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CONTINUOUS-TIME DEADBEAT OBSERVATION
PROBLEM WITH APPLICATION TO PREDICTIVE
CONTROL OF SYSTEMS WITH DELAY

Alexander Medvedev and Hannu Toivonen

A continuous–time deadbeat observation paradigm is discussed. Two observers are
shown to estimate the state of a linear dynamic system deadbeatly in continuous time with
respectively finite and infinite memory. Among other properties, BIBO-stability is proved
for both structures. Based on the theory devised, deadbeat and asymptotic predictors for
plants with delayed control are developed and shown to give rise to predictive feedback
controllers assigning finite spectrum to the closed–loop system.

1. INTRODUCTION

It is well known that deadbeat performance can be achieved in discrete–time sys-
tems by placing all roots of the characteristic polynomial of an observer or controller
at the origin. Therefore, any pole–placement design technique provides the desired
transient response property. The notion of Finite-Input Finite-Output stability in-
troduced by Kučera and Kraus [4] for discrete–time systems can be understood as
a generalization of the deadbeat strategy.

In contrast, the continuous–time deadbeat problem does not naturally arise from
pole placement and has drawn serious research attention only recently. The presence
of time delays in the control law or observer structure is inevitable in order to drive
the control or observation error to zero deadbeatly. It appears that this phenomenon
is well known and referred to as Pointwise Degeneracy in the theory of differential
equations with time delays.

Being a new research area, the continuous–time deadbeat problem is treated only
in a few papers. In [5], the finite–memory deadbeat observation problem has been
solved by a direct state–space approach, related to deterministic least squares.

In [2] a general solution to the deadbeat tracking and stabilization problems is
obtained via finite Laplace transform , a common technique in differential–difference
equations theory.

The paper is composed as follows. Firstly, we investigate the properties of a
Finite–Memory Deadbeat Observer (FMDO), with particular emphasis on its sta-
bility. Then, a combination of a conventional Luenberger observer and FMDO is
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exploited to achieve desired performance in an Infinite–Memory Deadbeat Observer
(IMDO). It is shown that the ideas of deadbeat estimation can be used for predicting
the state of the plants with time delays along the forward signal path either with
deadbeat or asymptotic settling of the prediction error. Using these predictors for
feedback control results in structures which generalize the Smith Predictor Method,
in the sense that the time delay is excluded from the characteristic polynomial of
the closed–loop system.

2. PROBLEM STATEMENT

Consider the Linear Time Invariant (LTI) system

ẋ(t) = Ax(t) + Bu(t) (1)
y(t) = Cx(t),

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control vector, and y(t) ∈ R`

is the observation vector. A, B, C are real matrices of appropriate dimensions.
The Deadbeat Observation Problem is formulated so as to find a dynamic system

(observer) which estimates the state vector of (1) from continuous measurements of
y and u so that the estimation error

e(t) = x(t)− x̂(t)

vanishes outside some predefined time interval [t0, t∗), i. e. e(t) ≡ 0; t ≥ t∗.

3. FINITE–MEMORY OBSERVER

A dynamic system whose output at any time instant t does not depend on the system
input outside of the time interval [t, t− τ ] for some positive real τ is said to possess
a finite memory. A dynamic system that does not possess finite memory is termed
an infinite memory system.

Introduce the operator Ψτi : L2 → L2 defined by

(Ψτiv)(t) =
∫ t

t−τi

exp(A(t− ξ − τi)) Bv(ξ) dξ.

Theorem 1. Provided that the matrix

Wk =
k∑

i=0

exp(−AT τi)CT C exp(−Aτi)

is positive definite, then the observer

x̂k(t) = W−1
k

k∑

i=0

exp(−AT τi)CT Yi(t) (2)

Yi(t) = y(t− τi) + C(Ψτiu) (t)
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has the following properties: (i) finite memory, limited by the largest time–delay
τk = max(τi); (ii) dead–beat performance, i. e. e(t) = x(t) − x̂k(t) = 0; t > τk

for any initial function φ0 = y(t), t ∈ [−τk, 0]; (iii) bounded–input bounded-output
(BIBO) stability.

P r o o f . For a proof of the first two properties see [7]. BIBO stability of (2) follows
immediately from the finite–memory property of the FMDO, as all the matrices
involved are bounded. 2

By extending the applicability area of the FMDO beyond the class finite–dimen-
sional systems, the following result is of practical importance.

Corollary 1. The observer (2) provides deadbeat state vector estimation for the
system

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t− τ). (3)

P r o o f . Follows immediately assuming τ = τ0. 2

Discrete deadbeat systems are known to generate control signals of high magni-
tude when the sampling period is chosen to be too small. A similar behavior can be
anticipated in continuous deadbeat systems. This necessitates an evaluation of the
transient response of the observer during the phase preceding deadbeat performance.

