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ON CONSISTENCY OF THE MLE

Frantǐsek Rubĺık1

Convergence of the maximum likelihood estimator is established without the assumption
that the true value of the parameter belongs to the null hypothesis Ω0. It is shown, that
the MLE exists with probability tending to 1, and that the distance of the MLE from a set
H of parameters from Ω0 tends to zero almost everywhere, where H are parameters of the
probabilities best fitting the true distribution in the sense that they maximize the mean of
logarithm of the likelihood function.

1. INTRODUCTION AND THE MAIN RESULTS

It is well known that the MLE is consistent if the true parameter belongs to the
null hypothesis and certain regularity conditions are fulfilled, and some consistency
results can be proved also in the case, when the theoretical model is misspecified.
Let us mention some papers, whose results or methods are related to those in this
paper. Compactness of the parametric set is an essential condition for consistency
of the MLE in the paper [11]. Consistency for exponential families is investigated in
[1], existence and uniqueness of the unrestricted MLE is a topic of [8]. Consistency
of the MLE for Markov processes is under misspecification assumption established
in [4]. A misspecified i. i. d. case is treated in [12], and consistency of MLE in a
misspecified model is under general conditions on dependence of observations estab-
lished in [13] and [3]. The aim of this paper is to establish convergence of the MLE
in the setting admitting misspecification of the model, and with emphasize on the
case of independent sampling from finitely many statistical populations.

We shall assume, that (S,S) is a measurable space, Θ is a parameter set, {Fu}∞u=1

are sub-σ-algebras of S, νu is a measure on Fu and {P (u)
θ ; θ ∈ Θ} are probabilities

on (S,Fu) defined by means of the densities

fu(s, θ) =
dP

(u)
θ

dνu
(s) . (1)

To ensure measurability of the likelihood function we shall impose the following
assumption.

1This research was supported by a grant from the Slovak Academy of Sciences No. 999366.
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(A1). Θ is a separable metric space endowed with a metric ρ, and fu(s, θ) is a
continuous function of θ ∈ Θ for each s ∈ S.

We shall admit a possible misspecification of the model, but the true probability
P , defined on (S,S), will be subjected to some regularity assumptions. In these for
Ω ⊂ Θ and s ∈ S we put

Lu(s,Ω) = sup{fu(s, θ); θ ∈ Ω} . (2)

(A2). There exist norming constants {nu}∞u=1 such that for each θ∗ ∈ Θ

lim
u→∞

1
nu

log fu(s, θ∗) = I(θ∗) (3)

P almost everywhere, and I is a continuous function of θ∗.

(A3). For each θ∗ ∈ Θ there exists a positive number ∆∗ = ∆∗(θ∗) such that for
any arbitrary fixed number ∆ ∈ (0, ∆∗〉 and for the set

V (θ∗,∆) = {θ̃ ∈ Θ; ρ(θ̃, θ∗) < ∆} (4)

one can find an Fu measurable function gu(s, θ∗,∆) of the argument s such that on
S for the constants {nu}∞u=1 from (A2)

1
nu

log Lu(s, V (θ∗, ∆)) ≤ gu(s, θ∗, ∆) (5)

and
lim

u→∞
gu(s, θ∗, ∆) = I(θ∗,∆) , (6)

P a. e., where in the notation from (A2)

lim
∆→0+

I(θ∗,∆) = I(θ∗) . (7)

(A4). Let {nu}∞u=1 be the norming constants from (A2). If c is a real number,
then there exists a compact set Γ ⊂ Θ such that

lim sup
u→∞

1
nu

log Lu(s,Θ− Γ) < c (8)

P a. e.

In the following theorem we shall use for Ω ⊂ Θ in accordance with (A2) the
notation

I(Ω0) = sup{I(θ∗); θ ∈ Ω0} . (9)
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Theorem 1.1. Let us assume that the regularity conditions (A1) – (A3) hold and
the set Θ is either compact or (A4) is fulfilled. Further we suppose that Ω0 ⊂ Θ is
a closed set and

I(θ∗) > −∞ (10)
for some θ∗ ∈ Ω0.

(I) The set
H = {θ∗ ∈ Ω0; I(θ∗) = I(Ω0)} (11)

is compact and non-empty.
(II) There exist mappings

θ̃u : S −→ Ω0 (12)

measurable with respect to Fu and such that

P
[
Lu(s, Ω0) = Lu(s, θ̃u(s)) for all u ≥ u(s)

]
= 1 , (13)

with Lu(s, Ω0) = Lu(s, θ̃u(s)) for all s ∈ S in the case when Ω0 is compact. If (12)
are any measurable mappings satisfying (13), then the random variables

ρ(θ̃u,H) = inf{ ρ(θ̃u(s), θ∗); θ∗ ∈ H } (14)

converge to zero P a. e.

To pronounce the Corollary 1.1 we shall suppose that ν is a measure on (X,F)
and {fθ(x|y); θ ∈ Θ} is a family of transition density functions (with respect to ν)
of transition probabilities Pθ(A|y) of a Markov process.

(A∗1). Θ is a separable metric space endowed with a metric ρ, and fθ(x|y) is a
continuous function of θ ∈ Θ for all x, y ∈ X.

Let us further suppose that X1, X2, . . . is a process whose true distribution is
such that the law of large numbers holds for sequencies {ξ(Xi, Xi+1)}∞i=1 with finite
E(ξ(X1, X2)) (this is for Markov process according to Remark 2.2 in [4] guaran-
teed by validity of the condition (A1) in [4]). Obviously, in the notation S = X∞,
S = F∞, Fn = F ∗ . . . ∗ F , s = {xn}∞n=1 ∈ S and

fn(s, θ) = fn(x1, . . . , xn, θ) = f(x1)
n−1∏

i=1

fθ(xi+1|xi) (15)

the assumption (A1) is fulfilled, provided that (A∗1) holds. As it is observed in [2]
p. 4, information about the initial density f(x, θ) does not increase with n, and [2]
therefore uses as log-likelihood the function

L(θ) =
n−1∑

i=1

log fθ(xi+1|xi) , (16)

which is also the approach used in [4]. The initial term f(x) is in (15) included
to fulfill the requirement (postulated at the begining of the paper) that {fu} are
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probability densities, and simultaneously to ensure that the MLE based on (15) is
the same as the one based on (16).

