approaches or
results, let us mention some of them. One possibility is comparison of the difference
between the empirical and the theoretical distribution function with theoretical criti-
cal values (the Kolmogorov–Smirnov test). Another approach consists in employing
a test statistic utilizing some typical properties of the null class of distributions,
e. g., their shape. Here one can mention the omnibus D’Agostino test from [5], the
Shapiro–Wilk test (cf. [17]) for normality, or the test for two-parameter exponential
distribution described in [11] and [18]. A test procedure based on the empirical char-
acteristic function is described in [10]. The most classical approach for testing the
null hypothesis when Θ ⊂ Rm is an open set, is the minimum chi-square method,
described in [4], or in [1], pp. 196–201. We recall that this method uses a partition
of the sample space into k + 1 disjoint cells C1, . . . , Ck+1 and that the test statistic
based on the random sample x1, . . . , xn is given by

Tn =
k+1∑

i=1

[Xi − nPθ̃(Ci)]2

nPθ̃(Ci)
= n

k+1∑

i=1

[P̂ (Ci)− Pθ̃(Ci)]2

Pθ̃(Ci)
, (1)

where X1, . . . , Xk+1 are the observed cell frequencies, P̂ (Ci) = Xi

n is estimate of the
probability Pθ(Ci) based on the cell frequencies, and the estimate θ̃= θ̃(X1, . . . , Xk+1)
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is computed from the equations

k+1∑

i=1

Xi

Pθ(Ci)
∂ Pθ(Ci)

∂θj
= 0 , j = 1, . . . , m. (2)

If certain regularity conditions on the probabilities (Pθ(C1), . . . , Pθ(Ck+1) ) are ful-
filled, then

L(Tn) −→ χ2
k−m (3)

as n → ∞, provided that x1, . . . , xn is a random sample from the distribution
Pθ and θ̃ converges to θ in probability. It seems to be logical to prefer a method
of this type when subject of the statistical interest is probability of an interval
on the real line or when some frequencies have to be interpreted, because such a
method uses a fit of some kind of histogram with some theoretical model. However,
this particular method has some disadvantages, when applied to certain probability
families. The first one is that for some families an explicit formula for solution of
(2) is not available. Further difficulty lies in the assumption that the partitioning
C1, . . . , Ck+1 is unrelated to the random sample x1, . . . , xn, which in the practice is
almost never the case, and partitioning based on the observed values x1, . . . , xn can
spoil the weak convergence (3).

These difficulties gave rise to the approach, when the estimate in (1) is not
computed from the equations (2) and the partitioning is constructed by means of
θ̂n = θ̂n(x1, . . . , xn), i. e., in dependence on the random sample (e. g., [19], [20] and
[6], [12]). However, in these quoted papers the limiting distribution of the test
statistics is no longer a chi-square distribution and depends on the way in which the
partition was constructed by means of θ̂n.

This happens neither in [3] nor in [2]. According to Theorem 4 in [3], or according
to Theorem 3 and Theorem 4 in [2], under certain regularity conditions the statistics

χ2
Q = n

k+1∑

i=1

[
F (x(ni)

n , θ̂n)− F (x(ni−1)
n , θ̂n)− (pi − pi−1)

]2[
pi − pi−1

]−1

(4)

are asymptotically chi-square distributed. Here x
(j)
n denotes the jth order statistic

of the random sample x1, . . . , xn, ni = [npi] + 1 for i = 1, . . . , k, p0 = 0 < p1 <

. . . < pk < pk+1 = 1 are fixed numbers and θ̂n = θ̂n(x1, . . . , xn) is the estimate
minimizing χ2

Q. However, finding an explicit formula for such an estimate is usually
an intractable problem.

The difficulties with the limiting distribution do not arise in the approach used
in [13] on p. 591 and in [14] either. In the mentioned papers asymptotic distribution
of the test statistics

Tn = ∆̃
T
(θ̂n)B̃

−1
∆̃(θ̂n) (5)

is shown to be chi-square distribution with k−1 degrees of freedom. In this notation
B̃ is the asymptotic covariance matrix of the random vector ∆̃(θ̂n), consisting of
the differences

√
n

[
Pθ̂n

( 〈x(ni−1)
n , x

(ni)
n ) )− (pi − pi−1)

]
, θ̂n = θ̂n(x1, . . . , xn) is an

efficient estimate (in the Rao sense) of the unknown parameter, and x
(ni)
n has the
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same sense as in the previous case. Validity of this result is established under
regularity assumptions closely related to those from [12].

The aim of the paper is to present a set of conditions which can be applied to some
probability classes, not fulfilling the assumptions on which proofs of the asymptotic
behaviour of the quadratic test statistics (1), (4) or (5) are based, or not being
tractable in the models substantiating the mentioned procedures, but still allowing
to preserve the simplicity of the asymptotic distribution.

