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ESTIMATION OF HIDDEN MARKOV MODELS

FOR A PARTIALLY OBSERVED RISK SENSITIVE

CONTROL PROBLEM1

Bernard Frankpitt and John S. Baras

This paper provides a summary of our recent work on the problem of
combined estimation and control of systems described by finite state, hidden
Markov models. We establish the stochastic framework for the problem, for-
mulate a separated control policy with risk-sensitive cost functional, describe
an estimation scheme for the parameters of the hidden Markov model that de-
scribes the plant, and finally indicate how the combined estimation and control
problem can be re-formulated in a framework that permits an application of
stochastic approximation techniques to the proof of asymptotic convergence of
the estimator.

1. INTRODUCTION

Risk sensitive control of hidden Markov models has become a topic of in-
terest in the control community largely in response to a paper by Baras
and James [2] which shows that, in the small noise limit, risk sensitive
control problems on hidden Markov models become robust control prob-
lems for non-deterministic finite state machines. This paper presents
results that are part of a program to extend the work of Baras and
James to cover situations where the plant is unknown. We consider
the combined estimation and control problem for a class of controllers
that implement randomized control strategies that approximate optimal
risk-sensitive control on a finite horizon.

Problems of combined estimation and control have a long history, and
the LQG case is standard material for stochastic control texts. Treat-
ment of controlled hidden Markov models is more recent, the work of
Fernández–Gaucherand et al [5] treats a situation similar to that treated
here with different methods. The methods that we use are based on
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existing work in stochastic approximation. In particular we use a recur-
sive estimation scheme based on Krishnamurthy and Moore [6], and an
approach from Arapostathis and Marcus [1] along with theorems from
Benveniste et al [3] to prove convergence of the estimation scheme. The
difference between this work and the preceding work is that by consider-
ing randomized strategies we can show convergence of the model estimate
and the control without recourse to special reset conditions that are re-
quired in [5].

This paper is divided into five sections: the remainder of this sec-
tion introduces the notation that we use, the second section describes
the controller architecture, the third describes the estimator, the fourth
states and discusses the convergence results, and the fifth presents some
conclusions and directions for future work.

The Markov chains that are used in this paper are discrete-time finite-
valued stochastic processes defined on an abstract probability space (Ω,F , P ).
The finite state space is represented by the unit vectors {e1, . . . , eN} of IRN

and the finite input space, U , is represented by the unit vectors in IRP .
If the input at time l has the value ul, then the state transition matrix
for the Markov chain has entries

Aul;ij = P (xl+1 = ej |xl = ei, ul).

The finite set of outputs Y is represented by the unit vectors in IRM ,
and the transition matrix from state to output is given by

Bij = P (yl = ej |xl = ei).

The combined state, input and output process {xl, ul, yl} generates a fil-
tration {Fl} ⊂ F in the usual way, and the process formed by combining
input and output only generates a smaller filtration {Yl} ⊂ {Fl} on F .
In general, probability distributions on finite sets will be represented as
vectors, expectations as inner products in Euclidean spaces of the ap-
propriate dimensions, and probability kernels on finite spaces will be
represented as matrices.

Let M denote the space of probability distributions on the finite set
U , and Mη, 0 ≤ η ≤ 1/P denote the compact subset of distributions that
satisfy µ{u} ≥ η for all u ∈ U . A control policy for a finite horizon of
length K is a specification of a sequence of probability distributions on
µ0, µ1, . . . µK−1 ∈ M. A control policy is an output feedback policy if each
distribution µl is a measurable function on the σ-algebra Yl. Each control
policy µ = µ0, µ1, . . . , µK−1 induces a probability distribution on FK with
density

Pu(x0,K , y0,K) = 〈xK , ByK〉 〈x0, π0〉
K−1∏

l=0

∑

u∈U

〈xl, Auxl+1〉〈xl, Byl〉 〈u, µl〉. (1)

where π0 is the probability distribution for the random variable x0. It is
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convenient here to define an additional probability measure on Ω

P †(x0,K , y0,K) =
1
M
〈x0, π0〉

K−1∏

l=0

∑

u∈U

1
M
〈xl, Auxl+1〉 〈u, µl〉.

Pu is absolutely continuous with respect to P † and has Radon–Nikodym
derivative

dPu

dP †

∣∣∣∣
GK

= ΛK =
K∏

l=0

M〈xl, Byl〉.