Putting nu = n and denoting

L(xi, xi+1, V ) = sup{fθ(xi+1|xi); θ ∈ V }

gn(s, θ∗,∆) =
1
n

[
log f(x1) +

n−1∑

i=1

log L
(
xi, xi+1, V (θ∗,∆)

)]
,

we see that (A2), (A3) follow from (A∗1) and the following assumption, where E
denotes expectation with respect to the true distribution P .

(A∗2). For each θ∗ ∈ Θ there exists a number ∆∗ = ∆∗(θ∗) such that for the set
(4)

E
[
max{0, log L(X1, X2, V (θ∗, ∆))}

]
< +∞ (17)

and I(θ∗) = E(log fθ∗(X2|X1)) is a continuous function of θ∗ ∈ Θ.

From Theorem 1.1 we therefore immediately obtain the following assertion.

Corollary 1.1. Let us assume that the assumptions (A∗2) and (A∗1) are fulfilled,
the set Ω0 is closed in Θ, and for some θ∗ ∈ Ω0 the inequality (10) holds. Then the
assertions (I) and (II) of Theorem 1.1 remain true provided that either Θ is compact
or the assumption (A4) holds.

We remark, that on the one hand the asssumptions used in the Corollary 1.1 are
less restrictive, than the assumptions of [4] imposing on the functions log fθ(x|y) and
on their expectations some differentiability conditions, not required in (A∗2). On the
other hand, the condition (A∗2) requires validity of (17) for all θ∗ ∈ Θ, while (A6)
of [4] requires uniform convergence of 1

n

∑n−1
i=1 log fθ(Xi+1|Xi) on a neighbourhood

V ∗ only for the unique θ∗ ∈ Θ, postulated in [4] to maximize E(log fθ(X2|X1)).
However, [4] does not deal with the general case Ω0 = Θ ∩ C, where C is a closed
subset of Rk, while the Corollary 1.1 guarantees consistency of MLE for any closed
subset of the parameter space.

A more general framework is used in [13] and [3], where the conditional densities
are allowed to vary for all t = 1, 2, . . ., and the limit in (3) may not exist in such a
case. In these papers convergence to zero of θ̂n − θ∗n is established under different
conditions, with θ̂n being the MLE and θ∗n denoting the postulated maximizer θ∗n of
the mean of logarithm of likelihood function of n observations; the parameter space
is in [13] assumed to be compact, and [3] deals with the case Ω0 = B, where B is an
open subset of Rp. Thus while in [13] and [3] dependence of observations may be of
a type not allowed by (A1) – (A4), these conditions allow to establish consistency of
MLE for types of the null hypotheses, not included in [13] or [3].

The main goal of this paper is to prove consistency of the MLE in the case when
inference is based on independent random samples from q populations.
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Let {P γ ; γ ∈ Ξ } be a family of probability measures, defined on (X,F) by means
of the densities

f(x, γ) =
dP γ

dν
(x) (18)

with respect to a measure ν. Let us denote the q-fold products

S = X∞ × . . .×X∞ , S = F∞ ∗ . . . ∗ F∞ , Θ = Ξq . (19)

If θ = (θ1, . . . , θq) ∈ Θ, then θj is the parameter assigned to the j-th population.
We shall asssume, that statistical conclusions about θ are for

s =
(
{x(1)

n }∞n=1, . . . , {x(q)
n }∞n=1

)
∈ S

based on
su = x(u) = (y(1, n(1)

u ), . . . , y(q, n(q)
u )), (20)

where y(1, n
(1)
u ), . . . , y(q, n(q)

u ) are independent random vectors, and

y(j, n(j)
u ) = (x(j)

1 , . . . , x
(j)

n
(j)
u

)

is a random sample (with the sample size n
(j)
u ) from the j-th population. In this

q-sample case the σ-algebras Fu and the norming constants nu are determined with

Fu = Fn(1)
u ∗ . . . ∗ Fn(q)

u , nu = n(1)
u + . . . + n(q)

u , (21)

and the densities on which the MLE is based

fu(s, θ) = fu(x(u), θ) =
q∏

j=1

n(j)
u∏

i=1

f(x(j)
i , θj) . (22)

(RA1). Ξ is a separable metric space endowed with a metric ρ, and the function
f(x, ·) is continuous on Ξ for each x ∈ X.

The true distributions P1, . . . , Pq of the q underlying populations will be subjected
to the following regularity assumptions.

(RA2). For each γ ∈ Ξ there exists a positive real number ∆∗ = ∆∗(γ) such that
for the set

V (γ, ∆∗) = {γ̃ ∈ Ξ; ρ(γ̃, γ) < ∆∗} (23)

in the notation L(x, V ) = sup{f(x, γ̃); γ̃ ∈ V } the inequality
∫

max{0, log L(x, V (γ, ∆∗))}dPj(x) < +∞ (24)

holds for j = 1, . . . , q.

(RA3). The integral

Ij(γ) =
∫

X

log f(x, γ) dPj(x), (25)

which according to (RA 2) exists with −∞ as a possible value, is a continuous
function of γ ∈ Ξ for all j = 1, . . . , q.
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(RA4). If c is a real number, then for j = 1, . . . , q there exists a compact set
Γj ⊂ Ξ such that

lim sup
n→∞

1
n

log L(x1, . . . , xn, Ξ− Γj) < c (26)

a. e. P∞j , where in accordance with (2)

L(x1, . . . , xn, U) = sup

{
n∏

i=1

f(xi, γ); γ ∈ U

}
. (27)

In this setting and the notation

P = P∞1 × . . .× P∞q (28)

Theorem 1.1 gets the following form, where measurability of (12) with respect to Fu

obviously means that θ̃u = θ̃u(x(u)), with x(u) described by (20).

