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THE POLE PLACEMENT EQUATION – A SURVEY

V. KUČERA

We consider the linear equation AX + BY = C where A, B and C are given polynomials
from K[s], the ring of polynomials in the indeterminate s over a field K, and X and Y are
unknown polynomials in K[s].

1. MOTIVATION

The equation
AX + BY = C (1)

has found application in several design problems for linear control systems, including
the pole placement design. This problem consists in the following: given a plant with
real-rational proper transfer function

P (s) =
B(s)
A(s)

,

where A and B are coprime polynomials, one seeks to determine a dynamic output
feedback controller with a real-rational proper transfer function, say

Q(s) = −Y (s)
X(s)

such that the closed-loop system has prespecified poles.
Provided A is the characteristic polynomial of the plant and X is that of the

controller, then the characteristic polynomial of the closed-loop system, say C(s),
which specifies the poles desired, is given by C = AX + BY.

Thus the pole placement design is based on equation (1). However not all solution
pairs X, Y are of interest: one must take the one in which Y has least degree. This
leads to a proper controller whenever one exists.

2. REVIEW OF THEORY

It is well known [1] that K[s] is a principal ideal domain. Thus (1) is solvable if and
only if any greatest common divisor of A and B divides C. Writing D for a greatest
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common divisor of A and B and denoting

Ā =
A

D
, B̄ =

B

D
, C̄ =

C

D

one concludes that (1) has a solution if and only if C̄ is a polynomial. Therefore if
A and B are coprime then (1) is solvable for any C.

Suppose that X̄, Ȳ is a particular solution pair of (1). Since the equation is linear,
any and all solution pairs of (1) are given by

X = X̄ − B̄T, Y = Ȳ + ĀT,

where T varies over K[s]. Thus the solution class of (1) is parametrized through T
in a simple manner.

It is well known [1] that K[s] is a euclidean domain. Therefore if (1) is solvable
and B 6= 0 there is a unique solution pair X1 min, Y1 of (1) such that either X1 min = 0
or deg X1 min < deg B̄. Further if (1) is solvable and A 6= 0 then there is a unique
solution pair X2, Y2 min of (1) such that either Y2 min = 0 or deg Y2 min < deg Ā.
These two least-degree solution pairs coincide [4] whenever deg Ā + deg B̄ > deg C̄.

As a result, equation (1) with A 6= 0 and B 6= 0 can possess solution pairs X, Y
of arbitrarily high degree, limited only from below by deg X1 min and deg Y2 min.

3. FIXED DEGREE SOLUTIONS

We shall study the class of solutions whose degrees are limited from above. We
suppose that A,B and C in (1) are non-zero polynomials from K[s] with A and B
coprime. Hence (1) is solvable. Let

p = deg A, q = deg B, r = deg C.

If
A = a0 + a1s + . . . + aps

p

then, for any integer k ≥ p, we denote

veckA = [a0 a1 . . . ap 0 . . . 0︸ ︷︷ ︸
k−p

] .

The existence result [5] is as follows. Let m,n be non-negative integers and
d = max(m + p, n + q, r). Then a solution pair X, Y of (1) exists such that

X = 0 or deg X ≤ m, Y = 0 or deg Y ≤ n (2)

if and only if vecdC is a K-linear combination of vecdA, vecdsA, . . . , vecds
mA, vecdB,

. . . , vecds
nB.

A special case of particular interest concerns the constant solutions of (1). Putting
m = n = 0 we deduce [6] that a solution pair X, Y of (1) exists in K if and only if
vecdC is a K-linear combination of vecdA and vecdB.
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The set of solutions whose degrees are limited from above can be parametrized
as follows [5]. Let m ≥ q and n ≥ p. If n ≥ r − q then the set of solutions X, Y of
(1) that satisfy (2) is given as

X = X1 min −BT1, Y = Y1 + AT1, (3)

where T1 varies over K[s] and

deg T1 ≤ min(m− q, n− p);

if m ≥ r − p then the set of solutions X, Y of (1) that satisfy (2) is given as

X = X2 −BT2, Y = Y2 min + AT2, (4)

where T2 varies over K[s] and

deg T2 ≤ min(m− q, n− p).

Indeed suppose that n ≥ r − q. Then (3) implies

deg X = q + deg T1 ≤ m

deg Y = max(r − q, p + deg T1) ≤ n

so that deg T1 ≤ m− q and deg T1 ≤ n− p. In case m ≥ r − p then (4) implies

deg X = max(r − p, q + deg T2) ≤ m

deg Y = p + deg T2 ≤ n

and again deg T2 ≤ m− q and deg T2 ≤ n− p.

We note that at least one of the two conditions, m ≥ r − p and n ≥ r − q, is
always satisfied. Of course (3) can be used to parametrize the solution set (2) even if
n < r− q. Then, however, T1 has a higher degree than shown and is not completely
free in K[s]. An analogous statement is true for (4) when m < r − p. To illustrate,
we parametrize the solution class of

X + sY = s2

such that deg X ≤ 1 and deg Y ≤ 1. Using (3),

X = −sT1, Y = s + T1, T1 constant

while using (4),

X = s2 − T2, Y = T2, T2 = s + τ, τ constant.
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4. EXAMPLES

Can the double integrator

ẋ1 = x2, ẋ2 = u, y = x1

be converted into an harmonic oscillator using a proportional output feedback?
The double integrator gives rise to the transfer function

P (s) =
1
s2

and any harmonic oscillator has the characteristic polynomial

C(s) = s2 + ω2

for some real constant ω > 0. Thus the answer depends on the polynomial equation

s2X + Y = s2 + ω2

having a constant solution pair X,Y.
Since

vec2A = [0 0 1]

vec2B = [1 0 0]

vec2C = [ω2 0 1]

the answer is an affirmative: the output feedback u = −ω2y will do the job. The
resulting system equations read

ẋ1 = x2, ẋ2 = u− ω2x1, y = x1.

