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Managing Editors:

Karel Sladký
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S-IMPLICATIONS AND R-IMPLICATIONS ON
A FINITE CHAIN

Margarita Mas, Miquel Monserrat and Joan Torrens

This paper is devoted to the study of two kinds of implications on a finite chain L: S-
implications and R-implications. A characterization of each kind of these operators is given
and a lot of different implications on L are obtained, not only from smooth t-norms but
also from non smooth ones. Some additional properties on these implications are studied
specially in the smooth case. Finally, a class of non smooth t-norms including the nilpotent
minimum is characterized. Any t-norm in this class satisfies that both, its S-implication
and its R-implication, agree.

Keywords: t-norm, t-conorm, finite chain, smoothness, implication operator
AMS Subject Classification: 03B52, 06F05, 94D05

1. INTRODUCTION

In fuzzy logic the most usual connectives to model conjunctions, disjunctions and
negations are t-norms (T ), t-conorms (S) and strong negations (N), respectively.
Following this structure, the implication is performed by the so called implication
operators or simply implicators. These operators are generally defined, from the
basic ones T, S and N , through several ways obtaining different kinds of implication
operators. The two most commonly used being,

• S-implications based on classical logic:

I1(x, y) = S(N(x), y) for all x, y ∈ [0, 1]. (1)

• R-implications based on the idea of residuation:

I2(x, y) = sup{z ∈ [0, 1] | T (x, z) ≤ y} for all x, y ∈ [0, 1]. (2)

Many authors have studied these kinds of connectives from several points of view
(see [1, 4, 6, 11, 12, 23, 24]). Recently, even some implications defined from uninorms,
operators that are a generalization of t-norms and t-conorms, have been studied (see
[2] and [3]).

On the other hand, the study of operators defined on a finite chain L is an area
of special interest (see [5, 13, 14, 18, 19, 22]), mainly because the expert’s reasonings
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are usually made through a set of linguistic terms or labels which usually is a finite
totally ordered set L. This approach is important because numerical interpretations
of these labels can be avoided. Frequently, most of the authors which work in this
line try to translate well known operators on [0,1] (like t-norms and t-conorms) to
the case of a finite chain L. Following this idea, a lot of different classes of operators
on L are appearing. In particular, smooth t-norms and t-conorms are classified in
[22], t-operators and uninorms on L with a smooth condition are characterized in
[18] and non-commutative versions can be found in [13] and [19].

However, a similar study for implicators on L has not been made and only some
initial ideas were introduced by the same authors in [20] and [21]. The main goal of
this paper is to study two kinds of implications on L following the mentioned ideas,
namely those defined from t-norms and t-conorms on L through expressions (1) and
(2). From this study, both kinds of implications are characterized, several additional
properties are considered in both cases and a lot of implications on L are obtained
and their expressions are pointed out. It is proved that both kinds of implications
agree for exactly one smooth t-norm: the Archimedean one. The last section is
devoted to the case of non smooth t-norms. In this section we characterize a special
kind of non smooth t-norms that includes the nilpotent minimum. Moreover, any
t-norm in this class satisfies that both, its R-implication and its S-implication, agree.

2. PRELIMINARIES

We recall here the smooth t-norms and t-conorms on L, and their characterization,
that will be used along the paper. From now on, consider the finite chain

L = {0 = x0 < x1 < . . . < xn < xn+1 = 1}
where n ≥ 1. Such an L can be understood as a set of linguistic terms or “labels”.

Let us also denote by [xi, xj ] the finite chain given by the subinterval of all xk ∈ L
such that i ≤ k ≤ j.

The following two definitions are adapted from [14].

Definition 1. A function f : L → L is said to be smooth if it satisfies the following
condition for all i ≥ 1:

f(xi) = xj implies that f(xi−1) = xk where k is such that j − 1 ≤ k ≤ j + 1.

Definition 2. A binary operator F on L is said to be smooth if it is smooth in each
place.

Although t-norms, t-conorms and strong negations are usually operators on [0,1],
they can be defined as in [1] or [5] on any partially ordered set and, in particular,
on L. Thus, we maintain the names of t-norm, t-conorm and strong negation for
operators on L with the same corresponding properties. In this way, we have the
following results:

Proposition 1. There is only one strong negation on L and it is given by

N(xi) = xn+1−i for all xi ∈ L (3)
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Fig. 1. Structure of smooth t-norms, where

Tik+1(xi, xj) = xmax{ik,i+j−ik+1} for k = 0, ..., m− 1.

