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Czech Republic, e-mail: myris@myris.cz. — Sole agent for all “western” countries: Kubon
& Sagner, P.O. Box 34 01 08, D-8 000 München 34, F.R.G.

Published in February 2004.

c© Institute of Information Theory and Automation of the Academy of Sciences of the
Czech Republic, Prague 2004.

http://www.utia.cas.cz
http://www.utia.cas.cz
http://www.utia.cas.cz
http://www.kybernetika.cz/board.html
http://www.kybernetika.cz/contact.html
http://www.kybernetika.cz
http://www.kybernetika.cz/content/401.html


KY BERNET I K A — V OL UME 4 0 ( 2 0 0 4 ) , N UM B ER 1 , PAGE S 1 4 3 – 1 5 0

REGIME–SWITCHING MODELS OF TIME SERIES
WITH CUBIC SPLINE TRANSITION FUNCTION
IN GEODETIC APPLICATION1

Tomáš Bognár, Jozef Komorńık and Magda Komorńıková

A new class of Smooth Transition Autoregressive models, based on cubic spline type
transition functions, has been introduced and subjected to comparison with models based
on the traditional logistic transition functions. A very high degree of similarity between
the two model classes has been demonstrated.

The new class of models can be slightly preferable because of its more simple formal and
geometrical structure that may enable users more convenient manipulation in statistical
inference procedures.

Keywords: time series, regime-switching autoregressive models, logistic and cubic-spline
transition functions

AMS Subject Classification: 62M10

1. INTRODUCTION

Smooth Transition Autoregressive models (STAR) have been extensively analyzed
and applied by many authors during the last two decades. They have been intro-
duced as a smooth alternative to Treshold Autoregressive models (representing non-
linear generalizations of autoregressive models) that assume different autoregressive
models describing behaviour of an investigated time series yt in different regimes.

We introduce and investigate cubic spline alternatives to the popular logistic
transition functions. The new class of transition functions preserves most important
properties of the logistic class while it may enable users more convenient manipula-
tion in statistical inference procedures.

2. LOGISTIC MODEL

A formal representation of a 2-regimes STAR can be expressed by

yt = Φ1(B)yt[1−G(yt−d; γ, c)] + Φ2(B)ytG(yt−d; γ, c) + εt (1)

1The research summarized in this paper was partly supported by the Grants APVT-20-023402,
GAČR 402/04/1026 and VEGA 1/1033/04.
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(see Teräsvirta [3]), where

εt is a white noise sequence with variance σ2,

the autoregressive polynomials

Φi(B) = φi,0 + φi,1B + · · ·+ φi,piB
pi , i = 1, 2

in the shift operator B (defined by Byt = yt−1) are related to regimes that are
determined by values of a treshold variable yt−d and its treshold level value c. A
logistic transition function has the form

G(yt−d; γ, c) =
1

1 + exp(−γ[yt−d − c])
(2)

where γ is the smoothness parameter.
It is obvious that G(c; γ, c) = 1

2 and G(y; 0, c) = 1
2 for any y, c ∈ R and γ ≥ 0.

If we put qt = yt−d − c and

G∗(q; γ) = G(c + q; γ, c)− 1
2

=
1

1 + exp(−qγ)
− 1

2
(3)

we can rewritte (1) in the form (see Franses and van Dijk [1])

yt =
1
2
[Φ1(B) + Φ2(B)]yt + [Φ2(B)− Φ1(B)]ytG

∗(qt; γ) + εt (4)

which can be applied for testing linearity of the model (the hypothesis Φ1(B) =
Φ2(B) which is equivalent to the hypothesis H0 : γ = 0 in (3)). In this test a
third-order Taylor polynomial approximation to G∗(q; γ) in the right neighborhood
of γ = 0 was utilized.