In addition, the output process yl is i.i.d. with respect to P † and has
uniform marginal distributions P †{yl = ej} = 1/M .

2. CONTROLLER ARCHITECTURE

A risk sensitive control problem is defined on a hidden Markov model by
specifying a cost functional with an exponential form. Given a running
cost, φ(x, u), which is a function of both the state and the input, and a
final cost φf (x), which is a function of the state only, the finite horizon,
risk sensitive cost, associated with the control policy µ, with risk γ and
horizon K is the functional

J γ(µ) = E

[
exp

1
γ

(
φf (xK) +

K−1∑

l=0

φ(xl, ul)

)]
. (2)

Expressed in terms of expectations with respect to the P † measure, the
cost is

J γ(µ) = E†
[
ΛK exp

1
γ

(
φf (xK) +

K−1∑

l=0

φ(xl, ul)

)]
.

Optimal output feedback controls are computed by defining an informa-
tion state that is a process adapted to the filtration {Yl}, translating the
cost to a functional on the information state, and then using dynamic
programming with respect to the information state dynamics to compute
the optimal control. An appropriate choice of the information state at
time l is the expected value of the accrued cost at time l, conditioned
with respect to the σ-algebra Yl.

σγ
l (x) = E†

[
I{xl=x}Λl exp

(
1
γ

l−1∑

k=0

φ(xk, uk)

)
| Yl

]
.

The information state dynamics is described by a linear recursion on IR+N

σl = Σ(ul−1, yl)σl−1, (3)
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with
Σ(u, y) = M diag(〈·, By〉)A>(u)diag(exp(1/γ φ(·, u))).

The risk sensitive cost is expressed as a functional on the information
state process by the formula

J γ(µ) = E†
[
〈σγ

K(·), exp(φf (·)/γ)〉
]
. (4)

The value function associated with the finite-time, state-feedback control
problem on the information state recursion (3) with cost function (4) is

Sγ(σ, l) = min
µl...µK−1∈M

E† [〈σγ
K(·), φf (·)〉 |σγ

l = σ] , 0 ≤ l < K. (5)

The associated dynamic programming equation is
{

Sγ(σ, l) = minµl∈ME† [Sγ(Σγ(ul, yl+1)σ, l + 1)]

Sγ(σ,K) = 〈σ(·), φf (·)〉.
(6)

An induction argument along the lines of that used by Baras and James
[2] proves the following theorem.

Theorem 1. The value function Sγ defined by (5) is the unique solution
to the dynamic programming equation (6). Conversely, assume that Sγ

is the solution of the dynamic programming equation (6) and suppose
that µ∗ is a policy such that for each l = 0, . . . ,K − 1, µ∗l = µ∗l (σ

γ
l ) ∈ M,

where µ∗l (σ) achieves the minimum in (6). Then µ∗ is an optimal output
feedback controller for the risk-sensitive stochastic control problem with
cost functional (2).

The following structural properties are analogous to those proved by
Fernández–Gaucherand and Marcus [4].

Theorem 2. At every time l the value function Sγ(σ, l) is convex and
piecewise linear in the information state σ ∈ IR+N . Furthermore, the
information state is invariant under homothetic transformations of IR+N .

The randomized policies taking values in Mη approximate determinis-
tic policies in the following way.

Theorem 3. Let Sη denote the value function for the optimal control
problem when the policy is restricted so that µl ∈Mη for all 0 ≤ l ≤ K−1,
then S0 = S is a deterministic policy,

Sη(σ, l)− S0(σ, l)
1 + |σ| → 0
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uniformly on IRN +×{0, . . . , K}, and the optimal policies converge µ∗η → µ∗.

The controller architecture that we propose is based on a moving win-
dow. Theorem 2 is used with the dynamic programming equation (6) to
compute the value function for the finite horizon problem with horizon K.
along with the values of the optimal output feedback distributions µ∗(σ).
At each time l the information state recursion (3) is used with a record
of the previous ∆ observations and control values, and a predetermined
initial value σl−∆ to compute the current value of the information state.
The optimal probability distribution µ(σl) is selected, and a random pro-
cedure governed by this distribution is used to produce a control value
ul.