Proposition 2. (See [22].) There is one and only one Archimedean smooth t-norm
on L given by

T (xi, xj) = xmax{0,i+j−(n+1)}. (4)

Moreover, given any subset J of L containing 0, 1, there is one and only one smooth
t-norm on L that has J as the set of idempotent elements. In fact, if J is the set

J = {0 = xi0 < xi1 < . . . < xim−1 < xim = 1}
such a t-norm is given by

T (xi, xj) =





xmax{ik,i+j−ik+1} if there is an idempotent xik
∈ J

such that xik
≤ xi, xj ≤ xik+1

min{xi, xj} otherwise.

(5)

Although we do not deal specifically with BL-algebras, let us note that in this
context, a generalization of the previous classification theorem has been proved for
BL-chains in [16] and [8]. The general structure of smooth t-norms stated in the
previous proposition can be viewed in Figure 1.

Smooth t-conorms have a classification theorem like the above one for t-norms
which can be easily deduced by N -duality where N is the only strong negation on L
given by (3). The following result follows immediately from the proposition above

Proposition 3. (See [22].) There are exactly 2n different smooth t-norms on L.
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Definition 3. A binary operator I : L×L → L is said to be an implication operator,
or an implication, if it satisfies:

• I is nonincreasing in the first place and nondecreasing in the second one. That
is, if xi ≤ xj then

I(xi, xk) ≥ I(xj , xk) for all xk ∈ L

and
I(xk, xi) ≤ I(xk, xj) for all xk ∈ L

• I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0.

From the definition it follows that I(xi, 1) = 1 and I(0, xi) = 1 for all xi ∈ L
and so the restriction of I to {0, 1}2 agrees with the classical implication. On the
contrary, the symmetrical values I(1, xi) are not determined in general.

Definition 4. An implication I : L × L → L is called a border implication if it
satisfies I(1, xi) = xi for all xi ∈ L.

3. IMPLICATION FUNCTIONS

Since we will work with a finite chain L it is clear that expressions (1) and (2) can
be rewritten in our case as follows:

I1T (xi, xj) = N(T (xi, N(xj))) for all xi, xj ∈ L (6)

and

I2T (xi, xj) = max{xk ∈ L | T (xi, xk) ≤ xj} for all xi, xj ∈ L. (7)

Thus, from any given t-norm T on L we can define the operators I1T and I2T

that turn out to be border implications as the following proposition shows.

Proposition 4. Given any t-norm T , I1T and I2T are border implications.

P r o o f . The corresponding proof given in [1] applies here for the case of I1T .
With respect to the case of I2T , all conditions follow trivially from the definition
and some well known properties of t-norms. 2

There are many other properties that are required on implication functions de-
pending on the context, the most usual ones being:

P1) Exchange principle,

I(a, I(b, c)) = I(b, I(a, c)) for all a, b, c in the domain.

P2) Contrapositive symmetry with respect to a strong negation N ,

I(a, b) = I(N(b), N(a)) for all a, b in the domain.
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P3) I(a, a) = 1 for all a in the domain.

P4) I(a, b) = 1 if and only if a ≤ b.

P5) I(a, 0) = N(a) to be a strong negation.

P6) I(a, b) ≥ b for all a, b in the domain.

P7) Generalized modus ponens, with respect to a t-norm T :

T (a, I(a, b)) ≤ b for all a, b.

P8) I(a,N(a)) = N(a) for all a in the domain.

All the properties above will be studied for both kinds of implications (6) and (7)
derived from smooth t-norms. Also, some ones of these properties will allow us to
characterize both kinds of implications in a similar way as it is done in the case of
[0,1].

3.1. S-implications

Given any t-norm T on L, it is obvious from expression (6) that the corresponding
implication I1T always satisfies properties P5) and P6). With respect to properties
P1) and P2) we have the following characterization which holds in the more general
framework of partially ordered sets:

Theorem 1. (See [1].) Let I : L × L → L be a function. Then I is a border
implication satisfying P1) and P2) if and only if there is a t-norm T on L such that
I = I1T .

