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DEAD-BEAT RESPONSE OF SISO SYSTEMS
TO PARABOLIC INPUTS WITH OPTIMUM STEP
AND RAMP RESPONSES

C.A. Barbargires and C.A. Karybakas

The design problem of optimum control systems with dead-beat response to parabolic
inputs is considered. The optimization is performed by the minimization of the sum of
the squared-error coefficients of the system due to step and ramp inputs, where different
weighting factors are used for each error sequence. Response characteristics are illustra-
ted through diagrams of typical prototype responses and normalized overshoot and cost
function curves.

1. INTRODUCTION

The design of control systems that exhibit dead-beat response to parabolic inputs
with minimum squared-error restrictions on step and ramp responses was introduced
by J. L. Pokoski and D. A. Pierre [1]. The performance measure they considered was

I =
∞∑

k=0

e2
s(kT ) + he2

r(kT ),

where es(kT ) and er(kT ) are the unit step and ramp errors at the kth sampling
instant and h is a weighting factor. For the system to exhibit dead-beat response to
a parabolic input, they also considered the two well known conditions for the overall
transfer function M(z) of the system, that is

M(z) = b1z
−1 + b2z

−2 + · · ·+ bnz−n

and
1−M(z) =

(
1− z−1

)3 (
1 + a1z

−1 + · · ·+ an−3z
−n+3

)
.

Stability considerations impose that all unstable (or critically stable) poles of the
plant must be included in 1−M(z) as zeros, and all zeros of the plant that lie on or
outside the unit circle must be included in M(z) as zeros [2]. The equations resulting
in the ak which minimize I may be found by setting

∂I

∂ak
= 0 for k = 1, 2, . . . , n− 3.
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This results in n− 3 equations which may be solved for the n− 3 values of ak, but,
according to the authors [1], since it is difficult to solve the resulting equations for
the ak as functions of both h and n , they are solved for the limiting cases, h = ∞
(only ramp error considered) and h = 0 (only step error considered). The responses
for the intermediate values of h are generally expected to lie between those of the
preceding cases.

In this work is proposed a new approach to the design of optimum dead-beat
response systems to parabolic inputs based on the same performance criterion. Re-
cently introduced necessary and sufficient error conditions [3] are elaborated, and
the optimization is performed by the minimization of the sum of the squared step
and ramp response error sequence coefficients of the system, in which each error
sequence is regarded with a different weighting factor, thus obtaining a more general
solution. Response characteristics are illustrated through diagrams with typical pro-
totype responses and normalized overshoot and cost function curves. The response
of the system to a complex input is also examined.

2. ERROR CONDITIONS FOR DEAD-BEAT RESPONSE TO PARABOLIC
INPUTS

Consider the digital control system shown in Figure 1. The z-transform of the error
sequence is

E(z) =
R(z)

1 + D(z) Gh(z)
(1)

from which the transfer function of the digital controller can be obtained as

D(z) =
1

Gh(z)

(
R(z)
E(z)

− 1
)

. (2)

Under the above mentioned stability conditions, from equation (2) is readily implied
that for the design of the digital controller, the z-transform of the error sequence E(z)
in response to a given input signal R(z) must be determined. A system exhibiting
dead-beat response to parabolic inputs, will exhibit dead-beat response to step and
ramp inputs, as well [3].

Fig. 1. Digital control system.

Suppose there are n steps before the settling of the output signal when the system
is forced by a step, a ramp or a parabolic input. By denoting as ak, bk and ck the
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terms of the error sequences in response to a step, a ramp and a parabolic input,
respectively, we have

E0(z) =
n∑

k=0

akz−k, E1(z) =
n∑

k=0

bkz−k, E2(z) =
n∑

k=0

ckz−k. (3)

These error sequences are not independent to each other, but are related through

bk = T

k−1∑

i=0

ai for all k (4)

and
ck = T 2

k−1∑

i=0

(
ai + 2

i−1∑

l=0

al

)
for all k, (5)

where T is the sampling period. Equations (4) and (5) for k = n + 1 lead to

n∑

i=0

ai = 0 (6)

and n∑

i=0

i−1∑

l=0

al = 0. (7)

The last two equations have been proven to be necessary and sufficient conditions for
the system to exhibit dead-beat response to parabolic inputs [3]. These equations
are elaborated in the sequel for the solution of the optimization problem. It is readily
apparent that for the design of the digital controller, the determination of only one of
the three error sequences is sufficient, since they are associated by explicit relations.