3. ESTIMATOR ARCHITECTURE

The estimator architecture is a maximum likelihood estimator. The re-
cursive algorithm is derived by following the formal derivation that Kr-
ishnamurthy and Moore [6] give for a stochastic gradient scheme that ap-
proximates a maximum likelihood estimator for a hidden Markov model.
The resulting algorithm is well described as a recursive version of the
expectation maximization algorithm of Baum and Welch. Let θl denote
an estimate for the parameters that determine the probabilistic structure
of the hidden Markov chain. The components of θ, which are the entries
of the transition matrices, are constrained to lie in a linear submanifold
Θ by the requirement that the estimates Âu and B̂ be stochastic matri-
ces. Gradients and Hessians taken with respect to θ will be thought of
as linear and bilinear forms on the tangent space to Θ.

A maximum likelihood estimator for a hidden Markov model with
parameterization θ∗ minimizes the Kullback–Leibler measure

J(θ) = E[log f(y0,l | θ) | θ∗].
Here f(y0,l | θ) is used to denote the distribution function induced by the
parameter θ on the sequence of random variables y0,l. It turns out that
J(θ) is not an easy quantity to calculate, however an equivalent condition
can be stated in terms of the functions

Ql(θ′, θ) = E[log f(x0,l, y0,l | θ) | y0,l, θ
′] (7)

Ql(θ
′, θ) = E[Ql(θ′, θ) | θ∗]

Krishnamurthy and Moore show that Ql(θ′, θ) > Ql(θ′, θ′) implies that
J(θ) > J(θ′), and proceed to write down the stochastic gradient algorithm2

θl+1 = θl + I−1
l+1(θl)

∂Ql+1(θl, θ)
∂θ

∣∣∣∣
θ=θl

2The θl are actually constrained to lie on Θ.
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Where Il is the Fisher information matrix for the combined state and
output process Il(θl) = −∂2Ql+1/∂θ2|θ=θl

, and Ql+1(θl, θ) is the empirical
estimate for Q(θl, θ) based on the first l observations.

The central part of the estimator is a finite buffer containing the last
∆ values of the input and output processes (the length is chosen to be
the same as the length of the controller buffer in order to simplify the
presentation). This buffer is used to update smoothed recursive estimates
of the various densities from which the function Q and its derivatives are
calculated. These densities are αl = f(xl−∆ | y0,l−∆) which is calculated
with the recursion

αl(j) =
∑

i〈ej , B̂yl−∆〉Âul−∆−1;ijαl−1(i)∑
i,j〈ej , B̂yl−∆〉Âul−∆−1;ijαl−1(i)

, (8)

βl = f(yl−∆+1,l |xl−∆) is computed with the backwards recursion

βk(i) =
∑

j

βk+1(j)Âuk+1;ij〈ei, B̂yk+1〉.

The finite recursion is recalculated for each time l starting with k = l,
and finishing with k = l−∆ and βl takes the value βl = βl−∆. Estimates of
the conditional densities ζl = f(xl−∆, xl−∆−1|y0,l) and γl = f(xl−∆ | y0,l) are
given in terms of αl−1, αl, βl−1 and βl by

ζl(i, j) =
αl−1(i)Âul−∆−1;ijβl−1(j)∑
i,j αl−1(i)Âul−∆−1;ijβl−1(j)

γl(i) =

∑
j βl(j)Âul−∆;ijαl(i)∑

i,j βl(j)Âul−∆;ijαl(i)
,

and the empirical estimates of the joint state-next state pair frequency
and state-output pair frequency are given by the recursive estimators

Zu
l = Zu

l−1 + (1− ρ)δu(ul−∆−1) (ζl − Zu
l−1)

Γl = Γl−1 + (1− ρ) (γly
>
l−∆ − Γl−1)

with 0 ¿ ρ < 1.
The result of the formal derivation is an algorithm that (after some

work) can be written in the form of a standard stochastic approximation
problem:

θl+1 = θl +
1
l
H(Xl, θl). (9)

where X = {xl, ul−∆,l, yl−∆,l, αl,l−1, Zl, Γl} is a Markov chain, and the parts
of H that correspond to the updates of Âu and B̂ are given by

δu(ul−∆)

bA2
u;ij

Zl(i,j)

(∑N
r=1

bA2
u;ir

Zl(i,r)

(
ζl(i,j)
bAu;ij

− ζl(i,r)
bAu;ir

))

∑N
r=1

bA2
u;ir

Zl(i,r)
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and
bB2

im

Γl(i,m)

(∑N
r=1

bB2
ir

Γl(i,r)

(
γl(i)δem (yl−∆)

bBim
− γl(i)δer (yl−∆)

bBir

))

∑N
r=1

bB2
ir

Γl(i,r)

respectively.