Corollary 1.2. Let us assume that the regularity conditions (RA1) – (RA3) hold
and in the notation (21)

lim
u→∞

nu = +∞ , lim
u→∞

n
(j)
u

nu
= pj ∈ (0, 1〉 for j = 1, . . . , q . (29)

Further we assume, that the set Ξ is either compact or (RA 4) holds, and the set
Ω0 ⊂ Θ = Ξq is closed. If for some θ∗ = (θ∗1 , . . . , θ∗q ) ∈ Ω0 and the quantity

I(θ∗, p) =
q∑

j=1

pj

∫
log f(x, θ∗j ) dPj(x) (30)

the inequality
I(θ∗, p) > −∞ (31)

holds, then in the notation

I(Ω0, p) = sup{I(θ∗, p); θ∗ ∈ Ω0} (32)

the set
H = H(p) = {θ∗ ∈ Ω0; I(θ∗, p) = I(Ω0, p)} (33)

is compact and non-empty, and the assertion (II) of Theorem 1.1 remains true.

A similar assertion for the one-sample case q = 1 and based on stronger con-
ditions can be found in [12], where convergence to the postulated unique parameter
minimizing the Kullback–Leibler information quantity K(g : f, θ) has been proved
under the assumptions, that the parameter set is compact, the true distribution
G has a density g with respect to the measure ν occurring in (18), E(log g) exists
and the densities (18) are uniformly bounded with a G-integrable function. These
assumptions remain in force also when the general setting in [13] is applied to the
i. i. d. case. We remark, that in the q-sample case described in Corollary 1.2, the
assumption (RA4) is imposed to remove the condition of compactness of the pa-
rameter space. However, as we shall prove in the following theorem, in the case of
exponential families of probabilities even this condition may be omitted.
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(RC1). The measurable space (X,F) = (Rm,Bm), the dominating measure ν is
not suppported on a flat, the parameter set

Ξ =
{

γ ∈ Rm;
∫

eγ ′ x dν(x) < +∞
}

(34)

is open, and the densities are determined by the formula

f(x, γ) =
dP γ

dν
(x) = eγ ′ x−C(γ) , (35)

where prime denotes transposition of the vector, and

C(γ) = log
∫

eγ ′ x dν(x) . (36)

(RC2). The true distributions P1, . . . , Pq of the q populations are such that
∫

xdPj(x) ∈ B(ν) , j = 1, . . . , q , (37)

where
B(ν) = {Eγ(x); γ ∈ Ξ} . (38)

The condition that the dominating measure ν is not supported on a plane, i. e.,
that ν(Rm −N) > 0 for every hyperplane N = {y ∈ Rm; c′ x + b = 0}, is according
to Lemma 2.1 in [1] equivalent to the fact that the probabilities {P γ ; γ ∈ Ξ} are
mutually different. In (38) we use the notation

Eγ(x) =
∫

xf(x, γ) dν(x) , (39)

where the integral is taken coordinate-wise. Since the set Ξ is open, all derivatives
of the function

∫
eγ ′x dν(x) of γ may be computed, according to Theorem 9 Chapter

2 in [7], by differentiating under the integration sign, which together with Lemma
2.2 in [1] means that the mapping

ξ(γ) = Eγ(x) (40)

is 1− 1 on Ξ. Hence under validity of (37) there exist unique parameters θ1, . . . , θq

from Ξ such that ∫
xdPj(x) = Eθj (x) , j = 1, . . . , q . (41)

Similarly as in Theorem 1.1 and Corollary 1.2, also in the following statement we
use the notations (19) – (22) and (28).

Theorem 1.2. Let us assume that the regularity condition (RC 1) holds, and in
the notation Θ = Ξq

Ω0 = Θ ∩ C , (42)

where C ⊂ Rmq is a closed set.
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(I) Let us denote x = 1
n

∑n
j=1 xj and put (cf. (38))

An = {(x1, . . . , xn) ∈ Rmn; x ∈ B(ν)} . (43)

This set is open and there exist measurable mappings

θ̃u : Du = A
n

(1)
u
× . . .×A

n
(q)
u
−→ Ω0 (44)

such that (c.f. (2))
L(x(u),Ω0) = L(x(u), θ̃u(x(u))) (45)

for all x(u) ∈ Du.
(II) Let also both (RC 2) and (29) hold. Then in the notation (28) and (20)

P
[
su ∈ Du for all u ≥ u(s)

]
= 1 , (46)

the set (33), where p = (p1, . . . , pq) are the numbers from (29), is compact and
non-empty, and if θ̃u : Xnu → Ω0 are any measurable mappings such that

P
[
s ∈ S; L(x(u), Ω0) = L(x(u), θ̃u(x(u))) for all u ≥ u(s)

]
= 1 , (47)

then the random variables
ρ(θ̃u,H) = inf{ ρ(θ̃u(x(u)), θ∗); θ∗ ∈ H } , (48)

where ρ(θ̃, θ∗) is the usual Euclidean distance, converge to zero a. e. P.

Let us denote for γ, γ∗ from Ξ

K(γ, γ∗) =
∫

log
(

f(x, γ)
f(x, γ∗)

)
f(x, γ) dν(x) = (γ−γ∗)′Eγ(x)−C(γ)+C(γ∗) , (49)

and for θ = (θ1, . . . , θq), θ∗ = (θ∗1 , . . . , θ∗q ) belonging to Θ = Ξq and a vector p =
(p1, . . . , pq)′ with positive coordinates

K(θ, θ∗, p) =
q∑

j=1

pjK(θj , θ
∗
j ) . (50)

If the parameter θ determined with (41) belongs to Ω0, then making use of (35) and
(49) we get that

∫
log f(x, θj) dPj(x)−

∫
log f(x, θ∗j ) dPj(x) = K(θj , θ

∗
j ) .