3. OPTIMIZATION

The error coefficients can be determined by optimizing the system’s response in
accordance to an objective function which may be arbitrarily selected. As such a
performance criterion, a function of the squared values of the error sequences due
to step and ramp inputs is chosen. In particular, by defining that

J0 =
n∑

k=0

a2
k (8)

and
J1 =

n∑

k=0

b2
k (9)

then as an objective function can be chosen the following

J = sJ0 + rJ1 =
n∑

k=0

(
sa2

k + rb2
k

)
, (10)
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where s and r are weighting factors.
Since the error coefficients bk can be expressed as a function of the error coeffi-

cients ak, the optimization of the system’s performance in accordance to the specified
objective function will be achieved through the minimization of J with respect to
the coefficients ak, with the subsidiary constraints expressed by equations (6) and
(7). Thus, it is a problem of static optimization under linear constraints, which can
be solved using the Lagrange method of undetermined multipliers. The modified
function

I = J + λ1

n∑

i=0

ai + λ2

n∑

i=0

i−1∑

l=0

al (11)

is considered with no constraints, and is optimized with respect to the coefficients
ak (for k = 1, 2, . . . , n, since a0 = 1) for which I becomes optimum are given from





∂I

∂aj
= 0 for j = 1, 2, . . . , n

∂I

∂λi
= 0 for i = 1, 2.

(12)

The partial derivatives of the last set of equations can be written as




∂I

∂aj
=

∂J

∂aj
+ λ1

∂

∂aj

(
n∑

i=0

ai

)
+ λ2

∂

∂aj

(
n∑

i=0

i−1∑

l=0

al

)
for j = 1, 2, . . . , n

∂I

∂λ1
=

n∑

i=0

ai

∂I

∂λ2
=

n∑

i=0

i−1∑

l=0

al

(13)

and the set of equations (12) is equivalent to




∂J

∂aj
+ λ1

∂

∂aj

(
n∑

i=0

ai

)
+ λ2

∂

∂aj

(
n∑

i=0

i−1∑

l=0

al

)
= 0 for j = 1, 2, . . . , n

n∑

i=0

ai = 0

n∑

i=0

i−1∑

l=0

al = 0

(14)

now from equation (10)

∂J

∂aj
= s

∂J0

∂aj
+ r

∂J1

∂aj
for j = 1, 2, . . . , n, (15)

where by using equation (8)

∂J0

∂aj
= 2aj for j = 1, 2, . . . , n (16)
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and equation (9)

∂J1

∂aj
= 2T 2

n∑

k=j+1

k−1∑
m=0

am for j = 1, 2, . . . , n, (17)

In this way, the first of (14) transforms to the equation

2saj + 2rT 2
n∑

k=j+1

k−1∑
m=0

am + λ1 + λ2(n− j) = 0 for j = 1, 2, . . . , n. (18)

Expanding the left-hand side series of (18) and taking into account that a0 = 1, we
have in matrix form




s + (n− 1) rT 2 (n− 2) rT 2 · · · rT 2 0
(n− 2) rT 2 s + (n− 2) rT 2 · · · rT 2 0

...
...

. . .
...

...
rT 2 rT 2 · · · s + rT 2 0
0 0 · · · 0 s



·




a1

a2

...
an−1

an




=

−
(

rT 2 +
λ2

2

)



n− 1
n− 2

...
1
0



− λ1

2




1
1
...
1
1




.

(19)

Solving the set of linear equations (19) for the unknown coefficients ak we have



a1

a2

...
an−1

an




= −




s + (n− 1) rT 2 (n− 2) rT 2 · · · rT 2 0
(n− 2) rT 2 s + (n− 2) rT 2 · · · rT 2 0

...
...

. . .
...

...
rT 2 rT 2 · · · s + rT 2 0
0 0 · · · 0 s




−1

·




(
rT 2 +

λ2

2

)



n− 1
n− 2

...
1
0




+
λ1

2




1
1
...
1
1







.

(20)
From equation (20) the coefficients ak are obtained as a function of the Lagrange
multipliers λ1 and λ2. Elimination of these parameters is achieved using equations
(6) and (7). As a result, coefficients ak are expressed as a function of T , s, r and
n, only. Furthermore, substitution of these coefficients into equation (3) leads to
the reduction of the z-transform of the error sequence E0(z), and finally by use of
equation (2), the transfer function of the digital controller D(z) is obtained.
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In the specific case that the plant pulse transfer function Gh(z) contains more
than one discrete delays, say L + 1, the designed closed-loop system must involve
at least the same magnitude of transportation delay [2], and the optimization of all
coefficients ak, for k = 1, 2, ..., n is not possible, since the first L values of the error
sequence stay intact, that is ak = 1, for k = 1, 2, ..., L. Nevertheless, the remaining
n− L error coefficients can be optimized by the procedure developed above.