Let | · | be any vector norm in Rn inducing the matrix norm ‖ · ‖ and the matrix
measure µ(·) [1].

Theorem 2. For all u and y satisfying

|y| ≤ m1; |u| ≤ m2

an upper bound for the estimate x̂k is given by

|x̂k(t)| ≤ M1

k∑

i=0

e−µ(A)τi(m1 + m2M2,i), (4)

where M1 = ‖W−1
k ‖ ‖C‖

M2,i =




‖C‖ ‖B‖ 1−e−µ(A)τi

µ(A) if µ(A) 6= 0

‖C‖ ‖B‖τi otherwise.

P r o o f . See the Appendix.
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The estimate (4) relates the time delays of the FMDO to the maximal amplitude
attainable by the the estimate x̂k(t), t < τk and can be used for design purposes.

Noteworthy, in Theorem 1 the plant is not required to be stable to guarantee
stability of the FMDO, whereas other structures, e. g. the Smith Predictor, cannot
be used for unstable systems [2]. Unfortunately, this property is not inherited by
realizations of Ψτi . Indeed, taking the derivative of (Ψτiu)(t) with respect to t,
it is straightforward to show that assuming zero initial conditions, the following
differential–difference systems possess the same input–output mapping u 7→ z as the
operator Ψτi ,

ż(t) = Az(t) + exp(−Aτi)Bu(t)−Bu(t− τi) (5)

and

ẋm(t) = Axm(t) + Bu(t)
z(t) = exp(−Aτi)xm(t)− xm(t− τi). (6)

If (1) is unstable then, naturally, both (5) and (6) are unstable as well. However,
in practice, one seldom deals with unstable plants allowed to function in open loop.
More likely, an unstable plant is stabilized by a feedback controller which prevents
the signals in the closed–loop system from an unlimited rise. Then, the FMDO can
be used for implementation of the feedback control law and the instability of A is
not an issue any more, since the closed–loop stability safeguards boundedness of all
signals. Of course, all the three realizations of Ψτi yield the same transfer function
from u to z. With respect to the observer complexity, (6) is preferable over (5), since
all Ψτi , i = 0, . . . , k in (2) can be implemented using only one model of the plant.

There is a striking analogy between the observer (2) and an observer based on
multiple derivatives of the plant input and output, a so–called ideal observer [3].
Provided all derivatives up to kth order of the input and output are available, the
plant (1) can be parameterized as follows,

Y = Ox(t) + BU, (7)

where

Y =
(
yT dy

dt

T
. . . dky

dtk

T
)T

U =
(
uT du

dt

T
. . . dku

dtk

T
)T

O =
(
CT AT CT . . . AkT

CT
)T

and B is the lower block triangular Toeplitz matrix with the structure

B =




0 0 . . . 0
CB 0 . . . 0

CAB CB . . . 0
...

...
... 0

CAk−2B CAk−3B . . . 0




.
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For an observable pair (A, C) and k = n − 1, the state vector x(t) is given by the
solution of (7),

x̂(t) = (OTO)
−1OT (Y − BU)

or, after block multiplications,

x̂(t) = V−1
n−1∑

i=0

AiT CT Ȳi

Ȳi =
diy

dti
−

i−1∑

j=0

CAi−j−1B
dju

dtj

V =
n−1∑

i=0

AiT CT CAi. (8)

Clearly, (8) represents a deadbeat observer which guarantees zero estimation error
for any time instant. Comparing (2) with (8) shows that they are closely related and
are, in fact, two different representations of (1). Both of them directly exploit system
observability obtaining the state estimate as the solution to a system of algebraic
equations, with the difference that the delay operator is used in (2) instead of the
differential operator in (8). Most likely, many other pseudodifferential operators can
be used for the same purpose.

A geometric interpretation of (2) can also be suggested. Introduce the following
notation

W =




C exp(−Aτ0)
...

C exp(−Aτk)


; Y =




Y0

...
Yk


.

Let the linear independent vectors wi ∈ R`(k+1), i = 1, . . . , n be the columns of W

W =
(
w1 . . . wn

)
.

It is easy to see that Wk is the matrix of scalar products of the vector set wi,
i = 1, . . . , n

Wk =




wT
1 w1 . . . wT

1 wn

...
. . .

...
wT

n w1 . . . wT
n wn


.