Thus in the notation
K(θ, Ω0, p) = inf{K(θ, θ∗, p); θ∗ ∈ Ω0} (51)

the set H from Theorem 1.2 (II) can be written as

H = {θ∗ ∈ Ω0; K(θ, θ∗, p) = K(θ, Ω0, p) } = {θ} ,

because for θ 6= θ∗ according to the remark following (RC2) the probabilities P θj ,
P θ∗j are different for some j, and therefore K(θ, θ∗, p) > 0 = K(θ, Ω0, p). Hence
from Theorem 1.2 (II) we obtain the following assertion.
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Corollary 1.3. Let us assume that the assumptions of Theorem 1.2 hold, and the
parameter θ = (θ1, . . . , θq) determined with (41) belongs to Ω0. If θ̃u : Xnu → Ω0

are measurable mappings satisfying (47), then

θ̃u → θ
a. e. P for u →∞.

The previous theorem and its corollary are an extension of the Theorem 3.1 and
Lemma 3.2 in [1], where in the one-sample case q = 1 the true distribution P1 is
supposed to fulfill (41) for some θ1 ∈ Ω0, and existence of a measurable restricted
MLE is guaranteed if the maximizers of log f(x1, . . . , xn, γ) on Ω0 are unique.

Let k > 1 be an integer and a = k(k + 1)/2. Let us put m = k + a and denote

Ξ = { γ = (µ′, σ′)′ ∈ Rm; µ ∈ Rk, σ ∈ Ra and V (σ) is positive definite } (52)

the set of parameters of the non-singular k-dimensional normal distributions, i. e., µ
is the vector of means, σ = (v11, . . . , v1k, v22, . . . , v2k, . . . , vkk)′ are elements of the
covariance matrix and V (σ) is the symmetric matrix with V (σ)ij = vij for i ≤ j.
For γ = (µ′, σ′)′ ∈ Ξ let f(x, γ) be density of the normal distribution N(µ, V (σ)).
In this setting from Theorem 1.2 we obtain the following assertion.

Corollary 1.4. (I) Let in the notation Θ = Ξq and (52)

Ω0 = Θ ∩ C , (53)

where C ⊂ Rmq is a closed set. If we put

An = {(x1, . . . , xn) ∈ Rkn; det Σ̂ > 0} , (54)

where Σ̂ = 1
n

∑n
j=1(xj − x)(xj − x)′, x = 1

n

∑n
j=1 xj , then there exist measurable

mappings (44) such that (45) holds. Moreover, if the true distributions of the q
populations are such that the covariance matrices

Vj = cov (x|Pj) (55)

are positive definite for j = 1, . . . , q, then the assertion (II) of Theorem 1.2 is true.

Since for any normal distribution with parameter from (52) probability of the
set (54) according to [10], p. 73, equals 1 if n > k, from the previous Corollary we
get as an immediate consequence the following existential assertion concerning the
Behrens-Fisher problem.

Corollary 1.5. Let

Ω0 = { (θ∗1 , . . . , θ∗q ) ∈ Ξq; Eθ∗1 (x) = . . . = Eθ∗q (x) } (56)

denote the hypothesis of equality of means of q normal populations without restric-
tion on their positive definite covariance matrices. If the true distributions

Pj = N(µj , Σj)
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where covariance matrices of these normal distributions are regular, then a measur-
able MLE θ̃u of the parameter from (56) exists on the set where the sample covariance
matrices are positive definite, which has probability 1 provided that minj n

(j)
u > k,

and under validity of (29) the random variables (48) converge to zero P a. e., where
the non-empty compact set

H = {θ∗ ∈ Ω0; K(θ, θ∗, p) = K(θ, Ω0, p)} , (57)

in the notation (50), (51) the symbol K(θj , θ
∗
j )=K(P θj

, P θ∗j ) denotes the Kullback–
Leibler information quantity, θ=(θ1, . . . , θq) and θj corresponds to N(µj ,Σj).

We remark, that if X = {0, 1, 2, . . .}, F = 2X is the system of all subsets of X,
f(x, γ) = e−γγx/x! denotes density of the Poissson distribution and Ξ = (0,+∞),
then the assertions (I) and (II) of Theorem 1.2 remain true, if we put B(ν) =
(0, +∞) and

∫
xdPj(x) =

∑∞
x=0 xPj({x}). The assertion (I) can be easily improved

in the sense that (44) can be written in the form θ̃u : Xn(1)
u × . . . × Xn(q)

u −→ Ω0,
where Ω0 denotes the closure of Ω0, (45) remains unchanged and if computation
of (1.45) involves zero value of the parameter, by density for λ = 0 we understand
f(x, 0) = δx,0, where δx,0 is the Kronecker delta.

2. PROOFS

The following assertion is an extension of Lemma 3.3, p. 307 in [9] in the sense that
the compact set Γ need not be a subset of Rk. We remark that the presented proof
seems to be simpler also in the case when Γ ⊂ Rk.

Lemma 2.1. Let us assume that S is a σ-algebra of subsets of S, Γ is a compact
metric space and B are borel subsets of Γ. If g : S×Γ → R is such that the function

(a) g(s, .) is continuous for each s ∈ S,

(b) g(., γ) is measurable for each γ ∈ Γ,

then there exists measurable mapping T : S → Γ such that in the notation

g(s,A) = sup { g(s, γ); γ ∈ A } (1)

the equality
g( s, T (s) ) = g(s, Γ) (2)

holds for each s ∈ S.