4. CONVERGENCE OF ESTIMATES

Let Pn:x,a denote the distribution of (Xn+k, θn+k) when Xn = x, and θn = a
then the convergence of the estimation algorithm (9) is governed by the
following theorem.

Theorem 4. If the matrices A and B are primitive, and the policies µ
satisfy

µ(yk−∆,k, uk−∆−1,k−1){u} > 0 for all u ∈ U.

Then, there exists a neighborhood system N of θ0 such that for any
F ∈ N , and for any compact set Q ⊂ Θ there exists a constants B > 0 and
λ ∈ [1/2, 1] such that for all a ∈ Q and all X ∈ X

Pn,X,a{θk converges to F} ≥ 1−B

∞∑

k=n+1

1/k1+γ

where θk is the sequence that is computed by the recursion (9)

The p r o o f of the theorem is a non-trivial application of the results
from part II, chapters 1 and 2 of Benveniste et al [3] in which the au-
thors present an analysis of the ODE method for proving convergence of
stochastic approximation algorithms. Results similar to Theorem 4 are
proved for a related problem by Arapostathis and Marcus in [1] who use
stochastic approximation results of Kushner, and then, in greater gener-
ality, by Le Gland and Mevel [7] who also use the theory from [3]. The
major difference between the problems treated in the works cited and the
problem treated here is the introduction of control to give a combined
control-estimation problem. From the point of view of the stochastic ap-
proximation analysis the control policy affects the transition kernels of
the underlying Markov chain, by introducing a dependency on the cur-
rent estimates. The restriction made in the premise of the theorem on
the space of randomized control policies allows the control policy to be
incorporated into the Markov chain Xl in a way that ensures good ergodic
properties for the transition kernel of Xl.

The ODE method relies on the use of a martingale convergence argu-
ment to prove convergence of the iterates of the stochastic approximation
algorithm to the trajectories of an associated ODE. The central feature
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of the treatment of Benveniste et al [3] is the use of regular solutions νθ

to the Poisson equation

(I −Πθ)νθ = H(·, θ)− hθ (10)

to provide the necessary martingale. The kernel Πθ in (10) is the transi-
tion kernel for the chain Xl, and the function hθ is the generator for the
associated ODE. When applying the theory, νθ does not have to be calcu-
lated explicitly, its existence and regularity can be inferred from ergodic
properties of the transition kernel Πθ for chain Xk. Most of the effort in
the proof is expended in establishing that bounds of the form

|Πn
θ g(X1)−Πn

θ g(X2)| ≤ K1Lgρ
n

|Πn
θ g(X)−Πn

θ′g(X)| ≤ K2Lg|θ − θ′|

hold for any Lipschitz function g and for all θ, θ′, X1 and X2, where K1

and K2 are constants, and 0 ≤ ρ < 1. The condition on the admissible
control strategies in the premise of Theorem 4 is key to establishing the
second bound.

The other important task in the proof of Theorem 4 is establishing that
the ODE converges asymptotically to the maximum likelihood estimate.
To accomplish this a Lyapunov function argument is used. An appropri-
ate choice of Lyapunov function in this case is the function U(θ) = Q(θ0, θ).

5. CONCLUSIONS AND FUTURE WORK

This paper presented an overview of the work that we are doing on the
problem of combined estimation and control for systems that can be de-
scribed by finite state hidden Markov models. We see the results that
we present here as preliminary. Techniques which are based on the mini-
mization of a relative entropy function, such as the estimation technique
described here, do not perform well when the number of parameters being
estimated increases and the domains of attraction shrink. The implica-
tion of this observation is that without additional a-priori assumptions
our proposed control architecture is only practical for systems that can
be modeled with a small state-space. Acknowledging this constraint,
we see our work proceeding in three ways. We are looking at applica-
tions to systems that are likely to benefit from controllers which assume
small state-spaces, we are considering how to incorporate a-priori struc-
tural assumptions about the plant into the frame-work that this paper
presents, and finally we are looking for approaches that bypass the model
estimation stage entirely and work directly with the estimation of the in-
formation state recursion for the separated controller.

(Received April 8, 1998.)
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