The following example is specially interesting because of their properties, that we
will see in next results.

Example 1. Let T be the only Archimedean smooth t-norm on L given by (4).
Then I1T is given by

I1T (xi, xj) = xmin{n+1,n+1+j−i}, (8)

expression that we will call the ÃLukasiewicz implication since it reminds this impli-
cation on [0, 1].

Proposition 2 allows us to obtain 2n different implications on L from the corre-
sponding smooth t-norms through expression (6), but many others can be derived
also from non smooth t-norms as we will see in the next section. The expression of
the implications I1T derived from smooth t-norms is given in the next proposition.
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Proposition 5. Let T : L × L → L be a smooth t-norm with the following set of
idempotent elements

J = {0 = xi0 < xi1 < . . . < xim−1 < xim
= 1}.

Then the implication I1T is given by

I1T (xi, xj) =





xmin{n+1−ik,ik+1+j−i} if there is xik
∈ J such that

xik
≤ xi, xn+1−j ≤ xik+1

max{xn+1−i, xj} otherwise.

P r o o f . Let us suppose first that there is xik
∈ J such that xik

≤ xi, xn+1−j ≤
xik+1 . Then,

I1T (xi, xj) = N(xmax{ik,i+n+1−j−ik+1}) = xmin{n+1−ik,ik+1+j−i}.

Otherwise, we have

I1T (xi, xj) = N(min{xi, xn+1−j}) = max{xn+1−i, xj}. 2

The structure of the S-implications can be viewed in Figure 2.

0 xi1 xi2 . . . xim−2 xim−1 1

xn+1−im−1

xn+1−im−2

...

xn+1−i2

xn+1−i1

1

.
.

.
.

.

Imax

Imax

Ii1

Ii2

Iim−1

Iim

Fig. 2. Structure of S-implications, where Imax(xi, xj) = max{xn+1−i, xj}
and Iik+1(xi, xj) = xmin{n+1−ik,ik+1+j−i} for k = 0, ..., m− 1.

In order to see which properties satisfy these implications let us begin with the
following lemma.
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Lemma 1. Let T be a smooth t-norm on L. The following statements are equiva-
lent:

i) T is the Archimedean t-norm given by (4).

ii) T (xi, N(xi)) = 0 for all xi ∈ L.

iii) There exists 0 < i < n + 1 such that T (xi, N(xi)) = 0.

P r o o f . i) =⇒ ii) and ii) =⇒ iii) are clear.
iii) =⇒ i) Suppose on the contrary that T is not Archimedean and let us take

xj the least idempotent element of T different from 0, 1. Then we necessarily have
xj > min{xi, N(xi)} and,

• If xj < max{xi, N(xi)}, we have from (5),

T (xi, N(xi)) = min{xi, N(xi)} 6= 0

obtaining a contradiction.

• If max{xi, N(xi)} ≤ xj , since xj is the least idempotent different from 0, we
have again from (5),

T (xi, N(xi)) = T (xi, xn+1−i) = xmax{0,i+n+1−i−j} = xn+1−j 6= 0

obtaining also a contradiction.

Thus T must be Archimedean and consequently it is given by (4). 2

Proposition 6. Let T be a smooth t-norm on L. The following statements are
equivalent:

i) T is the Archimedean t-norm given by (4).

ii) I1T satisfies P4).

iii) I1T satisfies P3).

P r o o f . Again i) =⇒ ii) and ii) =⇒ iii) are trivial. With respect to iii) ⇒ i), note
that I1T (xi, xi) = 1 for all xi ∈ L if and only if T (xi, N(xi)) = 0 for all xi ∈ L and
then Lemma 1 ends the proof. 2

Another interesting property is P8), extensively studied on [0,1] in [6]. In our
case we have:

Proposition 7. Let T be any t-norm on L. Then I1T satisfies P8) if and only if
T = min. That is, when I1T is the so called Kleene–Dienes implication

I1T (xi, xj) = max{xn+1−i, xj}.

P r o o f . I1T (xi, N(xi)) = N(xi) ⇐⇒ N(T (xi, xi)) = N(xi) ⇐⇒ T (xi, xi) = xi,
for all xi ∈ L, and this happens if and only if T = min. 2
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With respect to the generalized modus ponens we have:

Proposition 8. Let T be a smooth t-norm on L. Then I1T satisfies P7) if and only
if T is the Archimedean t-norm given by (4).