Indeed, it is required in [6] that the density functions f(x, θ) are differentiable
with respect to the parameters, and the resulting asymptotic distribution of the used
test statistics is a weighted sum of chi-squares with weights determined by the choice
of the partitioning. In contradistinction to this, no assumption on differentiability of
the density function is included in (C 1) – (C 5) whatsoever and the resulting asymp-
totic distribution is a chi-square distribution with degrees of freedom determined
only by the number of points of the quantile partitioning and not by particular val-
ues of the quantiles; a similar situation occurs when our setting is compared with
that in [19] and [20].

The assumptions employed in [13] on p. 591, in [14] or in [12] not only require
differentiability of the density functions with respect to the parameter and exchange-
ability of the integration and differentiation sign, but they postulate that the esti-
mate of the unknown parameter has a non-singular asymptotic covariance matrix as
well, which are constraints not included in (C 1) – (C 5) in the next section. This en-
larges the range of cases in which the quantile test can be applied, but it causes some
difficulties with regularity of the asymptotic covariance matrix. As it is explained
also in the discussion following Theorem 2.2, the situation can be handled by means
of Theorem 2.1 (III). We remark that if instead of the differentiability condition
one would consider a differentiability a. e., then the exchangeability condition would
retain its sense, but as one can easily see, in the case of the exponential densities
(31) which satisfy our regularity conditions, neither this modified exchangeability
assumption is fulfilled.

Finally we point out to the fact that the fixed partition approach used in deriving
the statistic (1) is inapplicable to classes of probabilities with variable lower bounds.
Indeed, let −∞ = c0 < c1 < . . . < ck < ck+1 = +∞ be fixed real numbers and
Ci = (ci−1, ci〉, i = 1, . . . , k + 1 denotes partitioning of the real line into disjoint
cells. If the sample x1, . . . , xn is taken from distribution with density (31) and
µ ≥ ck, then with probability 1 the observed cell frequencies X1 = . . . = Xk = 0,
Xk+1 = n and the formulas (1), (2) do not yield any useful result.

2. MAIN RESULTS

Let us assume that {Pθ; θ ∈ Θ} is a family of probabilities defined on the real line
and x1, . . . , xn is a random sample from a distribution P on (R1,B1). Let

F̂n(t) =
1
n

n∑

j=1

χ(−∞,t〉(xj) (1)
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denote the sample distribution function. For 0 < p < 1 let

ξ̂p,n = inf{t; F̂n(t) ≥ p} (2)

denote the pth sample quantile and

ξ(p, θ) = inf{t; F (t, θ) ≥ p} (3)

the pth quantile of the distribution function

F (t, θ) = Pθ( (−∞, t〉 ) . (4)

Let us choose an integer k ≥ 1 and real numbers

0 < p1 < . . . < pk < 1 . (5)

For the random sample x1, . . . , xn and for an estimate θ̂n = θ̂n(x1, . . . , xn) of the
unknown parameter θ ∈ Θ we compute the vector of the differences

∆n =




F (ξ̂p1,n , θ̂n)− p1

F (ξ̂p2,n , θ̂n)− p2

...
F (ξ̂pk,n , θ̂n)− pk


 . (6)

In the proof of the assertion of Theorem 2.1 on asymptotic distribution of (6) we
shall use the Bahadur representation of the sample quantiles in its simplified version
from [7]. This will be carried out in a setting based on the following regularity
conditions.

(C 1) Θ ⊂ Rm is an open set and the probabilities {Pθ; θ ∈ Θ} are defined by means
of the densities {f(x, θ); θ ∈ Θ} with respect to the Lebesque measure on the
real line.

(C 2) The inequality f(ξ(p, θ), θ) > 0 holds.

(C 3) There exist measurable mappings θ̂n : Rn → Θ such that

√
n ( θ̂n(x1, . . . , xn)− θ ) =

1√
n

n∑

i=1

l(xi, θ) + oP (1) , (7)

where oP (1) is related to P∞θ and

Eθ( l(x, θ) ) = 0 , Eθ( ‖l(x, θ)‖2) < +∞ . (8)

(C 4) There exist an open interval U containing ξ(p, θ) and an open convex set V
containing θ such that f(t, γ) is continuous on U × V .

(C 5) The function ξ(p, θ), defined in (3), has all partial derivatives

∂ξ(p, θ)
∂θi

of the first order, and these are continuous on Θ.
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Theorem 2.1. Let us assume that (5) holds, θ ∈ Θ, the conditions (C 1) – (C 5)
are fulfilled ((C 2), (C 4) and (C 5) for p = pi, i = 1, . . . , k), {xn}∞n=1 are independent
Pθ distributed random variables, {θ̂n}∞n=1 are the mappings from (C 3) and ∆n is
the vector of differences determined with (1) – (6).