As is shown in [7] an orthonormal set of wi may be obtained by applying a non-
singular transformation T to the state vector of (1) so that xt = Tx. Let the
transformation be taken as

T = Σ1/2UT ,

where the matrices Σ and U are those of the singular value decomposition of the
symmetric positive definite matrix Wk

Wk = UΣUT ; UUT = I

Σ = diag(σ1, . . . , σn), σi > 0.
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Then, the gramian matrix of the transformed system is the unit matrix and the
corresponding set of vectors wi associated with the new state vector xt is orthonor-
mal. The system (1) becomes balanced wih respect to Wk and the deadbeat state
estimate takes the form

x̂t =




wT
1 Y
...

wT
n Y


.

The existence condition of the FMDO (2) formulated in Theorem 1 involves
not only the parameters of the plant (1) but as well the design parameters of the
observer itself. This obscures the answer to the question how general the observer
is, i. e. whether or not it is possible to design an FMDO for any observable system
(1). The following theorem shows that the existence of FMDO is guaranteed by
observability of the plant.

Theorem 3. If the pair (A,C) is observable then any nonzero interval I ∈ [0,∞)
contains a set of time delays

τi, i = 0, 1, . . . , k; k ≥ n− 1

such that rank(Wk) = n.

P r o o f . See the Appendix.

4. INFINITE MEMORY DEADBEAT OBSERVER

The continuous–time deadbeat phenomenon is not only restricted to finite–memory
structures, but can also be accomplished in infinite–memory structures.

Theorem 4. Provided that the matrix Ac = (A−KC) is Hurwitz and the matrix

Uk =
k∑

i=0

exp(−AT
c τi)CT C exp(−Acτi)

is positive definite, then the observer

x̂(t) = x̄(t) + ed(t)
˙̄x(t) = Acx̄(t) + Bu(t) + Ky(t)

ed(t) = U−1
k

k∑

i=0

exp(−AT
c τi)CT y`(t− τi)

y`(t) = y(t)− Cx̄(t) (9)

has the following properties: (i) infinite memory; (ii) deadbeat performance in the
sense that the estimation error e(t) = x(t) − x̂(t) is zero for all t ≥ τk; (iii) BIBO
stability.
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P r o o f . The first property follows immediately from the fact that the estimate
x̂ includes the Luenberger observer estimate x̄ as an additive term.

The Luenberger observer’s estimation error ē(t) = x(t)− x̄(t) satisfies the differ-
ential equation

˙̄e(t) = Acē(t) (10)

and, apparently, can be deadbeatly reconstructed from the innovations signal y`(t).
The FMDO for ē(t) is given by the expression for ed(t) in (9). According to The-
orem 1, ed(t) = ē(t) for all t ≥ τk, and the following relationship for the state
estimation holds

x̂(t) = x̄(t) + ed(t) = x(t); t ≥ τk

that is the estimation error e(t) vanishes deadbeatly, which proves (ii).
To verify the third property of the IMDO, note that it is BIBO stable if both the

Luenberger observer for x̄ and the FMDO estimating ē are BIBO-stable. Since the
matrix Ac is Hurwitz, the former is BIBO-stable by design. BIBO stability of the
latter follows from the boundedness of ē and the assertion (iii) of Theorem 1. 2

Using the same notation as in Theorem 2, an upper bound for x̂ can be obtained
as follows.

Theorem 5. Suppose the initial estimation error is such that

|ē(0)| ≤ m3.

Then the following inequality holds for all t,

|x̂(t)| ≤ − M3

µ(Ac)
+ M4

k∑

i=0

eµ(Ac)(t−τi), (11)

where

M3 = ‖B‖m2 + ‖K‖m1

M4 = ‖U−1
k ‖‖C‖m3.

Strictly speaking, it is not necessary to impose the stability assumption on the
matrix Ac since the FMDO is able to reconstruct the state vector of an unstable
system, as well. However, it follows from (11) that an unstable Ac leads to violation
of BIBO stability of the IMDO.

The following statement shows that the difference in the existence conditions of
the FMDO and IMDO is only superficial.
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Theorem 6. If the pair (A,C) is observable then any nonzero interval I ∈ [0,∞)
contains a set of time delays

τi, i = 0, 1, . . . , k; k ≥ n− 1

such that rank(Uk) = n.

P r o o f . See Appendix.
Combining the results of Theorem 3 and Theorem 6, it becomes evident that both

the FMDO and IMDO exist for any observable system (1) and their applicability
area coincide with that of the Luenberger observer. In discrete time, a natural
analogy of the FMDO is the FIR filter, while the IMDO is a counterpart of the
discrete Luenberger observer with deadbeat performance. These associations help
to achieve quite nice symmetry in continuous vs. discrete theory.

5. CONTINUOUS DEADBEAT OBSERVERS IN FEEDBACK CONTROL

In the previous sections we have shown that the FMDO and IMDO can be designed
for any observable LTI system. In fact, as for example Corollary 1 indicates, the
same approach is applicable to a more general class of LTI systems with time delay
along the forward signal path. Bearing in mind the vast area of the Luenberger
observer in control applications, it is an intriguing question whether the continuous
deadbeat observers possess the same kind of potential when it comes to feedback
control of LTI systems with delays.