Let us note that the function G∗(q; γ) given by (3) is increasing in both variables
q (for any fixed γ > 0) and γ (for any fixed q > 0) whereas G∗(q; γ) is decreasing in
γ for any fixed q < 0. Moreover, the following relations obviously hold:

G∗(0; γ) = 0 for any γ ≥ 0 (5)

G∗(q; 0) = 0 = lim
γ→0

G∗(q; γ) for any q ∈ R (6)

lim
q→∞

G∗(q; γ) =
1
2
; lim

q→−∞
G∗(q; γ) = −1

2
; for any γ > 0 (7)

lim
γ→∞

G∗(q; γ) =

{
1
2 for q > 0

− 1
2 for q < 0

(8)

∂G∗(q; γ)
∂γ

=
q exp(−qγ)

[1 + exp(−qγ)]2
(9)

∂G∗(q; γ)
∂q

=
γ exp(−qγ)

[1 + exp(−qγ)]2
(10)
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hence G∗ is increasing in q for any fixed γ > 0 and ∂G∗(q;γ)
∂q is exponentially ap-

proaching 0 for any fixed γ > 0 and |q| → ∞.
Furthermore

∂2G∗(q; γ)
∂γ2

=
−q2 exp(−qγ)[1− exp(−qγ)]

[1 + exp(−qγ)]3
(11)

∂2G∗(q; γ)
∂q2

=
−γ2 exp(−qγ)[1− exp(−qγ)]

[1 + exp(−qγ)]3
. (12)

Obviously, for any γ > 0, G∗ as a function of q is convex for q < 0 and concave for
q > 0, thus the partial derivative ∂G∗(q;γ)

∂q attains its maxima γ
4 for q = 0.

Moreover

∂3G∗(q; γ)
∂γ3

=
q3 exp(−qγ)[1− 4exp(−qγ) + exp(−2qγ)]

[1 + exp(−qγ)]4
. (13)

From the equalities (9), (11) and (13) we get for γ = 0

∂G∗(q; 0)
∂γ

=
q

4
,

∂2G∗(q; 0)
∂γ2

= 0,
∂3G∗(q; 0)

∂γ3
= −q3

8
. (14)

This yields a third-order Taylor approximation

T3(q, γ) = γ

[
∂G∗(q; γ)

∂γ

]

γ=0

+
1
6
γ3

[
∂3G∗(q; γ)

∂γ3

]

γ=0

=
1
4
γq − 1

48
γ3q3. (15)

This has been used for testing of linearity in Franses and van Dijk [1] (where an
error in the sign of the third-order term occurred). Note that T3(q, γ) as well as G∗

and G are symmetric in the pair of variables q and γ since they depend only on the
product x = qγ.

3. CUBIC SPLINE MODEL

Our idea is to find a class of third-order spline functions depending on a smoothing
parameter γ that would resemble properties of G∗(q, γ).

As we can see in the following Figures 1 – 3, the polynomials T3(q, γ) do not pro-
vide acceptable global approximations to G∗(q; γ) as functions of q. To fix this
shortcoming we introduce a class of polynomials

P (q, γ) =





− 1
2 q < − 3

γ
1
4qγ − 1

108q3γ3 − 3
γ ≤ q ≤ 3

γ
1
2 q > 3

γ

As we can observe in these figures, polynomials P (q, γ) provide much better global
approximations to G∗(q, γ) than T3(q, γ). Moreover, the following relations obviously
hold:
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Fig. 1. γ = 0.5.

1. P (0, γ) = 0 for any γ ≥ 0. (16)

2. For any q 6= 0, γ <
∣∣∣ 3
q

∣∣∣ we have

P (q, γ) =
1
4
qγ − 1

108
q3γ3, thus lim

γ→0
P (q, γ) = 0. (17)

3. For any γ > 0 and |q| ≥
∣∣∣ 3
γ

∣∣∣ we have

P (q, γ) =
1
2
, P (−q, γ) = −1

2
(18)

hence for any γ > 0

lim
q→∞

P (q, γ) =
1
2
, lim

q→−∞
P (q, γ) = −1

2
(19)

and
lim

γ→∞
P (q, γ) =

{
1
2 for q > 0

− 1
2 for q < 0.