(I) For n →∞ the weak convergence of distributions

L (√
n∆n

) −→ N(0,Σ(θ) ) (9)

holds. Here the asymptotic covariance matrix

Σ(θ) = A+D(θ)Ψ(θ)C(θ)′+C(θ)Ψ(θ)′D(θ)+D(θ)Ψ(θ)L(θ)Ψ(θ)′D(θ) , (10)

A is the symmetric k × k matrix with the elements

aij = pi(1− pj) for all i ≤ j , (11)

D(θ) is the diagonal k× k matrix with the diagonal f(ξ(p1, θ), θ), . . . , f(ξ(pk, θ), θ),

Ψ(θ) =




∂ξ(p1,θ)
∂θ1

, . . . , ∂ξ(p1,θ)
∂θm

...
...

∂ξ(pk,θ)
∂θ1

, . . . , ∂ξ(pk,θ)
∂θm


, (12)

C(θ) =




cov
(
χ(−∞,ξ(p1,θ)〉(x) , l(x, θ)

)

...
cov

(
χ(−∞,ξ(pk,θ)〉(x) , l(x, θ)

)


 ,

L(θ) = Var( l(x, θ) ) and all the covariances are related to Pθ.
(II) If the matrix (10) is regular, then for distribution of the statistics

Tn = n∆′
nΣ(θ)−1∆n (13)

the weak convergence
L(Tn) −→ χ2

k (14)

holds as n →∞.
(III) Let s(x) = (s1(x), . . . , sk(x))′, t(x) = (t1(x), . . . , tk(x))′, where

si(x) = pi − χ(−∞,ξ(pi,θ)〉(x) , ti(x) = f(ξ(pi, θ), θ)
(

∂ξ(pi, θ)
∂θ

)′
l(x, θ) (15)

and l(., θ) is the function from (C 3). The matrix (10) is regular if and only if

Pθ( c′s(x)− c′t(x) = 0 ) < 1 (16)

for all non-zero vectors c from Rk. A sufficient condition for this is that for all
i = 1, . . . , k + 1, each non-zero vector a ∈ Rk and every non-zero real number d

Pθ( {x ∈ (ξ(pi−1, θ), ξ(pi, θ)); a′l(x, θ) 6= d } ) > 0 . (17)
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Here we use the notation

p0 = 0 , ξ(0, θ) = −∞ , pk+1 = 1 , ξ(1, θ) = +∞ . (18)

Since according to (9), (7) and (8)

∆n = OP (n−1/2) , θ̂n = θ + oP (1) ,

from the previous theorem we obtain immediately the following assertion.

Corollary. Let the assumptions of Theorem 2.1 hold for each θ ∈ Θ. If the matrix
function (10) is continuous on Θ and takes its values in the set of the regular k × k
matrices, then with the notation from the previous theorem and

Tn = n∆′
nΣ(θ̂n)−1∆n (19)

the weak convergence of distributions

L(Tn|Pθ) −→ χ2
k (20)

holds for each θ ∈ Θ as n →∞.

Under the assumptions of the previous corollary the null hypothesis that the true
distribution P belongs to the family {Pθ; θ ∈ Θ} is rejected at the asymptotic signif-
icance level α, if (19) exceeds the critical value χ2

k(α) of the chi-square distribution
with k degrees of freedom. In the next part of this section we pay attention to a
situation when the asymptotic covariance matrix does not depend on the true value
of the parameter.

Let us assume that

f : R → 〈0,+∞) ,

∫ +∞

−∞
f(x) dx = 1 , (21)

and put

F (t) =
∫ t

−∞
f(x) dx , (22)

Θ =
{(

µ
σ

)
∈ R2; σ > 0

}
. (23)

For θ = (µ, σ)′ ∈ Θ let

f(x, θ) =
1
σ

f

(
x− µ

σ

)
, F (t, θ) = F

(
t− µ

σ

)
(24)

denote density and distribution function of the probability Pθ. One can easily find
out that for the quantiles (3) the equalities

ξ(p, θ) = σξp + µ , ξp = ξ(p, (0, 1)′) (25)

hold.
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Theorem 2.2. Let us assume that in the setting (21) – (24) the measurable map-
pings θ̂n : Rn → Θ are such that for every real a > 0, b and every θ = (µ, σ)′ ∈ Θ

µ̂n(az1 + b, . . . , azn + b) = aµ̂n(z1, . . . , zn) + b , (26)

σ̂n(az1 + b, . . . , azn + b) = aσ̂n(z1, . . . , zn) (27)

a. e. Pθ. Let us further assume that Pθ0( σ̂n > 0 ) = 1 for some θ0 ∈ Θ and all
n > n0.

(I) The vector ∆n of differences (6) has an exact null distribution, i. e., the
distribution

L
(
∆n |Pθ

)
= L

(
∆n |P(0,1)′

)
(28)

does not depend on θ ∈ Θ for all n > n0.
(II) Let the numbers (5) be fixed. If (C 1) – (C 4) hold for µ = 0, σ = 1 and

p1, . . . , pk, then the assumptions of Theorem 2.1 (I) are valid for all θ ∈ Θ and the
limit covariance matrix (10) does not depend on θ. If this matrix Σ is regular, then
for distributions of statistics

Tn = n∆′
nΣ−1∆n (29)

the weak convergence
L(Tn|Pθ) −→ χ2

k (30)

holds for each θ ∈ Θ as n →∞.