P r o o f . It is clear that I1T satisfies P7) when T is given by (4). Conversely, just
take b = 0 and a = xi in property P7) to obtain T (xi, N(xi)) = 0 for all xi ∈ L and
then apply Lemma 1. 2

Finally, with respect to the smoothness condition we have:

Proposition 9. Let T be any t-norm on L. Then the implication I1T is smooth if
and only if so is T .

P r o o f . Note that, for any t-norm T on L, we have

I1T (xi, xj) = xk ⇐⇒ N(T (xi, xn+1−j)) = xk ⇐⇒ T (xi, xn+1−j) = xn+1−k

and from this equivalence the proposition follows trivially. 2

3.2. R-implications

It is obvious from the definition that all implications obtained by residuation from
expression (7) satisfy property P6) as well as property P4) and consequently, also
P3). Since they satisfy P4) they can never satisfy P8) (the same proof given in [6] for
[0,1] works here). Moreover, from expression (7) it is obvious that they also satisfy
the generalized modus ponens. On the other hand, they also satisfy P1), in fact we
have the following characterization of these implications:

Theorem 2. Let I : L × L → L be a function. Then I is a border implication
satisfying P1) and P4) if and only if there is a t-norm T on L such that I = I2T .

P r o o f . If there is a t-norm T on L such that I = I2T , we already know that
I is a border implication and clearly satisfies P4). With respect to the exchange
principle, let us prove first that

I2T (xi, I2T (xj , xk)) = I2T (T (xi, xj), xk). (9)

To do this, it suffices to prove that the sets A and B given by

A = {xl ∈ L | T (xi, xl) ≤ I2T (xj , xk)}

and
B = {xl ∈ L | T (T (xi, xj), xl) ≤ xk}

agree. However, from the definition of I2T it is obvious that an element xl ∈ L
satisfies

T (xi, xl) ≤ I2T (xj , xk)
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if and only if it satisfies
T (xj , T (xi, xl)) ≤ xk

and consequently we have A = B. Now, the exchange principle follows from equation
(9) and the commutativity of T .

Conversely, suppose that I is a border implication satisfying P1) and P4) and let
us define T : L× L → L as follows:

T (xi, xj) = min{xk ∈ L | I(xi, xk) ≥ xj}
It is easy to see that such T is nondecreasing in each place and has xn+1 = 1 as
neutral element. To prove that T is a t-norm it remains only commutativity and
associativity:

• To see commutativity we only need to prove the following equality:

{xk ∈ L | I(xi, xk) ≥ xj} = {xk ∈ L | I(xj , xk) ≥ xi}.
Note however that

xj ≤ I(xi, xk) ⇐⇒ I(xj , I(xi, xk)) = 1 ⇐⇒ I(xi, I(xj , xk)) = 1

by property P1). Finally, we have

I(xi, I(xj , xk)) = 1 ⇐⇒ xi ≤ I(xj , xk)

and thus the two considered sets agree.

• To see associativity, using the equality

T (T (xi, xj), xk) = T (xk, T (xi, xj)),

it suffices to show that sets A and B given by

A = {xl ∈ L | I(xk, xl) ≥ T (xi, xj)}
and

B = {xl ∈ L | I(xi, xl) ≥ T (xj , xk)}
agree. Note that from the definition of T we can deduce that

I(xi, T (xi, xj)) ≥ xj (10)

and
T (xi, I(xi, xj)) ≤ xj . (11)

Thus, when xl ∈ A we have I(xk, xl) ≥ T (xi, xj) and consequently

I(xi, I(xk, xl)) ≥ I(xi, T (xi, xj)).

Now, by the exchange principle and inequality (10), I(xk, I(xi, xl)) ≥ xj and
then

T (xj , xk) ≤ T (I(xk, I(xi, xl)), xk) = T (xk, I(xk, I(xi, xl)) ≤ I(xi, xl)

where the last inequality is due to (11). These reasonings prove the inclusion
A ⊆ B, and the other one follows similarly.

We have proved that the defined T is a t-norm and from its definition it follows
trivially that I = I2T . 2
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Remark 1. For this kind of implications we have, like in the case of [0,1], that

T (xi, xj) ≤ xk ⇐⇒ I2T (xi, xk) ≥ xj .