P r o o f . Since Γ is a compact metric space, there exist {γj}∞j=1 from Γ and a
non-decreasing sequence {mn}∞n=1 of positive integers such that for each n

Sn = {γ1, . . . , γmn}
is a 2−n net in Γ, i. e.

Γ =
mn⋃

j=1

U(γj , 2−n) ,
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where U(γj , δ) = { γ∗ ∈ Γ; ρ(γj , γ
∗) < δ }. We shall utilize the fact, that the sets

W
(1)
i =

{
s ∈ S; g(s, Γ) = g

(
s, U

(
γi,

1
2

))}

are measurable, and

V
(1)
i = W

(1)
i −

i−1⋃

j=1

W
(1)
j , i = 1, . . . , m1

form a measurable partition of S. Thus the mapping

T1(s) =
m1∑

i=1

γiχV
(1)

i

(s)

for which T1(s) = γi if s ∈ V
(1)
i , is a measurable mapping from S into Γ.

Let us assume, that for n = 1, . . . , k we have already constructed measurable
mapings Tn : S → Γ such that for all n

Tn(s) =
mn∑

i=1

γiχV
(n)

i
(s) , ρ(Tn(s), Tn+1(s) ) <

1
2n−1

(3)

and for all s ∈ V
(n)
i

g(s, Γ) = g

(
s, U

(
γi,

1
2n

))
. (4)

Denoting

W
(k+1,i)
j =

{
s ∈ V

(k)
i ; g(s,Γ) = g

(
s, U

(
γi,

1
2k

)
∩ U

(
γj ,

1
2k+1

))}

V
(k+1,i)
j = W

(k+1,i)
j −

j−1⋃
r=1

W (k+1,i)
r , j = 1, . . . , mk+1 ,

taking into account the fact that {V (k+1,i)
j ; i = 1, . . . ,mk, j = 1, . . .mk+1} form a

measurable partition of S, and putting

Tk+1(s) =
mk+1∑

j=1

[
mk∑

i=1

γjχV
(k+1,i)

j
(s)

]
=

mk+1∑

j=1

γjχV
(k+1)

j
(s) , (5)

where
V

(k+1)
j =

mk⋃

i=1

V
(k+1,i)
j ,

we see that
ρ(Tk(s), Tk+1(s)) ≤ 1

2k
+

1
2k+1

<
1

2k−1
,

and for s ∈ V
(k+1)
j

g(s,Γ) = g

(
s, U(γj ,

1
2k+1

)
)

.

Hence existence of measurable mappings {Tn}∞n=1 satisfying (3) and (4) is proved,
and their limit

T (s) = lim
n→∞

Tn(s)
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is obviously measurable. Since according to (4)

|g(s, Γ)− g(s, Tn(s))| ≤ sup
{
|g(s, γ)− g(s, γ∗)|; ρ(γ, γ∗) <

1
2n

}
,

also the equality (2) holds. 2

P r o o f of Theorem 1.1. (a) Let us first suppose that Θ is a compact set.
Since the function I(θ∗) in (3) is continuous, the assertion (I) is obviously true.
Compactness of Ω0 together with (A1) according to Lemma 2.1 mean that there
exist measurable mapings (12) satisfying Lu(s,Ω0) = Lu(s, θ̃u(s)) for all s ∈ S.

Let (12) be any measurable mapings satisfying (13) and a fixed number ε > 0 be
such that the set

Uε = {θ∗ ∈ Ω0; ρ(θ∗,H) ≥ ε} (6)

is non-empty. It is easy to see that continuity of I(θ∗) together with (11) imply
existence of a real number M < I(θ0) such that

Uε ⊂ Ω0(M) = {θ∗ ∈ Ω0; I(θ∗) ≤ M} . (7)

Now we shall proceed similarly as in the proof of Theorem 1 in [11]. Since the
set Ω0(M) is compact, validity of (A3) implies existence of finitely many open sets
Vi = V (θ∗i , ∆i), i = 1, . . . , r such that

Ω0(M) ⊂
r⋃

i=1

Vi ⊂ Θ−H ,

max{I(θ∗i , ∆i); i = 1, . . . , r} < I(Ω0) .

Hence if η ∈ H, then putting
log

0
0

= 0 (8)

and making use of (A3) we see that

lim sup
u→∞

1
nu

log
Lu(s,Ω0(M) )

Lu(s,Ω0)
≤ max

i=1,...,r
lim sup

u→∞
1
nu

log
Lu(s, Vi)
Lu(s, η)

< 0

P a. e., and (II) follows from (6) and (7).
(b) Let us drop the assumption of compactness of Θ. Since (10) holds, there

exists a real number c such that

c < I(Ω0). (9)

Let Γ ⊂ Θ be the compact set satisfying (8). If θ̃ ∈ Θ − Γ, then I(θ̃) < c, because
in the opposite case according to (A2)

lim inf
u→∞

1
nu

log Lu(s, Θ− Γ) ≥ lim inf
u→∞

1
nu

log fu(s, θ̃) ≥ c

P a. e., which is a contradiction with (8). Thus I(Ω0) = I(Ω0 ∩ Γ) and

{θ∗ ∈ Ω0; I(θ∗) = I(Ω0)} = {θ∗ ∈ Ω0 ∩ Γ; I(θ∗) = I(Ω0 ∩ Γ)} . (10)
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Further, if η is a fixed point from H, then in the notation (8)

lim sup
u→∞

1
nu

log
Lu(s,Ω0 − Γ)

Lu(s,Ω0)
≤ lim sup

u→∞
1
nu

log
Lu(s, Θ− Γ)

Lu(s, η)
< 0

P a. e., because c < I(η). Hence P a. e.