Now we are going to discuss briefly the assumption of regularity of the asymptotic
covariance matrix in the assertion (II) of the previous theorem. Let in the setting
(21) – (24) the conditions (A1) – (A3) and (A6) from [12] hold for all θ ∈ Θ. Then for
all real x the derivative f ′(x) exists and is continuous on the real line. If in addition
to this f is positive on the interval (d,D), where

d = inf{x; f(x) > 0 } , D = sup {x; f(x) > 0 } ,

then for all θ ∈ Θ the conditions (C 1) – (C 5) of this paper hold and one can prove
by means of the condition related to (16) that the matrix (10) is regular. Since
assumptions of this paper are less stringent than the mentioned assumptions from
[12], the situation is in this general case of the location and scale parameter more
complicated. For this reason we apply Theorem 2.2 to the two parameter exponential
distribution and to the Laplace distribution in such a way that we prove regularity
of the asymptotic covariance matrix by verifying the simple conditions presented in
the assertion (III) of Theorem 2.1.

Let us assume that {Pθ; θ ∈ Θ} is the family of the two parameter exponential
distributions, determined with the parameter set (23) and the densities

f(x, µ, σ) =





1
σ exp

[
− (x−µ)

σ

]
x ≥ µ ,

0 x < µ ,
(31)
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with respect to the Lebesque measure on the real line. Thus in the notation (21) –
(24)

f(x) =

{
e−x x ≥ 0 ,

0 x < 0 ,
F (t) =

{
1− e−t t ≥ 0 ,

0 t < 0 .
(32)

Obviously, the quantiles (3) fulfil the equalities

ξ(p, µ, σ) = σξp + µ , ξp = − log(1− p) . (33)

Exponential distribution with density (31) will be denoted by the symbol E(µ, σ). In
the following theorem we base the quantile test statistic on the maximum likelihood
estimate (34).

Theorem 2.3. Let us assume that the vector of differences (6) is determined with
(24), (31) – (34) and that θ̂n = θ̂n(x1, . . . , xn) = (µ̂, s)′, where

µ̂ = min {x1, . . . , xn} , s = x− µ̂ , x =
1
n

n∑

j=1

xj . (34)

(I) The random vector ∆n has an exact null distribution, i. e.,

L
(
∆n |E(µ, σ)

)
= L

(
∆n |E(0, 1)

)
(35)

for all n > 1 and (µ, σ)′ ∈ Θ.
(II) As n →∞,

L
(√

n∆n |E(0, 1)
)
−→ N(0,Σ) (36)

in the sense of the weak convergence of probability measures. Here

Σ = A− bb′ , (37)

A is the symmetric k × k matrix with the elements (11) and the vector b =
(β1, . . . , βk)′ has the coordinates

βi = −(1− pi) log(1− pi) . (38)

(III) Let us put
αi = pi − pi−1 , (39)

p0 = 0 , pk+1 = 1 , (40)

and β0 = βk+1 = 0. Then
k+1∑

i=1

(βi − βi−1)2

αi
< 1 (41)
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and the matrix (37) is regular. The statistic (29) can be written in the form

Tn = n∆′
nΣ−1∆n =

= n

k+1∑

i=1

(
Pθ̂n

(C(n)
i )− αi

)2

αi
+ n


∑k+1

i=1

(βi−βi−1)

(
Pθ̂n

(C
(n)
i )−αi

)

αi




2

1−∑k+1
i=1

(βi−βi−1)2

αi

, (42)

where (cf. (2), (24) and (32))

C
(n)
i = (ξ̂pi−1,n , ξ̂pi,n〉 , Pθ̂n

(C(n)
i ) = F (ξ̂pi,n , θ̂n)− F (ξ̂pi−1,n , θ̂n) , (43)

ξ̂0,n = −∞ , ξ̂1,n = +∞ . (44)

(IV) For every (µ, σ)′ ∈ Θ and the statistics (42)

L(Tn |E(µ, σ) ) −→ χ2
k (45)

as n →∞ .

Remark. Let us assume that Θ = (0,+∞) and { f(x, θ); θ ∈ Θ } are the densities

f(x, θ) =
1
θ

exp
[
−x

θ

]
χ〈0,+∞)(x)

of the one parameter exponential distributions E(θ). For random samples x1, . . . , xn

from such a distribution let

θ̂n(x1, . . . , xn) =
1
n

n∑

j=1

xj .

Then distribution function of the exponential E(θ̂n) distribution F (t, θ̂n) = F ( t
θ̂n

),
where F is the function (32). Proceeding similarly as in the proof of the previous
theorem one easily finds out that for the differences (6)

L
(
∆n |E(θ)

)
= L

(
∆n |E(1)

)

for every θ > 0 and n > 1, the assumptions used in Theorem 2.1 are fulfilled and
the statistics (13) equal (42), where now with the notation from (32)

Pθ̂n
(C(n)

i ) = F

(
ξ̂pi,n

θ̂n

)
− F

(
ξ̂pi−1,n

θ̂n

)
.