4. SPECIAL CASES

4.1. No cost on ramp response (r = 0)

In this case, the transient response of the system is optimized by the minimization
of the sum of the squared step-error coefficients only, with no cost on the ramp
response. In this way the first of (14) transforms to the equation

2aj + λ1 + λ2(n− j) = 0 for j = 1, 2, . . . , n (21)

which can be written as

aj = −1
2

[λ1 + (n− j)λ2] for j = 1, 2, . . . , n. (22)

Substituting the last equation into equations (6) and (7), and simplifying the sums
that appear, the following set of equations is derived

{
2nλ1 + n(n− 1)λ2 = 4

3(n− 1) λ1 + (n− 1)(2n− 1)λ2 = 12 (23)

and the values of the Lagrange multipliers are reduced from its solution as

λ1 = − 4
n

, λ2 =
12

n(n− 1)
. (24)

Substitution of these parameters into equation (22) leads to

aj = −2
(2n + 1− 3j)

n(n− 1)
for j = 1, 2, . . . , n (25)

with aj = 0 for j > n, and the transfer function of the digital controller is obtained
as

D(z) =
1

Gh(z)
·

n+4
n+2z−1 − n+1

n−1z−2 − 2
n−1z−(n+1) − 2

n+2z−(n+2)

n
n−1 − 2z−1 + n+1

n−1z−2 − 2
n−1z−(n+1) + 2

n+2z−(n+2)
. (26)

From equation (25) it follows that after a maximum overshoot of 4
n ·100% at the first

sampling instant, there is a linear decrease of the system output, until a maximum
undershoot of 2

n · 100% is reached at the nth sampling instant.
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4.2. No cost on step response (s = 0)

In this case, the transient response of the system is optimized by the minimization
of the sum of the squared ramp-error coefficients only, with no cost on the step
response. In this way the first of (14) transforms to the equation

2T 2
n∑

k=j+1

k−1∑
m=0

am + λ1 + λ2(n− j) = 0 for j = 1, 2, . . . , n. (27)

The last equation for j = n leads to

λ1 = 0 (28)

while for j = 1 and use of condition (7) leads to

λ2 =
2T 2

n− 1
. (29)

Substitution of the Lagrange multipliers from equations (28) and (29) into equation
(27), and solution of the resulting equation yields

ak =





− n
n−1 for k = 1

0 for 1 < k < n

1
n−1 for k = n

(30)

with ak = 0 for k > n, and the transfer function of the digital controller is obtained
as

D(z) =
1

Gh(z)
·
(−1 + z−1

)
z−n − nz−2 + (2n− 1)z−1

(−1 + z−1) (−z−n + nz−1 − n + 1)
. (31)

From equation (30) it follows that besides the first sampling instant when an over-
shoot of n

n−1 · 100 % is observed, and the nth sampling instant when an undershoot
of 1

n−1 · 100 % results, the system output presents zero error at step inputs.

5. OPTIMUM RESPONSE CHARACTERISTICS

In the following are examined the general properties of the systems designed with the
proposed procedure. A new normalized variable m is introduced, which is defined by
m = s

rT 2 . In this way, certain features of the system, such as the overshoot, depend
only on the variable m and the number of sampling periods n for settling. In Figure 2
is presented the step response of a system designed with the proposed procedure,
for n = 5 and for various values of the parameter m. As it can be observed, the
maximum step response overshoot occurs at the first sampling instant after the
application of the input, and becomes smaller as the parameter m increases. This
happens because greater values of m enhance the step response of the system. After
the first sampling period, the output of the system gradually approaches the input,
but it presents an undershoot, which is maximum at the nth sampling instant. In
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Figure 3 are presented the normalized curves for the step response, and in Figure 4
the normalized cost function curves, all as a function of the variable m, for n =
2, 3, . . . , 10.

Fig. 2. Step response for n = 5 .

Fig. 3. Normalized maximum overshoot curves.
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Fig. 4. Normalized cost-function diagrams.

In Figure 5 are presented the maximum overshoot and undershoot curves as a func-
tion of the number n for the two special cases considered above. In Figure 6 are
presented the responses of three particular systems to a rather complex input signal,
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Fig. 5. Maximum overshoot and undershoot curves for the special cases.

Fig. 6. Response to a complex input signal.
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namely to the Bessel function of zero order J0(kT ). The sampling period T is taken
equal to 0.6, and the number of sampling periods to settling is taken n = 5. The three
systems regarded are the two ones corresponding to the special cases mentioned and
a system designed with m = 1. As it is expected, the system with m = 0 presents the
maximum overshoot, but attains the best tracking performance. The system with
m = ∞ obtains the minimum overshoot, but has not as good tracking performance
as the previous one. The system designed for m = 1 has a moderate response to the
complex input, since it presents lower overshoot than the minimum prototype one,
while at the same time attains a good tracking performance.

6. CONCLUSIONS

In this work was presented a generalized approach to the design of optimum dead-
beat response systems to parabolic inputs on the basis of an extendedperformance
criterion. The optimization was performed by the minimization of the sum of the
squared error coefficients of the system due to step and ramp inputs, with a dif-
ferent weighting factor regarded for each error sequence. This was accomplished
by the utilization of recently introduced necessary and sufficient conditions for the
error sequences of a dead-beat response system. General features of the optimum
systems resulting from the proposed design procedure were readily apparent from
the normalized diagrams presented.

(Received November 12, 1993.)
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