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EXTRAPOLATIONS IN NON–LINEAR
AUTOREGRESSIVE PROCESSES

Jiř́ı Anděl and Václav Dupač

We derive a formula for m-step least-squares extrapolation in non-linear AR(p) processes
and compare it with the näıve extrapolation. The least-squares extrapolation depends
on the distribution of white noise. Some bounds for it are derived that depend only on
the expectation of white noise. An example shows that in general case the difference
between both types of extrapolation can be very large. Further, a formula for least-squares
extrapolation in multidimensional non-linear AR(p) process is derived.

1. INTRODUCTION

Let e1, e2, . . . be i.i.d. random variables with finite second moment. Assume that
et has a density h. Let X0, X−1, . . . , X−p+1 be random variables independent of
{et, t ≥ 1}. Define γ = Eet and

Xt = λ(Xt−1, . . . , Xt−p) + et, t ≥ 1 (1)

where λ is a Borel measurable (generally a non-linear) function such that EX2
t <

< ∞. Then {Xt, t ≥ 1} is called non-linear autoregressive process of order p, briefly
NLAR(p).

Assume that for a t ≥ 1 the variables {Xt−s, s ≥ 0} are given and Xt+m is to be
extrapolated. The näıve extrapolation X∗

t+m|t is defined as follows. Let X∗
t+m|t =

Xt+m for m ≤ 0 and

X∗
t+m|t = λ(X∗

t+m−1|t, . . . , X
∗
t+m−p|t) + γ, m ≥ 1.

Denote z = (z1, . . . , zp)′ and introduce functions

Hm(z) =

{
z−m+1 for m = 0,−1, . . . ,−p + 1,

λ[Hm−1(z), . . . , Hm−p(z)] + γ for m ≥ 1.
(2)

Then
X∗

t+m|t = Hm(Xt, Xt−1, . . . , Xt−p+1).

Note that Hm(z) = H1[Hm−1(z), . . . ,Hm−p(z)].
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The least-squares (LS) extrapolation X̂t+m|t of the variable Xt+m given {Xt−s,
s ≥ 0} is defined by

X̂t+m|t = E(Xt+m|Xt, Xt−1, . . . , X−p+1).

Since the model (1.1) is Markovian of the pth order, we see that

X̂t+m|t = E(Xt+m|Xt, Xt−1, . . . Xt−p+1).

Then the variable X̂t+m|t can be written in the form

X̂t+m|t = Km,t(Xt, Xt−1, . . . Xt−p+1)

where Km,t is a function.

2. PROPERTIES OF EXTRAPOLATIONS

Calculation of LS extrapolation can be based on the following theorem.

Theorem 2.1. Functions Km,t, m ≥ 0, t ≥ 0, are independent of t. They satisfy,
with subscript t already dropped, the relation

Km(z1, . . . , zp) =
∫

Km−1(w, z1, . . . , zp−1) h[w − λ(z1, . . . , zp)] dw, m ≥ 1. (3)

P r o o f . Introduce p-vectors Xt = (Xt, . . . , Xt−p+1)′, t ≥ 0, u = (1, 0, . . . , 0)′

and a transformation

T (z) = (λ(z), z1, z2, . . . , zp−1)′, z ∈ IRp.

We have
Xt+1 = T (Xt) + et+1u, t ≥ 0;

hence, {Xt} is a discrete parameter p-dimensional Markov process with the initial
distribution of X0 and with a stationary transition distribution function

F (z, y) = H(y1 − λ(z)) I(y2 − z1) . . . I(yp − zp−1)

where H is the distribution function of e1 and

I(y) =

{
1 for y ≥ 0,

0 for y < 0.

Denote by F (m)(z, y) the m-step transition distribution function of the process. As
Km,t(z) = E(X ′

t+mu|Xt = z), the independence of t follows. Further,

Km(z) =
∫

IRp

y′uF (m)(z, dy) =
∫

IRp

∫

IRp

y′uF (z,dw)F (m−1)(w, dy)

=
∫

IRp

Km−1(w)F (z, dw) =
∫ ∞

−∞
Km−1(w1, z1, z2, . . . , zp−1)h(w1 − λ(z)) dw1,

proving thus (2). 2
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Theorem 1 for p = 1 and with an unnecessary stationarity assumption of the
process {Xt} is given in Tong [3].

It is clear that K0(z) = z1. Moreover, it follows immediately from our definitions
that H1(z) = K1(z) = λ(z) + γ. If m ≥ 2 then Km 6= Hm generally holds, since

H2(z) = λ[λ(z) + γ, z1, . . . , zp−1] + γ,

K2(z) =
∫

λ[y + λ(z), z1, . . . , zp−1] h(y) dy + γ.