Also L(Tn |E(θ) ) −→ χ2
k as n →∞.
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Since the density (31) is discontinuous at x = µ and in the case (3.15) the con-
dition (C 3) holds with (3.17) which has a singular covariance matrix, the classical
conditions from [6, 12, 13, 14, 19] and [20] are not fulfilled by the exponential dis-
tributions. A similar situation occurs for the Laplace distribution treated in the
further text.

The Pareto distribution P (k, a) is in [9], p.574 defined as the distribution having
the density f(z, k, a) = akaz−(a+1)χ〈k,+∞)(z), where the parameters k, a are positive
real numbers. However, according to (20.9) on p. 576 in [9] a random variable z
has the P (k, a) distribution if and only if x = log z has the exponential E(µ, σ)
distribution, where σ = a−1, µ = log k and log denotes the logarithm to the base e.
Thus making use of the transformation

x = log z

we can utilize the results from the previous theorem also for testing the null hypoth-
esis that the random variable z has a Pareto distribution.

In the last part of this section we assume that {Pθ; θ ∈ Θ} is the family of the
Laplace distributions, determined with the parameter set (23) and the densities

f(x, µ, σ) =
1
2σ

exp
[
−|x− µ|

σ

]
(46)

with respect to the Lebesque measure on the real line. Thus in the notation (21) –
(24)

f(x) =
e−|x|

2
, F (t) =





1− e−t

2 t ≥ 0 ,

et

2 t < 0 .
(47)

The quantiles (3) fulfil the relations

ξ(p, µ, σ) = σξp + µ , ξp =

{
log 2p p ∈ (0, 1

2 〉 ,
− log 2(1− p) p ∈ 〈 12 , 1) .

(48)

In the following theorem L(µ, σ) denotes the Laplace distribution determined
with density (46). The quantile test statistic is based on the maximum likelihood
estimate (49), where x(j) = x

(j)
n denotes the jth order statistic.

Theorem 2.4. Let us assume that the vector of differences (6) is determined with
(24), (46) – (49) and that θ̂n = θ̂n(x1, . . . , xn) = (µ̂, s)′, where

µ̂ =





x(k)+x(k+1)

2 n = 2k ,

x(k+1) n = 2k + 1 ,

s = 1
n

∑n
j=1 |xj − µ̂| . (49)

(I) The random vector ∆n has an exact null distribution, i. e.,

L
(
∆n |L(µ, σ)

)
= L

(
∆n |L(0, 1)

)
(50)
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for all n > 1 and (µ, σ)′ ∈ Θ.
(II) As n →∞,

L
(√

n∆n |L(0, 1)
)
−→ N(0,Σ) (51)

in the sense of the weak convergence of probability measures. Here

Σ = A−BB′ , (52)

A is the symmetric k × k matrix determined with (11) and

B =




f(ξp1) , ξp1f(ξp1)
...

f(ξpk) , ξpk
f(ξpk)


 . (53)

(III) The covariance matrix (52) is regular if and only if 1
2 /∈ {p1, . . . , pk}. In this

case also the matrix I2 −B′A−1B is regular and the statistic (29) can be written
in the form (cf. (39), (40), (43) and (44) )

Tn = n∆′
nΣ−1∆n = n

k+1∑

i=1

(
Pθ̂n

(C(n)
i )− αi

)2

αi
+ nQ(∆n) , (54)

where
Q(∆n) = ∆′

nA−1B(I2 −B′A−1B)−1B′A−1∆n , (55)

and for every (µ, σ)′ ∈ Θ
L( Tn |L(µ, σ) ) −→ χ2

k (56)

as n →∞.

The formula (55) can be expressed in a more detailed way. Indeed, putting

rx,y =
x1y1

α1
+

k∑

i=2

(xi − xi−1) (yi − yi−1)
αi

+
xkyk

αk+1
, (57)

λ11 = 1− rf,f , λ12 = rf,ξf , λ22 = 1− rξf,ξf , (58)

f = ( f(ξp1), . . . , f(ξpk
) )′ , ξf = (ξp1f(ξp1), . . . , ξpk

f(ξpk
))′ (59)

and applying (3.13) to (55) we see that

Q(∆n) =
(r∆n,f )2λ22 + 2 r∆n,f r∆n,ξfλ12 + (r∆n,ξf )2λ11

λ11λ22 − λ2
12

. (60)

If pi = 1
2 for some i and the sampling is made from the Laplace distribution, then

according to the previous theorem the statistic (54) cannot be constructed because
of singularity of the asymptotic covariance matrix. However, this difficulty can be
overcome when instead of (49) another (even though less efficient) estimate is used.
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Theorem 2.5. Let us assume that the vector of differences (6) is determined with
(24), (46) – (47) and that θ̂n = θ̂n(x1, . . . , xn) = (x, s)′, where s is defined by the
formula (49) and x is the arithmetic mean.