Lu(s, Ω0 − Γ) < Lu(s, Ω0)

for all u ≥ u(s). Since the set Γ is compact, putting Θ = Ω0 ∩ Γ and taking into
account (10) and the part (a) of this proof we easily obtain that the Theorem 1.1 is
true. 2

P r o o f of Corollary 1.2. From (24) we obtain that the integral

Ij(γ, ∆∗) =
∫

log L(x, V (γ, ∆∗)) dPj(x) (11)

exists with −∞ as a possible value. Employing the monotone convergence theorem
we get that in the notation (25)

lim
∆→0+

Ij(γ, ∆) = Ij(γ) . (12)

Hence putting

gu(s, θ∗, ∆) =
1
nu

log




q∏

j=1

n(j)
u∏

i=1

L(x(j)
i , V (θ∗j , ∆))


 , (13)

I(θ∗,∆) =
q∑

j=1

pjI(θ∗j , ∆) (14)

and utilizing the law of large numbers we obtain that in the notation (30) and
I(θ∗) = I(θ∗, p) the conditions (A1) – (A3) hold. Thus according to Theorem 1.1 it
is sufficient to prove (A4).

First we show that for j = 1, . . . , q

lim sup
n→∞

1
n

log L(x1, . . . , xn, Ξ) < d (15)

P∞j a. e. for some real d. If Γ is the compact set from it (RA4) satisfying (26) with
c = 0, then according to the previous part of the proof there exist finitely many sets
V (γk, ∆k), k = 1, . . . , r such that in the notation (11)

Γ ⊂
r⋃

k=1

V (γk, ∆k) , max
j

max
k

Ij(γk, ∆k) < +∞ .

Thus
lim sup

n→∞
1
n

log L(x1, . . . , xn,Ξ) ≤
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≤ lim sup
n→∞

max

{
1
n

log L(x1,. . ., xn, Ξ−Γ),
1
n

log

(
n∏

i=1

L(xi, V (γk, ∆k))

)
; k=1,. . ., r

}
.

Choosing real numbers dk > maxj Ij(γk, ∆k), putting d = max{0, d1, . . . , dk}, uti-
lizing (26) and the law of large numbers we get (15).

Now we utilize (RA4) according to which there exists a compact set Γj ⊂ Ξ such
that

lim sup
n→∞

1
n

log L(x1, . . . , xn, Ξ− Γj) < cj (16)

P∞j a. e. Obviously, Γ = Γ1 × . . .× Γq is a compact subset of Θ and

1
nu

log Lu(s, Θ− Γ) ≤ max
j=1,...,q

1
nu

log Lu(s,Dj) , (17)

where Dj = Ξ× . . .×Ξ× (Ξ−Γj)×Ξ× . . .×Ξ. But if we denote
∑ ∗

the sum over
the indices 1 ≤ j ≤ q, j 6= i, then in accordance with (15), (20) and (22)

lim sup
u→∞

1
nu

log Lu(s,Di) ≤

≤
∑ ∗

lim sup
u→∞

1
nu

log L(y(j, n(j)
u ), Ξ) + lim sup

u→∞
1
nu

log L(y(i, n(i)
u ), Ξ− Γi) <

<
∑ ∗

pjd + pici (18)

P almost everywhere. Hence if c is a fixed real number and the cj ’s in (16) are such
that

max
i

(
(1− pi)d + pici

)
< c ,

then combining (17) and (18) we get (8). 2

The p r o o f of Theorem 1.2 is based on the following lemmas. In these we use
for γ, γ∗ from (34) in the notation (35) the quantity (49).

Let γ be an interior point of (34). As pointed out in [1], p. 195, since according
to Theorem 9, Chapter 2 in [7] differentiating in (36) may be performed under
integration sign,

∂

∂γ
C(γ) = Eγ(x) ,

∂

∂γ
Eγ(x) = Var(x |P γ) , (19)

where Var denotes the covariance matrix.

Lemma 2.2. Let the condition (RC1) hold. If Γ is a non-empty compact subset
of Ξ and c is a positive real number, then

K = { γ∗ ∈ Ξ; there exists γ ∈ Γ such that K(γ, γ∗) ≤ c } (20)

is a compact subset of Rm.
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P r o o f . (a) First we show that this set is closed. Let us assume that {γ∗n}∞n=1

belong to K and
lim

n→∞
γ∗n = γ∗ ∈ Rm . (21)

According to (20) there exisr parameters γn ∈ Γ such that

K(γn, γ∗n) ≤ c . (22)
Since the set Γ is compact,

lim
k→∞

γnk
= γ ∈ Γ (23)

for some subsequence {nk}∞k=1 of 1, 2, . . . . But C(γ), Eγ(x) are according to (19)
continuous, and from (22) and (49) we get that

lim inf
k→∞

C(γ∗nk
) < +∞ .

This together with (36), (21) and the Fatou lemma means that γ∗ ∈ Ξ. From (23),
(21), (22) and continuity of (49) we obtain that γ∗ belongs to (20).

(b) It remains to prove boundedness of (20). Since Γ ⊂ Ξ ⊂ Rm, Γ is compact
and Ξ is open, according to the Lebesque covering lemma (cf. [6], p. 154) there exists
a positive number δ such that

γ ∈ Γ , ‖γ − γ̃‖ ≤ δ =⇒ γ̃ ∈ Ξ . (24)

Suppose that the set (20) is not bounded. Then there exist {γ∗n}∞n=1 from K and
{γn}∞n=1 from Γ such that

K(γn, γ∗n) ≤ c for all n , lim
n→∞

‖γ∗n‖ = +∞ , lim
n→∞

γn = γ ∈ Γ . (25)

Thus the sequence {γn}∞n=1 is bounded, and we may assume that γn 6= γ∗n for all n
and for the vectors

hn = δ
γ∗n − γn

‖γ∗n − γn‖ (26)

there exists the limit
lim

n→∞
hn = h . (27)