In special cases, Km = Hm holds even for some m ≥ 2. A typical situation is
described in the following theorem.

Theorem 2.2. Let p ≥ 2 and let

Xt = bXt−1 + ϕ(Xt−2, . . . , Xt−p) + et (4)

where ϕ is a Borel measurable function. Then K2(z) = H2(z) holds for all z.

P r o o f . In our model (2.2) we have

K1(z) = H1(z) = bz1 + ϕ(z2, . . . , zp) + γ.

Using (2.1) we get

K2(z) =
∫

[by + ϕ(z1, . . . , zp−1) + γ]h[y − bz1 − ϕ(z2, . . . , zp)] dy

=
∫

[bu + b2z1 + bϕ(z2, . . . , zp) + ϕ(z1, . . . , zp−1) + γ] h(u) du

= bγ + b2z1 + bϕ(z2, . . . , zp) + ϕ(z1, . . . , zp−1) + γ.

Since
Xt+2 = bXt+1 + ϕ(Xt, . . . , Xt−p+2) + et+2

and the näıve extrapolation of Xt+1 is

X∗
t+1|t = bXt + ϕ(Xt−1, . . . , Xt−p+1) + γ

we get

X∗
t+2|t = bX∗

t+1|t + ϕ(Xt, . . . , Xt−p+1) + γ

= bγ + b2Xt + bϕ(Xt−1, . . . , Xt−p+1) + ϕ(Xt, . . . , Xt−p+1) + γ.

From this formula for X∗
t+2|t it is clear that K2(z) = H2(z). 2

Consider again the general model (1.1). It is clear that the näıve extrapolation
depends on the white noise {et} only through its expectation γ whereas the LS
extrapolation depends on the complete distribution of et. It can be of some use to
have some bounds for LS extrapolation such that they depend also only on γ. We
derive such results for a class of functions λ(z). First of all, we introduce auxiliary
assertions.
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Lemma 2.3. Assume that f(z) is a concave function such that it is non-decreasing
in each variable. Let g1(z), . . . , gp(z) be concave functions. Then the function
f [g1(z), . . . , gp(z)] is concave.

P r o o f . The assertion can be proved directly. 2

Lemma 2.4. Let ξ be a random variable such that a ≤ ξ ≤ b where −∞ < a <
b < ∞. Define p = (Eξ − a)/(b − a), q = 1 − p. If φ is a convex function on [a, b]
then

Eφ(ξ) ≤ qφ(a) + pφ(b). (5)

P r o o f . See Kall and Wallace [2], p. 168. 2

The inequality (2.3) is called Edmundson–Madansky upper bound.

Lemma 2.5. Let λ(z) be a concave function. Then the functions Hm(z), m ≥
−p + 1, are concave and non-decreasing in each variable.

P r o o f . Theorem can be proved by complete induction using Lemma 2.3. 2

Lemma 2.6. Let

U1(z) = H1(z),
Um(z) = Um−1[γ + λ(z), z1, . . . , zp−1], m ≥ 2.

If λ(z) is a concave function non-decreasing in each variable then the functions
Um(z), m ≥ 1, are concave.

P r o o f . The assertion follows from Lemma 2.3 using complete induction. 2

By the way, it is easy to see that U2(z) = H2(z).

Theorem 2.7. Let λ(z) be a concave function non-decreasing in each variable.
Then Km(z) ≤ Um(z), m ≥ 1.

P r o o f . We use complete induction. We know already that K1(z) = H1(z) =
U1(z). Let m = 2. Our assumptions ensure that the function r(y) = λ[y +
λ(z), z1, . . . , zp−1] is concave for arbitrary fixed z. Jensen inequality gives

K2(z) = γ +
∫

λ[y + λ(z), z1, . . . , zp−1]h(y) dy

≤ γ + λ[γ + λ(z), z1, . . . , zp−1]
= H2(z) = U2(z).
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For m > 2 it follows from the induction assumption, Lemma 2.6 and Jensen inequal-
ity that

Km(z) =
∫

Km−1[y + λ(z), z1, . . . , zp−1] h(y) dy

≤
∫

Um−1[y + λ(z), z1, . . . , zp−1] h(y) dy

≤ Um−1[γ + λ(z), z1, . . . , zp−1] = Um(z). 2

Theorem 2.8. Let a ≤ et ≤ b where −∞ < a < b < ∞. Define p = (γ−a)/(b−a),
q = 1− p and

J1(z) = λ(z),
Jm(z) = qJm−1[a + λ(z), z1, . . . , zp−1] + pJm−1[a + λ(z), z1, . . . , zp−1], m ≥ 2,

Lm(z) = γ + Jm(z), m ≥ 1.