(20)

Moreover, the functions P (q, γ) are odd in variable q

P (−q, γ) = −P (q, γ). (21)

4.
∂P (q; γ)

∂q
=





0 for q < − 3
γ

1
4γ − 1

36γ3q2 = 1
4γ

(
1− 1

9γ2q2
)

for − 3
γ ≤ q ≤ 3

γ

0 for q > 3
γ .

(22)

For |q| < 3γ−1 we have q2 < 9γ−2, q2γ2 < 9 and ∂P (q;γ)
∂q > 0, hence P (q, γ) is

increasing in q for any γ > 0 and |q| < 3γ−1. ∂P (q;γ)
∂q attains its maximum γ

4 for
q = 0. P (q, γ) is nondecreasing in γ for any fixed positive q with P (q; γ) = 1

2 for
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Fig. 2. γ = 1.

Fig. 3. γ = 5.

γ ≥ 3
q . For any q negative P (q; γ) is decreasing in γ for γ ≤ − 3

q with P (q; γ) = − 1
2

for γ ≥ − 3
q .

Moreover, [
∂P (q; γ)

∂q

]

q= 3
γ

= 0 =
[
∂P (q; γ)

∂q

]

q=− 3
γ

,

hence for any fixed γ, P (q; γ) is a nondecreasing spline function in q on R.

5.

∂2P (q; γ)
∂q2

=





0 for q < − 3
γ

− 1
18γ3q for − 3

γ ≤ q ≤ 3
γ

0 for q > 3
γ .

Hence for any γ > 0, P (q; γ) as a function of q is convex for q < 0 and concave for
q > 0.
Let us recall similarities in the properties of G∗(q, γ) and P (q, γ):
a)

G∗(0, γ) = P (0, γ) = 0 for any γ > 0.
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b)

G∗(q, γ) + G∗(−q, γ) = P (q; γ) + P (−q; γ) = 0 for any q ∈ R and γ > 0.

c)

∂G∗(q; γ)
∂q

> 0,
∂P (q; γ)

∂q
≥ 0 for all q ∈ R and γ > 0.

Thus for any fixed γ > 0, G∗(q; γ) is increasing and P (q, γ) is nondecreasing in q.
Moreover

∂G∗(0; γ)
∂γ

=
∂P (0; γ)

∂γ
=

γ

4
.

d)
∂2G∗(q; γ)

∂q2
< 0 and

∂2P (q; γ)
∂q2

≤ 0 for any q > 0 and γ > 0.

Hence for any fixed γ > 0 the functions G∗(q; γ) and P (q; γ) are concave for q > 0
and convex for q < 0.
e) For any γ > 0

lim
q→∞

G∗(q; γ) = lim
q→∞

P (q; γ) =
1
2

and
lim

q→−∞
G∗(q; γ) = lim

q→−∞
P (q; γ) = −1

2
.

f) For any q > 0, G∗(q; γ) is increasing in γ and P (q; γ) is nondecreasing in γ,

lim
γ→∞

G∗(q; γ) = lim
γ→∞

P (q; γ) =
1
2

and
lim

γ→−∞
G∗(q; γ) = lim

γ→−∞
P (q; γ) = −1

2
.

g) For any q ∈ R
lim
γ→0

G∗(q; γ) = lim
γ→0

P (q; γ) = 0.

Inspecting behaviour of the difference ∂P (q;γ)
∂γ − ∂G∗(q;γ)

∂γ we conclude that for any
fixed γ > 0 the difference P (q, γ) −G∗(q, γ) is positive for q > 0, increasing on the
interval (0, q0), where q0 ≈ 2.58

γ , and decreasing on (q0,∞). The maximal difference
P (q0, γ)−G∗(q0, γ) ≈ 0.056 independently of γ.