Note that, since R-implications satisfy property P4) we obtain

max{I2T (xi, xj), I2T (xj , xi)} = 1 for all xi, xj ∈ L.

This fact, jointly with the previous remark, ensures that for any t-norm T on L,
(L, min, max, T, I2T , 0, 1) is an MTL-algebra (see [10]). Moreover, when we deal
with smooth t-norms the divisibility condition (x ≤ y implies that there is z ∈ L
such that T (y, z) = x) holds (see [22] or [13]), and consequently we actually have a
BL-algebra (see [15] for a basic reference on BL-algebras).

A similar result of the above one but in [0,1] can be found in [4] where an ad-
ditional hypothesis on continuity is needed. However, for this kind of implications,
contrapositive symmetry fails in general. In this way we have the following result.

Proposition 10. Let T be a smooth t-norm on L. The following statements are
equivalent:

i) T is the Archimedean t-norm given by (4).

ii) The implication functions I1T and I2T agree.

iii) I2T satisfies contrapositive symmetry with respect to N .

P r o o f . i) =⇒ ii). If T is given by (4), a straightforward computation shows that
I2T is given by expression (8) and consequently agrees with I1T .

ii) =⇒ iii). If I2T = I1T then clearly I2T satisfies contrapositive symmetry by
Theorem 1.

iii) =⇒ i). If I2T satisfies contrapositive symmetry, let us prove that

I2T (xi, xj) = N(T (xi, N(xj))) for all xi, xj ∈ L. (12)

Suppose that I2T (xi, xj) = xk, then from Remark 1 above we have T (xi, xk) =
T (xk, xi) ≤ xj and consequently I2T (xk, xj) ≥ xi. Now, by contrapositive symmetry

I2T (N(xj), N(xk)) ≥ xi,

and then T (N(xj), xi) ≤ N(xk) or equivalently

xk = I2T (xi, xj) ≤ N(T (xi, N(xj))).

This proves one inequality of (12) and the other follows similarly. Finally, this
equation shows that I2T = I1T but then I1T satisfies P4) and Proposition 6 proves
that T must be given by (4). 2
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As for the remaining properties we have:

Proposition 11. Let T be a smooth t-norm, then I2T satisfies P5) if and only if T
is given by (4).

P r o o f . Just note that I2T satisfies P5) if and only if T (xi, N(xi)) = 0 and then
apply Lemma 1. 2

In the context of BL-algebras, property P5) is widely studied. In fact, BL-algebras
satisfying that the negation induced by their residual implication is involutive, that
is, a strong negation, are usually called MV-algebras (see [9]). Thus, given any
smooth t-norm T , the BL-algebra (L, min, max, T, I2T , 0, 1) becomes an MV-algebra
if and only if T is the t-norm given by (4).

For R-implications, the smoothness condition is not satisfied in general as it is
proved in the following proposition.

Proposition 12. Let T be a smooth t-norm. Then I2T is smooth if and only if T
is given by (4).

P r o o f . If T is given by (4), we have I2T = I1T by Proposition 10, and then
Proposition 9 proves that I2T is smooth. Conversely, since I2T satisfies P4) we have
I2T (x1, x1) = 1 and I2T (x1, x0) < 1, but smoothness implies that I2T (x1, x0) = xn.
Consequently, T (x1, xn) = 0 and so Lemma 1 ends the proof. 2

Note that each smooth t-norm defines through expression (7) a new implication
operator on L which general expression can be viewed in the following proposition:

Proposition 13. Let T : L× L → L be a smooth t-norm with the following set of
idempotent elements

J = {0 = xi0 < xi1 < . . . < xim−1 < xim = 1}.
Then the implication I2T is given by

I2T (xi, xj) =





1 if xi ≤ xj

xik+1+j−i if there is xik
∈ J such that xik

≤ xj < xi ≤ xik+1

xj otherwise.

P r o o f . It is clear from property P4) that I2T (xi, xj) = 1 if xi ≤ xj . On the
other hand, when xi > xj , let us distinguish two cases:

• If there is xik
∈ J such that xik

≤ xj < xi ≤ xik+1 , then

T (xi, xik+1+j−i) = xmax{ik,i+ik+1+j−i−ik+1} = xmax{ik,j} = xj

whereas for any value k > ik+1 + j − i we obtain similarly T (xi, xk) > xj .
Thus, I2T (xi, xj) = xik+1+j−i.