(I) The random vector ∆n has an exact null distribution, i. e.,

L
(
∆n |L(µ, σ)

)
= L

(
∆n |L(0, 1)

)
(61)

for all n > 1 and (µ, σ)′ ∈ Θ.
(II) As n →∞,

L
(√

n∆n |L(0, 1)
)
−→ N(0,Σ) (62)

in the sense of the weak convergence of probability measures. Here

Σ = A−G , (63)

A is the symmetric k×k matrix determined with (11) and G is the symmetric k×k
matrix whose elements are defined by the formula (cf. (47), (48))

gij = f(ξpi
)f(ξpj

)
(
|ξpi

|+ |ξpj
|+ ξpi

ξpj

)
. (64)

The matrix (63) is regular and for Tn = n∆′
nΣ−1∆n the weak convergence of

distributions
L( Tn |L(µ, σ) ) −→ χ2

k (65)

holds for each θ ∈ Θ as n →∞.

3. PROOFS

P r o o f o f T h e o r e m 2.1. (I) Let p ∈ {p1, . . . , pk} be fixed. Since (C 4) and (C 2)
hold, according to Theorem 1 in [7] in the setting (1) – (4)

ξ̂p,n − ξ(p, θ) =
p− F̂n(ξ(p, θ))
f(ξ(p, θ) , θ)

+ oP (n−1/2) . (1)

Validity of (C 5), (C 3) and the central limit theorem imply that

ξ(p, θ̂n)− ξ(p, θ) =
(

∂ξ(p, θ)
∂θ

)′
(θ̂n − θ) + oP (n−1/2) . (2)

Hence with probability tending to 1 as n →∞, the relations

F (ξ̂p,n, θ̂n)− p = F (ξ̂p,n, θ̂n)− F (ξ(p, θ̂n), θ̂n)

=
∂F (t, θ̂n)

∂t

∣∣∣
t=αξ̂p,n+(1−α)ξ(p,θ̂n)

(ξ̂p,n − ξ(p, θ̂n))

= f
(
ξ(p, θ), θ

)
( ξ̂p,n − ξ(p, θ̂n) ) + βn (3)
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hold with

βn =
(

f
(

αξ̂p,n + (1− α)ξ(p, θ̂n ), θ̂n

)
− f

(
ξ(p, θ), θ

)) (
ξ̂p,n − ξ(p, θ̂n)

)
.

Owing to (1), (2), (C 4), (C 3) and the central limit theorem

|βn| ≤ oP (1)OP (n−1/2) = oP (n−1/2) . (4)

Combining (4), (3), (1) and (2) we get the relation

F (ξ̂p,n, θ̂n)−p = p−F̂n(ξ(p, θ))−f(ξ(p, θ), θ)
(

∂ξ(p, θ)
∂θ

)′
(θ̂n−θ)+oP (n−1/2) . (5)

It follows from this, (6) and (7) that
√

n∆n = M
√

n ηn + oP (1) , (6)

where with the notation from wording of the theorem

M = (Ik,D Ψ), ηn =




p1 − F̂n( ξ(p1, θ) )
...

pk − F̂n( ξ(pk, θ) )
− 1

n

∑n
i=1 l(xi, θ)


 .

Since according to the central limit theorem

L(
√

n ηn) → N(0, V ) , V =
(

A C
C ′ L

)
,

the assertion (I) follows from (6).
(II) The proof follows immediately from (9).
(III) The proof of the first part of the assertion follows from the fact that according

to (5) and (C 3)

Σ(θ) = cov(s(x)− t(x)) , Eθ(s(x)− t(x)) = 0 .

In proving the implication from (17) to (16) we assume that (17) holds in the sense
of the assertion of the theorem, choose a vector c ∈ Rk and suppose that

Pθ(c′s(x)− c′t(x) = 0) = 1 , (7)

or equivalently, that
Pθ(a′l(x, θ) = c′s(x)) = 1 , (8)

where

a =
k∑

i=1

cif( ξ(pi, θ), θ )
∂ξ(pi, θ)

∂θ
.
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Suppose that a 6= 0. Then c 6= 0 and after some computation we get from (8) that
a′l(x, θ) differs from a non-zero constant on some of the intervals ( ξ(pi−1, θ), ξ(pi, θ) )
with probability Pθ equal to zero, which is a contradiction with our assumption.
Thus

a = 0

and c′s(x) = 0 a. e. Pθ. Hence for x ∈ ( ξ(pk, θ), +∞ ) we obtain that

k∑

i=1

cipi = 0 (9)

and for x ∈ ( ξ(pj−1, θ), ξ(pj , θ) )

j−1∑

i=1

cipi +
k∑

i=j

ci(pi − 1) = 0 , j = 1, . . . , k . (10)

From (9) and (10) we easily get that c1 = . . . = ck = 0, and (16) holds for all
non-zero vectors c ∈ Rk. 2

P r o o f o f T h e o r em 2.2. (I) For real numbers z1, . . . , zn and 0 < p < 1 let

F z
n (t) =

1
n

n∑

j=1

χ(−∞,t〉(zj) , ẑp,n = inf{t; F z
n (t) ≥ p} .