On the other hand, the double integerator cannot be stabilized via proportional
output feedback: the polynomial s2X + Y is not Hurwitz for any real numbers X
and Y.

As the second example, we consider the plant

ẋ1 = u− x, y = x

and find all output feedback controllers that will alter its characteristic polynomial
s + 1 to s2 + 3s + 2.

These controllers possess the transfer functions

Q(s) = −Y (s)
X(s)

,

where X, Y is the solution set of the equation

(s + 1)X + Y = s2 + 3s + 2

such that deg X = 1 and deg Y ≤ 1.
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The condition m ≥ r − p = 1 is verified. Therefore the solution set is given by

X = s + 2− T2, Y = (s + 1) T2,

where T2 is any real polynomial of degree at most min(m− q, n− p) = 0, hence any
real constant.

A realization of the parametrized controller set is

ẇ = (T2 − 2)w + (T2 − 1) y

−u = T2w + T2y .

The case T2 = 0 leads to an unobservable realization while T2 = 1 leads to an
uncontrollable realization. A PI controller is obtained when T2 = 2.

If desired, the parameter T2 can be chosen so that a specific goal is achieved. For
example, if the H∞-norm of the sensitivity function

S(s) =
s + 2

s + 2− T2

is not to exceed 1, we should avoid the values 0 < T2 < 4.

5. METHODS OF SOLUTION

Equation (1) can be solved in several ways [4]. One can distinguish parametric
methods (where the polynomials are represented by their coefficients) and non-
parametric ones (where the polynomials are represented by their functional values.)
We shall describe three major parametric methods.

We suppose that A,B and C in (1) are non-zero real polynomials with A and B
coprime. Hence (1) is solvable. For the sake of simplicity let

deg A = deg B = N, deg C = 2N − 1 .

The Method of Indeterminate Coefficients [4] converts equation (1) into a system
of 2N linear equations over the field of real numbers. Suppose we seek the least-
degree solution pair X,Y :

deg X ≤ N − 1, deg Y ≤ N − 1.

The 2N coefficients of X, Y satisfy the system of equations

[ vecN−1X vecN−1Y ]



vec2N−1 A

· · ·
vec2N−1 sN−1A

vec2N−1 B

· · ·
vec2N−1 sN−1B




= vec2N−1C .
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The system matrix is a Sylvester matrix and it has full rank since A and B are
coprime.

The Method of Polynomial Reductions [3] reduces equation (1) to a polynomial
equation that is much easier to solve. It consists of the substitutions

C ′ = C −A
cdeg C

adeg A
sdeg C−deg A

C ′ = C −B
cdeg C

bdeg B
sdeg C−deg B

B′ = B −A
bdeg B

adeg A
sdeg B−deg A

A′ = A−B
adeg A

bdeg B
sdeg A−deg B

each reducing the degree of one of the polynomials A,B, C. The substitutions are
repeated for the new polynomials A′, B′, C ′ and will ultimately reduce all A,B,C
but one to zero. The resulting equation has a solution X ′ = 0, Y ′ = 0 and the
solution pair X, Y of (1) is obtained through the backward substitutions

X = X ′ + cdeg C

adeg A
sdeg C−deg A

Y = Y ′ + cdeg C

bdeg B
sdeg C−deg B

X = X ′ − Y
bdeg B

adeg A
sdeg B−deg A

Y = Y ′ −X
adeg A

bdeg B
sdeg A−deg B .

The process involves the euclidean algorithm for A, B and leads to the least-degree
solution pair X, Y.

The Method of State-space Realization [2] combines matrix and polynomial oper-
ations. We write (1) as

X +
B

A
Y =

C

A

and determine a reachable state-space realization (F,G, H, J) of the rational function
B/A. The N coefficinets of Y satisfy the system of equations

vecN−1Y



H
HF
· · ·
HFN−1




= vecN−1(C mod A)

and the corresponding X is recovered from (1); it is the least-degree solution pair.
The system matrix is an observability matrix and it has full rank since A and B are
coprime.

6. NUMERICAL EXPERIENCE

The method of indeterminate coefficients is straightforward and leads directly to a
system of linear equations for the coefficients of the unknown polynomials. The
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method of polynomial reductions solves the polynomial equation by polynomial
means and is not suitable for pencil-and-paper calculations, for it requires a large
number of logical operations. The method of state-space realization combines the
two above: one unknown polynomial is obtained by solving a system of linear equa-
tions while the other results from polynomial manipulations.

The comparison of the methods with respect to the arithmetic complexity is quite
clear [7]. The fastest is the method of polynomial reductions, where the operations
count is proportional to N2. For the other two methods the arithmetic complexity
is proportional to N3. The slowest method, however, is that of indeterminate coef-
ficients because it leads to a larger system of linear equations than the method of
state-space realization.

The comparison of the methods from the precision point of view [7] is not that sim-
ple, however. Provided the polynomials A and B have no (especially multiple) roots
close to each other, the precison of all three methods is alike. The ill-conditioned
data, however, make the method of polynomial reductions fail more often than that
of indeterminate coefficients. The method of state-space realization shows no clear-
cut tendency, it stays between the two preceding methods.

To conclude, polynomial reductions are fast but sensitive to data, indeterminate
coefficients are robust but slow, and the method of state-space realization is universal
but second best in each single aspect.

(Received October 15, 1993.)
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[3] J. Ježek: New algorithm for minimal solution of linear polynomial equations. Kyber-

netika 18 (1982), 505–516.
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