Similarly we can obtain that the difference G∗(q, γ)− T3(q, γ) is positive for any
γ > 0, q > 0. T3(q, γ) is better approximation to G∗(q, γ) than P (q, γ) on the interval
(0, q1), where q1 ≈ 1.966

γ and G∗(q1, γ) − T3(q1, γ) = P (q1, γ) − G∗(q1, γ) ≈ 0.044
independently of γ. The maximum of differences [(P (q, γ)−G∗(q, γ))− (G∗(q, γ)−
T3(q, γ)] is obtained in q = q2 ≈ 1.482

γ and its value is 0.013 independently of γ.
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4. APPLICATION

The time series of values of vertical coordinate v consists of results of permanent
position at POTS (Potsdam Observatory) station by the GPS (Global Positioning
System) technology. The series covers the interval from January 1, 2001 to December
31, 2002. Each element of the series represents the value obtained during the 24-hour
interval of observation of GPS satellites (n = 730).

The GPS is the satellite navigation system applied in geodesy for precise deter-
mination of position expressed in Cartesian geocentric coordinate system) on the
Earth’s surface. The elements of time series of POTS coordinates are derived from
solutions of European network of permanent GPS monitoring stations (about 40
stations distributed all over the continent).

We calculated optimal 2-regime models with both logistic and polynomial tran-
sition functions and threshold variables yt−d for d = 1, 2, 3, 4, 5. The best fit were
received in both logistic and polynomial transition function classes for d = 5 and
resulting model parameters estimates (c, γ, φ1,0, φ1,1, φ2,0, φ2,1, σ

2) equal to:

(2.7; 15;−0.025; 0.967; 0.239; 0.930; 0.511)
for the logistic case and

(2.7; 0.5;−0.024; 0.968; 0.228; 0.932; 0.511)
for the polynomial case.

The values of the vector parameters estimates for both models are extremaly
similar except for the slope parameter γ. Moreover, there are minimal differences
between autoregressive coefficients φ1,1 and φ2,1 for both transition function classes.
This inspires testing of linearity. Fitting AR(1) model for the same data we receive
estimates (φ0, φ1, σ

2) = (−0.001; 0.975; 0.517).
For both logistic and polynomial model we can apply the same testing procedure

that was indicated in Franses and van Dijk [1]. We calculate an auxiliary regression
model with explaining variables yt−1; yt−5 ·y2

t−5; y
3
t−5; yt−1.yt−5; yt−1 ·y2

t−5; yt−1 ·y3
t−5.

The residual variance estimate for this model is σ2 = 0.523.
The ANOVA test for AR(1) submodel yields F-ratio 0.452 which is much lower

than the mean of the F-distribution and thus highly nonsignificant. Hence neither
logistic nor polynomial STAR alternative to AR(1) model can be accepted as an
alternative to AR(1) model.

Next we repeated the same kind of analyses for the corresponding time series of
North–South coordinates of the same station. After removing the trend and cyclical
component we received the best fit for both logistic and polynomial transition func-
tion classes for delay d = 2 with parameter estimates (c, γ, φ1,0, φ1,1, φ2,0, φ2,1, σ

2)
equal to

(−0.32; 0.5;−1.37; 0.729; 1.17; 0.272; 0.06579)
for logistic case and

(−0.32; 0.5;−0.098; 0.498; 2.425; 0.04; 0.06577)
for polynomial case.

We see that the estimates of c, γ and σ2 have practically the same value while coeffi-
cients of AR(1) model differ considerably between transition function classes and be-
tween individual regimes in each of these classes. Repeating the F-test for regression
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model with explanatory variables yt−1; yt−2; y2
t−2; y

3
t−2; yt−1·yt−2; yt−1·y2

t−2; yt−1·y3
t−2

and its AR(1) submodel we receive F-ratio value 14.912 which is very highly sig-
nificant (beyond the ranges of any standardly used statistical tables). Therefore,
AR(1) model is rejected against both logistic and polynomial two regimes alterna-
tives. Since both these models provide practically the same quality of fit, decision
between them is not an easy problem. We can prefer the polynomial alternative
because of its slightly better fit and more simple formal structure.

(Received November 15, 2003.)
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