If σ > 0, µ are real numbers and for xj = σzj + µ the quantities F x
n (t), x̂p,n are

defined in the same way, then

F x
n (t) = F z

n (
t− µ

σ
) , x̂p,n = σẑp,n + µ , (11)

which together with (24) – (27) implies (28).

(II) Let (C 1) – (C 4) hold for

ϑ = (0, 1)′ . (12)

Putting for θ = (µ, σ)′ ∈ Θ

l(x, θ) = σl(
x− µ

σ
, ϑ)

and utilizing (24) – (27) and (11), one can easily verify validity of (C 1) – (C 5) for θ.
The equality Σ(θ) = Σ(ϑ) follows from (I) and (30) is obvious. 2

In deriving explicit formulas for the quantile test statistics the following assertion
will be useful.
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Lemma 3.1. The symmetric k × k matrix A having the elements (11) is regular,
and for every vectors x , y ∈ Rk (cf. (39), (40) )

x′A−1y =
x1y1

α1
+

k∑

i=2

(xi − xi−1) (yi − yi−1)
αi

+
xkyk

αk+1
. (13)

P r o o f . Let B =
(
bij

)
be the k × k matrix with bij = 1 if j ≤ i, and bij = 0

otherwise. If D denotes diagonal matrix with the diagonal α1, . . . , αk and if α ′ =
(α1, . . . , αk), then

A = B G B ′ , G = D − α α ′.

Since α ′D−1α = pk < 1, according to the exercise 2.8, section 1.b in [16]

(D − α α ′)−1 = D−1 +
D−1αα ′D−1

1− α ′D−1α
.

Thus

A−1 = (B−1) ′
[
D−1 +

1
αk+1

11′
]

B−1 (14)

where 1 is the vector from Rk having all coordinates 1, and B−1 =
(
bij

)
with

bij = 1 for j = i, bij = −1 for j = i − 1 and bij = 0 otherwise. Obviously, (14)
implies assertion of the lemma. 2

P r o o f o f T h e o r em 2.3. (I) This assertion follows from Theorem 2.2 (I).
(II) Let us assume that

θ = ϑ (15)

where ϑ is the parameter (12). Then

µ̂ = oP (n−1/2) (16)

and the relations (7), (8) hold with

l(x, ϑ) =
(

0
x− 1

)
. (17)

Thus it is obvious that the conditions (C 1) – (C 4) are valid, which according to
Theorem 2.2 (II) means that the assumptions of Theorem 2.1 (I) are fulfilled and
(36) holds. Since in (10) for θ = ϑ

Ψ =




1 , − log(1− p1)
...

1 , − log(1− pk)


, C =




0 , (1− p1) log(1− p1)
...

0 , (1− pk) log(1− pk)


 ,

L =




0 , 0

0 , 1
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and the matrix D has the diagonal 1− p1, . . . , 1− pk , the matrix (10) equals (37).
(III) If a ∈ R2 is a non-zero vector, then for the function (17) the equality

a′l(x, ϑ) = a2(x− 1) holds and regularity of Σ can be easily proved by means of the
condition from Theorem 2.1 related to (17). Employing results of the excercise 2.4,
section 1.b in [16], we see that

0 < |Σ| = |A− b b′| =
∣∣∣∣

A b
b′ 1

∣∣∣∣ = |A|(1− b′A−1b) (18)

and therefore

1 > b′A−1b =
k+1∑

i=1

(βi − βi−1)2

αi
(19)

where the last equality follows from (13). Validity of (19) together with excercise
2.8, section 1.b in [16] lead to the equality

Σ−1 = A−1 +
A−1b b′A−1

1− b′A−1b

and the assertion can be easily proved by means of (13).
(IV) This assertion follows from (I) – (III). 2

P r o o f o f T h e o r em 2.4. (I) This assertion follows from Theorem 2.2 (I).
(II) Suppose that (12), (15) hold. Since x1, . . . , xn are independent L(0, 1) dis-

tributed random variables, for the estimates (49) the equalities

µ̂ =
1
n

n∑

j=1

sign(xj) + oP (n−1/2) , (20)

s =
1
n

n∑

j=1

|xj |+ oP (n−1/2) (21)

hold. Their validity can be established in various ways, perhaps the most convenient
is use of results from [8] and [15]. Indeed, (20) follows from Corollary 3.2 on p. 133
of [8]. Validity of (21) can be established by employing Example 5.3 on pp. 351–352
of [15] and carrying out the steps described on p. 342 in [15] with (2) ibidem as the
final step tool.