If λ(z) is a concave function non-decreasing in each variable then Jm, m ≥ 1, are
concave functions and Lm(z) ≤ Km(z) for m ≥ 2.

P r o o f . It is clear that Jm(z) are concave functions. From Lemma 2.4 we have

K2(z) = γ +
∫ b

a

λ[y + λ(z), z1, . . . , zp−1]h(y) dy ≥ γ + J2(z) = L2(z).

Similarly, by complete induction we obtain for m ≥ 3 that

Km(z) =
∫ b

a

Km−1[y + λ(z), z1, . . . , zp−1]h(y) dy

≥ γ +
∫ b

a

Jm−1[y + λ(z), z1, . . . , zp−1]h(y) dy

≥ γ + Jm(z) = Lm(z). 2

3. AN EXAMPLE

Let v > 0. Assume that et ∼ R(0, v) and define

Xt =
√

Xt−1Xt−2 + et, t ≥ 1

where X0 and X1 are non-negative random variables. Then γ = v/2. From Xt+1 =√
XtXt−1 + et+1, Xt+2 =

√
Xt+1Xt + et+2 we get

H1(z1, z2) =
√

z1z2 + γ, H2(z1, z2) =
√

(
√

z1z2 + γ) z1 + γ.

It was already mentioned that K1(z1, z2) = H1(z1, z2). From (2.1) we obtain

K2(z1, z2) = γ +
2
3v

√
z1

[
(v +

√
z1z2 )3/2 − (z1z2)3/4

]
.
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For v = 10 the functions H1, H2, K2, and D2 = K2−H2 are plotted in Figures 1, 2, 3,
and 4, respectively.

Fig. 1. Fig. 2.

Fig. 3. Fig. 4.

Consider the difference

δ(v) = K2(1, 1)−H2(1, 1) =
√

1 +
v

2
− 2

3v

[
(v + 1)3/2 − 1

]
.

It is clear that δ(v) → ∞ as v → ∞. This is an elementary example that the
difference between the least-squares and the näıve extrapolations can be arbitrary
large. A similar example for an NLAR(1) process is introduced in Anděl [1].

4. MULTIDIMENSIONAL NLAR(p) PROCESSES

Now, let e1,e2, . . . be i.i.d. random q-vectors with finite second-order moments.
Assume that et has a density h. Define γ = Eet. Let X0,X−1, . . . , X−p+1 be
random q-vectors, independent of {et, t ≥ 1}. Let λ be a Borel measurable function
from IRpq into IRq. For q-vectors z1, . . . , zp, λ(z1, . . . , zp) or λ(Z) will denote the
function value of λ at point Z = vec(z1, . . . , zp). Define

Xt = λ(Xt−1, . . . , Xt−p) + et, t ≥ 1,
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and assume that the second order moments of Xt are finite for all t ≥ 1. Thus
{Xt, t ≥ 1} is a q-dimensional NLAR(p) process.

Introduce functions Hm : IRpq → IRq by

Hm(Z) =

{
z−m+1 for m = 0,−1, . . . ,−p + 1,

λ[Hm−1(Z), . . . , Hm−p(Z)] + γ for m ≥ 1.

Then X∗
t+m|t = Hm(Xt, . . . , Xt−p+1) is the näıve extrapolation of Xt+m given

Xt, Xt−1, . . . .

Theorem 4.1. Define functions Km : IRpq → IRq by

K0(z1, . . . , zp) = z1,

Km(z1, . . . , zp) =
∫

Km−1(w,z1, . . . , zp−1)h[w − λ(z1, . . . , zp)] dw, m ≥ 1.

Then
X̂t+m|t = Km(Xt, . . . , Xt−p+1)

is the least-squares extrapolation of Xt+m given Xt, Xt−1, . . . .

P r o o f . Introduce Xt = vec(Xt, . . . , Xt−p+1) and

u =




I
· · ·
0


 ,

where I is the q × q identity matrix and 0 the (p − 1)q × q zero matrix. With
T (Z) = vec[λ(Z), z1, . . . , zp−1], Z ∈ IRpq, we have Xt+1 = T (Xt) + uet+1. The rest
of the proof is quite the same as that of Theorem 2.1. 2
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