• In any other case we have T (xi, xj) = min{xi, xj} = xj whereas T (xi, xk) > xj

for any k > j and consequently I2T (xi, xj) = xj . 2



14 M. MAS, M. MONSERRAT AND J. TORRENS

0 xi1 xi2 . . . xim−2 xim−1 1

xi1

xi2

...

xim−2

xim−1

1

min

1

Ii1

Ii2

Iim−1

Iim

.
.

.
.

.

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡¡

Fig. 3. Structure of R-implications, where

Iik+1(xi, xj) = xik+1+j−i for k = 0, ..., m− 1.

The structure of the R-implications can be viewed in Figure 3.

Since all these implications are different of those given in Proposition 5 except
for the case of the only Archimedean smooth t-norm, as it is proved in Proposition
10, we obtain the following result.

Proposition 14. There are exactly 2n+1 − 1 different implications on L obtained
through expressions (6) and (7) from smooth t-norms.

4. NON SMOOTH t-NORMS

We have seen in the section above that a lot of implications of the forms I1T and
I2T can be derived from smooth t-norms. But, from Proposition 4, it is clear that
the same can be made from non smooth ones. Let us give several examples showing
that some well known implications on [0,1], translated to L, can be obtained in this
way, whereas another ones can not.

Example 2. i) We have already proved that the ÃLukasiewicz implication can be
obtained as I1T as well as I2T when T is the only Archimedean smooth t-norm.

ii) We know from Proposition 7 that the Kleene–Dienes implication equals I1 min,
but since it does not satisfy P4), there is no t-norm T on L such that I2T gives this
implication.
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iii) On the contrary, the so called Gödel implication

I(xi, xj) =





1 if i ≤ j

xj otherwise

equals I2 min whereas there is no t-norm T on L such that I1T gives this implication.

iv) Finally, it is easy to see that the Gaines–Rescher implication

I(xi, xj) =





1 if i ≤ j

x0 otherwise

is different from I1T and from I2T for all t-norms T on L.

We have proved that among all the smooth t-norms only the Archimedean one
satisfies that the corresponding implicators I1T and I2T agree. However, among the
non smooth t-norms it is easy to find new examples satisfying this property, like the
well known nilpotent minimum, given by

T (xi, xj) =





x0 if i + j ≤ n + 1

min{xi, xj} otherwise.

From this t-norm we obtain, via I1T and I2T , the so called R0−implication which is
extensively studied in the case of [0,1] in [23].

Proposition 15. Let T be the nilpotent minimum t-norm, then I1T = I2T = R0,
where

R0(xi, xj) =





xn+1 if i ≤ j

max{xn+1−i, xj} otherwise.

P r o o f . It is a straightforward computation from the definitions. 2

A clear generalization of the nilpotent minimum appears when one replaces the min
t-norm by any smooth t-norm T as follows:

Definition 5. Given a t-norm T and the strong negation N , define the operator
T(N) : L× L → L by

T(N)(xi, xj) =





x0 if i + j ≤ n + 1

T (xi, xj) otherwise.

Let T and T ′ be t-norms, T is said to be similar to T ′ with respect to N , denoted
by T↔NT ′, if T(N) = T ′(N).
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The operator T(N) on [0,1] as well as the nilpotent minimum appears for the first
time in [12] and it is extensively studied in [17]. Moreover, similar operations but
taking N a non-necessarily involutive negation, are studied in [7] generalizing the
results in [17].

As in [0,1], given any t-norm T , the operator T(N) on L is clearly commutative,
nondecreasing and such that T(N)(xi, xn+1) = xi for all xi ∈ L, only associativity
condition may fail in order to obtain a t-norm. The following theorem characterizes
the smooth t-norms T for which T(N) is also a t-norm.

Theorem 3. Let T be a smooth t-norm, then T(N) is a t-norm if and only if there
is an xk ∈ L such that N(xk) ≤ xk and T↔NTJk

where TJk
stands for the only

smooth t-norm with set of idempotents given by Jk = [x0, N(xk)] ∪ [xk, xn+1]. In
this case the expression for T(N) is given by

T(N)(xi, xj) =





x0 if i + j ≤ n + 1

xi+j−k if i + j > n + 1 and n + 1− k ≤ i, j ≤ k

min{xi, xj} otherwise.