Since E(sign(x)) = 0, E(|x|) = 1 and E(x2) = 2, we obtain that the estimate
(49) fufils the condition (C 3) with

l(x, ϑ) =
(

sign(x)
|x| − 1

)
. (22)

Since validity of (C 4) is obvious, we see that the conditions (C 1) – (C 4) are valid.
This according to Theorem 2.2 (II) means that the assumptions of Theorem 2.1 (I)
are fulfilled and (51) holds.
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Utilizing (47) and (48) one can prove after some computation that for all p ∈ (0, 1)

cov(χ(−∞, ξp〉(x), sign(x)) = −f(ξp) ,

cov(χ(−∞, ξp〉(x), |x| − 1) = −ξpf(ξp) . (23)

Thus in (10) for θ = ϑ

Ψ =




1 , ξp1

...
1 , ξpk


 , C = −




f(ξp1) , ξp1f(ξp1)
...

f(ξpk
) , ξpk

f(ξpk
)


 , L =




1 , 0

0 , 1




(24)
and the matrix (10) equals (52).

(III) We shall verify regularity of the matrix (52) by means of the condition
related to (16).

If pi = 1
2 , then taking into account (15), (22) we see that si(x) = ti(x) a. e. Pϑ,

and according to Theorem 2.1 (III) the asymptotic covariance matrix is singular.
Now let pi 6= 1

2 for all i. Let us assume that c ∈ Rk and the equality

c′s(x)− c′t(x) = 0 (25)

holds almost everywhere L(0, 1). Letting x tend to infinity we get from (25) that

k∑

i=1

ciξpif(ξpi) = 0

and the equality

k∑

i=1

ciχ(−∞,ξpi
〉(x) +

k∑

i=1

cif(ξpi) sign(x) =
k∑

i=1

cipi (26)

holds for all x /∈ {ξp1 , . . . , ξpk
} .

If ξpk
< 0, then the interval (ξpk

,+∞) contains both positive and negative num-
bers. Hence the second and the third term in (26) are zero and (26) obviously implies
that c1 = . . . = ck = 0.

Since 1
2 6= pi for all i, it remains to consider the case ξpk

> 0. If ξp1 > 0, then
similarly as in the previous step c1 = . . . = ck = 0. If ξp1 < 0, then denoting
j0 = min{j; ξpj > 0} and choosing x from the particular intervals we obtain from
(26) that

k∑

i=j

ci +
k∑

i=1

cif(ξpi) =
k∑

i=1

cipi , j = j0, . . . , k ,

k∑

i=1

cif(ξpi) =
k∑

i=1

cipi .
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Hence cj0 = . . . = ck = 0 which leads to the situation analogical to the case ξpk
< 0.

Thus we see that (16) holds for every non-zero vector c ∈ Rk and the matrix (52) is
regular. By means of this regularity we obtain that

0 < |Σ| = |A−B B′| =
∣∣∣∣

A B
B′ I2

∣∣∣∣ = |A||I2 −B′A−1B|

and also the matrix I2 − B′A−1B is regular. This together with the result of
excercise 2.9 in the section 1.b.8 in [16] means that

Σ−1 = A−1 −A−1B(B′A−1B − I2)−1B′A−1

and the rest of the proof follows from Lemma 3.1. 2

P r o o f o f T h e o r e m 2.5. (I) Validity of this assertion follows from Theo-
rem 2.2 (I).

(II) Let us assume that (12), (15) hold. Similarly as in the proof of the previous
theorem one can show that the conditions (C 1) – (C 4) are for θ = ϑ fulfilled with

l(x, ϑ) =
(

x
|x| − 1

)
.

This according to Theorem 2.2 means that the assumptions of Theorem 2.1 (I) are
fulfilled and (62) holds.

Making use of (47), (48) one gets after some computation that

cov(χ(−∞, ξp〉(x), x) = −f(ξp) (|ξp|+ 1) , cov(x, |x| − 1) = 0 .

Hence taking into account (23) and the equality Var( x |L(0, 1) ) = 2 it is easy to see
that for θ = ϑ in (10)

L =




2 , 0

0 , 1


 , C = −DB , B =



|ξp1 |+ 1 , ξp1

...
|ξpk

|+ 1 , ξpk


 ,

where Dis diagonal k × k matrix with the diagonal f(ξp1), . . . , f(ξpk
) and Ψ is

described in (24). Substituting into (10) we easily obtain that (63) holds.
Let us assume that for the random vectors s, t described in Theorem 2.1 (III) the

equality (25) holds L(0, 1) a. e. Then letting x tend to +∞ and to −∞ we get that

−
k∑

i=1

cif(ξpi)−
k∑

i=1

cif(ξpi)ξpi = 0 ,

−
k∑

i=1

cif(ξpi) +
k∑

i=1

cif(ξpi)ξpi = 0 .
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Thus these sums equal zero and (25) implies that

k∑

i=1

ciχ(−∞,ξpi
〉(x) =

k∑

i=1

cipi ,

from which validity of
c1 = . . . = ck = 0

can be easily proved and regularity of Σ follows from Theorem 2.1 (III). The rest of
the proof is obvious. 2
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