From (25) and (26) we get

γ∗n = γn + αnhn , αn =
‖γ∗n − γn‖

δ
→ +∞ . (28)

But if α is a real number and γ̃, γ̃ + αh̃ belong to Ξ, then making use of (49) and
(19) we get

∂K(γ̃, γ̃ + αh̃)
∂α

= −h̃′Eγ̃(x) + Eγ̃+αh̃(x)′h̃ ,
∂2K(γ̃, γ̃ + αh̃)

∂α2
= h̃′Var(x |P γ̃+αh̃)h̃ ,

(29)
where the second derivative is positive for h̃ 6= 0, because ν is suposed not to be
concentrated on a flat. Since according to Lemma 7, Chapter II in [7] the set Ξ is
convex, (28) and (29) yield

K(γn, γ∗n) = K(γn, γn + hn) +
∫ αn

1

∂K(γn, γn + αhn)
∂α

dα ≥

≥ ∂K(γn, γn + αhn)
∂α

∣∣∣∣
α=1

(αn − 1) , (30)
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because the Kullback–Leibler information quantity is non-negative. Since (24) – (27)
hold, K(γ, γ + 0h) = 0 < K(γ, γ + h), which together with (29) means that

∂K(γ, γ + αh)
∂α

∣∣∣∣
α=1

> 0 .

From continuity of this partial derivative, (30) and (28) we therefore obtain, that

lim
n→∞

K(γn, γ∗n) = +∞ ,

which is a contradiction with (25). 2

In the following assertion we use the notation

I = { (p1, . . . , pq);
q∑

j=1

pj = 1 and min
j

pj > 0 } . (31)

Lemma 2.3. Let the condition (RC 1) hold, and the null hypothesis

Ω0 = Θ ∩ C , (32)

where Θ = Ξq and C is a closed subset of Rmq.

(I) If θ ∈ Θ and p ∈ I, then there exists an η ∈ Ω0 such that (cf. (49)) – (51))

K(θ, Ω0, p) = K(θ, η, p) .

(II) If W ⊂ Θ and T ⊂ I are non-empty compact sets, then

D = {θ∗ ∈ Ω0; there exist θ ∈ W, p ∈ T such that K(θ, θ∗, p) = K(θ, Ω0, p)}
(33)

is a compact subset of Rmq.

(III) The function K(.,Ω, .) is continuous on Θ× I for every non-empty Ω ⊂ Θ.

P r o o f . (I) If η∗ ∈ Ω0 and K(θ, θ̃, p) ≤ K(θ, η∗, p), then for j = 1, . . . , q in the
notation d(p) = min{p1, . . . , pq}

d(p)K(θj , θ̃j) ≤ K(θ, η∗, p) ≤
q∑

j=1

K(θj , η
∗
j ) , (34)

where θj denotes the j-th component of θ = (θ1, . . . , θq). Hence for c > 0 sufficiently
large and

Γ =
q⋃

j=1

{γ∗ ∈ Ξ;K(θj , γ
∗) ≤ c} , Ω1 = Ω0 ∩ (Γ× . . .× Γ) (35)

the equality
K(θ, Ω0, p) = K(θ, Ω1, p) (36)
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holds. Taking into account (32) and Lemma 2.2 we get that the set Ω1 is compact,
and therefore K(θ, ·, p) attains on Ω1 its minimum.

(II) Owing to compactnes of T the number ∆ = inf{pj ; j = 1, . . . , q , p ∈ T} is
positive, and similarly as in (34) – (36) one can show by means of Lemma 2.2 that

D ⊂ (Γ× . . .× Γ) ⊂ Θ , (37)

where Γ is a compact set. Thus it is sufficient to prove that the set D is closed.
If {θ∗n}∞n=1 belong to D and limn→∞ θ∗n = θ∗, then (37), (32) imply that θ∗ ∈ Ω0.

According to (33)
K(θn, θ∗n, pn) = K(θn, Ω0, pn) (38)

for some θn ∈ W and pn ∈ T . Since the compactness assumptions allow us to assume
that θn → θ ∈ W , pn → p ∈ T , making use of the assertion (I) of this lemma and
(38) we get

K(θ, Ω0, p) = K(θ, η, p) = lim
n→∞

K(θn, η, pn) ≥ lim sup
n→∞

K(θn,Ω0, pn) = K(θ, θ∗, p)

and θ∗ ∈ D.

(III) Since the function K(θ, ., p) is continuous on Θ, the set Ω may be replaced
with Ω ∩Θ, and we shall therefore assume that Ω = Ω0 is the set (32).

Let θn → θ belong to Θ and pn → p belong to I. If

W = {θn; n = 1, 2, . . . } ∪ {θ} , T = {pn; n = 1, 2, . . . } ∪ {p} ,

then according to (I) of this lemma there exist η, ηn from the set D defined by means
of (33), satisfying the equalities

K(θ, Ω0, p) = K(θ, η, p) , K(θn, Ω0, pn) = K(θn, ηn, pn) .