(13)

P r o o f . It is a straightforward computation to show that the operator T(N)

given by expression (13) is associative and consequently a t-norm, since the other
properties are obvious. Conversely, suppose that T is a smooth t-norm such that
T(N) is a t-norm and let us prove that T↔NTJk

and that T(N) is given by expression
(13) in several steps:

• First we prove that if xj is an idempotent element of T with xn+1−j ≤ xj then
xj+1 also is idempotent. Suppose on the contrary that xj+1 is not idempotent.
Then, since xj is idempotent and xn+1−j ≤ xj < xj+1, we have

T(N)(T(N)(xn+1−j , xj+1), xj+1) = T(N)(xn+1−j , xj+1) = xn+1−j

whereas, since xj+1 is not idempotent, by the definition of T(N), we have

T(N)(xn+1−j , T(N)(xj+1, xj+1)) = T(N)(xn+1−j , xj) = x0

contradicting the associativity of T(N).

• Now, let xk be the least idempotent of T such that xn+1−k ≤ xk. Then

– If xn+1−k = xk we clearly have T↔N min .

– If xn+1−k < xk then T must be an ordinal sum with an Archimedean
term on an interval [x`, xk] for some x` < xn+1−` due to the minimality
of xk. Let us prove in this step that x`−1 ≤ xn+1−k. To do this, note
that if x`−1 > xn+1−k we would have:

T(N)(T(N)(xn+1−`, x`+1), xk−1) = T(N)(xmax{`,n−`+`+1−k}, xk−1)

= T(N)(x`, xk−1) = xmax{`,`+k−1−k} = xmax{`,`−1} = x`
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whereas

T(N)(xn+1−`, T(N)(x`+1, xk−1)) = T(N)(xn+1−`, xmax{`,`+1+k−1−k}) = x0

obtaining a contradiction.

• Finally, let us prove jointly in this step that when x`−1 ≤ xn+1−k, we have
T↔NTJk

and T(N) is given by expression (13).

– From the definition we have that T(N)(xi, xj) and (TJk
)(N)(xi, xj) vanish

when xj ≤ N(xi) = xn+1−i.
– Whenever xn+1−k ≤ xi, xj ≤ xk and xj > xn+1−i, we have

(TJk
)(N)(xi, xj) = xmax{n+1−k,i+j−k} = xi+j−k

whereas
T(N)(xi, xj) = xmax{`,i+j−k} = xi+j−k

since xi+j−k > xn+1−k ≥ x`−1.
– It is clear that T(N)(xi, xj) and (TJk

)(N)(xi, xj) agree with the minimum
otherwise.

Thus, the proof is complete. 2

Again, as it happened for the nilpotent minimum, the implicators I1T(N) and
I2T(N) are the same, for any smooth t-norm T such that T(N) is a t-norm:

Proposition 16. Let T be any smooth t-norm such that T(N) is a t-norm, then
I1T(N) = I2T(N) and their common expression I is given by

I(xi, xj) =





xn+1 if i ≤ j

xk+j−i if n + 1− k ≤ j < i ≤ k

max{xn+1−i, xj} otherwise.

(14)

P r o o f . A straightforward computation, based on similar reasonings to those
used in Propositions 5 and 13, shows that I1T(N) and I2T(N) are given by (14). 2

The structure of the t-norms T(N) given by expression (13) as well as their derived
implications given by (14) can be viewed in Figure 4.

ACKNOWLEDGEMENTS

The authors acknowledge with thanks the anonymous referee for his/her valuable com-
ments, specially those concerning MTL, BL and MV-algebras. This work has been par-
tially supported by the DGI Spanish project BFM2000-1114 and by the Government of the
Balearic Islands grant No. PDIB-2002GC3-19.

(Received August 20, 2003.)



18 M. MAS, M. MONSERRAT AND J. TORRENS

x0 N(xk) xk xn+1

xn+1

N(xk)

xk

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@@

x0

min

xi+j−k

x0 N(xk) xk xn+1

xn+1

N(xk)

xk

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡¡

max(N(xi), xj)

xn+1

xk+j−i
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