Since the set D is according to (II) compact, there exists a sequence {nk}∞k=1 such
that ηnk

→ η∗ ∈ D and lim infn→∞K(θn,Ω0, pn) = limk→∞K(θnk
,Ω0, pnk

). Thus

K(θ, Ω0, p) = lim
n→∞

K(θn, η, pn) ≥ lim sup
n→∞

K(θn, Ω0, pn) ≥

≥ lim inf
n→∞

K(θn, Ω0, pn) = lim
k→∞

K(θnk
, ηnk

, pnk
) = K(θ, η∗, p) ≥ K(θ, Ω0, p) ,

and the continuity is proved. 2

P r o o f of Theorem 1.2. (I) According to Lemma 2.2 in [1] the mapping (40)
is 1− 1 on Ξ. Since differentiating of (36) can be performed under integration sign,
(19) holds and ν is not concentrated on a flat, Jacobian of ξ(γ) is positive on Ξ and
ξ has continuous derivatives. This according to Theorem 212 in [5] means, that the
set B(ν) is open and ξ−1 has continuous derivatives on B(ν). Thus An is open and
ξ−1 is measurable. Let for (x1, . . . , xn) ∈ An

θ̂n(x1, . . . , xn) = ξ−1(x) , (39)
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and for x(u) ∈ Du in the notation (20)

θ̂(u)(x(u)) =
(
θ̂

n
(1)
u

(y(1, n(1)
u )), . . . , θ̂

n
(q)
u

(y(q, n(q)
u ))

)
. (40)

Since for (x1, . . . , xn) ∈ An in the notation (49)

log L(x1, . . . , xn, γ) = gn(x1, . . . , xn)− nK(θ̂n, γ) (41)

where
gn(x1, . . . , xn) = nx ′θ̂n − nC(θ̂n) , (42)

we see that on Du for θ∗ ∈ Θ

log L(x(u), θ∗) = G(u)(x(u))− nuK(θ̂(u), θ
∗, pu) , (43)

where pu =
(

n(1)
u

nu
, . . . ,

n(q)
u

nu

)
and

G(u)(x(u)) =
q∑

j=1

g
n

(j)
u

(y(j, n(j)
u )) . (44)

Let us denote by H(Du) boundary of Du, and put

D(M)
u =

{
x(u) ∈ Du; ‖x(u)‖ ≤ M , ρ(x(u),H(Du)) ≥ 1

M

}
,

where ρ(x,A) = inf{‖x − y‖; y ∈ A} and ρ(x, ∅) = +∞. Then {D(M)
u }∞M=1 is an

increasing sequence of compact sets and

Du =
∞⋃

M=1

D(M)
u

because Du is open. Since continuous image of a compact set is again compact,

W (M)
u = { θ̂(u)(x(u)); x(u) ∈ D(M)

u }
is a compact set. Hence

D(M)
u = { θ̃ ∈ Ω0; there exists θ̂ ∈ W (M)

u such that K(θ̂, θ̃, pu) = K(θ̂, Ω0, pu) }

is according to Lemma 2.3 (II) compact, and from (43) and Lemma 2.3 (I) we obtain
that on D

(M)
u log L(x(u),Ω0) = log L(x(u),D(M)

u ) .

From Lemma 2.1 we therefore get existence of measurable mappings θ̃
(M)
u : D

(M)
u →

D(M)
u such that

log L(x(u),Ω0) = log L(x(u), θ̃(M)
u (x(u)))

for all x(u) ∈ D
(M)
u . Hence if we put

θ̃u(x(u)) = θ̃(M)
u (x(u))
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for x(u) ∈ D
(M)
u −D

(M−1)
u , the assertion (I) is proved.

(II) According to the law of large numbers and (41)

lim
n→∞

1
n

n∑

j=1

xj = Eθj
(x) ∈ B(ν) (45)

a. e. P∞j . Since the set B(ν) is according to (I) of this proof open, (45) implies (46).
Now it remains to prove validity of assumptions of Corollary 1.2. Since (RA1) –

(RA3) obviously hold, it is sufficient to prove (RA4). If the set Ξ− Γ is non-empty,
then on An according to (41)

1
n

log L(x1, . . . , xn, Ξ− Γ) =
1
n

gn(x1, . . . , xn)−K(θ̂n, Ξ− Γ) .

This together with (45), (42), (39), continuity of ξ−1 and Lemma 2.3 (III) means,
that

lim
n→∞

1
n

log L(x1, . . . , xn, Ξ− Γ) = Eθj
(x)′θj − C(θj)−K(θj ,Ξ− Γ)

P∞j a. e., and existence of the compact set Γ fulfilling (26) can be easily proved by
means of Lemma 2.2. 2

P r o o f of Corollary 1.4. If we put for x ∈ Rk

T (x) =
(

x1, . . . , xk,−x2
1

2
,−x1x2, . . . ,−x1xk,−x2

2

2
,−x2x3, . . . ,−x2xk, . . . ,−x2

k

2

)′

and analogously for γ = (µ′, σ′)′ ∈ Ξ

e(γ) =
(
(V −1(σ)µ)′, V −1(σ)11, V −1(σ)12, . . . , . . . , V −1(σ)kk

)′
,

then
e(γ)′T (x) = −1

2
(x− µ)′V (σ)−1(x− µ) +

1
2
µ′V (σ)−1µ (46)

and e, e−1 are continuous mappings of Ξ onto Ξ. Since the set Ξ is open, the
Corollary 1.4 will be proved if we prove the following lemma, by means of which one
can easily show that the assumptions of Theorem 1.2 are fulfilled.

Lemma 2.4. (I) If we denote for A ∈ Bm

ν(A) = µL(T−1A)

where µL is the Lebesque measure on (Rk,Bk), then the measure ν is not supported
on a flat.

(II) The natural set of parameters (34) coincides with (52).

P r o o f . Since in the notation (35) according to Lemma 2.2 in [1] the measure ν
is not supported on a flat if and only if the mapping γ → P γ is 1 - 1, making use of
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(46) we see that it is sufficient to prove (II). However, if γ = (µ′, σ′)′ ∈ Rm and the
matrix V (σ) is not positive definite, then

γ ′T (x) = x ′µ− 1
2
x ′V (σ)x = z ′Pµ− 1

2

k∑

i=1

λiz
2
i ,

where P is an orthogonal matrix, z = Px and λk ≤ 0. Thus after some calculation
∫

Rm

eγ ′y dν(y) =
∫

Rk

eγ ′T (x) dµL(x) = +∞

and the set of natural parameters (34) is a subset of (52). Since the reverse is also
true, the lemma is proved. 2

(Received February 23, 1993.)
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