Dealing with the control of time-delay systems, a natural design objective is
to find a controller which in some sense excludes from the closed–loop system the
impact that the delay has on the system behavior. Having a time delay in the input
or output signal of the plant makes it necessary to use a predictor in order to enhance
system performance. As early as in the fifties, the idea of excluding the time delay
from the characteristic polynomial of the closed–loop system was implemented in
the Smith Predictor.

Insofar as the Smith Predictor is structurally unstable whenever the plant is
unstable, a predictor without this weak point has been introduced by Furukawa and
Shimemura [2]. When the state vector cannot be measured directly, a Luenberger
observer is used to obtain a state estimate, which is then fed into the predictor.
Naturally, it takes two models of the system to implement this scheme – one for
the observer and one for the predictor. Moreover, being predicted, the observer
estimation error might cause undesirable transients in the closed–loop system.

Generally, all prediction schemes are implicitly or explicitly based on the Finite
Spectrum Assignment Method by Olbrot [9], the purpose of which is to place an
infinite number of eigenvalues of the plant at a finite number of prescribed points of
the complex plane.

Consider the LTI system with delay in control

ẋ(t) = Ax(t) + Bu(t− τ0)
y(t) = Cx(t). (12)
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Theorem 7. Consider the system (12) and assume that the pair (A,C) is observ-
able. Then there is a set of time delays τi > τ0; i = 1, . . . , k such that the observer

˙̄x(t + τ0) = Ax̄(t + τ0) + Bu(t)
Zi(t− τ0) = y(t− τi)− Cx̄(t− τi) (13)

êk(t) = W−1
k

k∑

i=0

exp(−AT τi)CT Zi(t)

x̂(t + τ0) = x̄(t + τ0) + êk(t)

is a Deadbeat Predictor (DP) of x(t) in the sense that the prediction error e(t) =
x(t + τ0)− x̂(t + τ0) is equal to zero for all t ≥ max(τi).

P r o o f . Combining (12) and (13) gives the differential equation governing the
prediction error ē(t) = x(t + τ0)− x̄(t + τ0),

˙̄e(t) = Aē(t)
Zi(t) = Cē(t− τi). (14)

The predictor residual Z0 is measurable and therefore the prediction error can be
deadbeatly reconstructed by applying the result of Corollary 1. The resulting ob-
server produces the estimate êk in (13). Now, since êk = e(t) for all t ≥ τk = max(τi),
it follows that

x̂(t + τ0) = x̄(t + τ0) + êk(t)
= x̄(t + τ0) + e(t) = x(t + τ0).

Taking advantage of the relaxation of the FMDO existence condition stated in The-
orem 3 completes the proof. 2

A natural application of the predictor above is the feedback control of systems
with delay in control.

Theorem 8. If the pair (A,B) is controllable, then the closed–loop system com-
prising the plant (12) controlled by the feedback law

u(t) = r(t) + Gx̂(t + τ0)

possesses the following properties: (i) the transfer function from the reference input
to the output is

y(s) = C(sI −Ap)
−1

Be−sτ0r(s) (15)
Ap = A + BG

(ii) the characteristic polynomial is

det(sI −Ap) det(sI −A) = 0 (16)
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(iii) the prediction error e has no effect on the plant state x for all t ≥ max(τi).

P r o o f . The closed–loop system equations are

ẋ(t) = Apx(t) + Br(t− τ0) + BGδ(t)
δ(t) = êk(t− τ0)− e(t− τ0)

êk(t) = W−1
k

k∑

i=0

exp(−AT τi) CT Ce(t− τi)

ė(t) = Ae(t).

Consider the difference δ. Due to the result of Corollary 1 this difference vanishes
for all t ≥ max(τi) which proves (iii).

Assuming zero initial conditions and taking the Laplace transform of the closed–
loop system equations results in

(
x(s)
e(s)

)
=

(
D11(s) D12(s)

0 D22(s)

)−1(
B
0

)
r(s),

where

D11(s) = sI −Ac

D12(s) = −BG
(
S(s)− I

)
e−sτ0

S(s) = W−1
k

k∑

i=0

exp(−AT τi)CT Ce−sτi

D22(s) = sI −A.

Taking into account that

y(s) =
(
C 0

) (
x(s)
e(s)

)

both (ii) and (i) follow immediately. 2

As can easily be seen, the control law stated in Theorem 8 is a modification of the
Smith Predictor, though with deadbeat performance in the predictor part. Indeed,
the Smith Predictor for the plant(12) is given by

˙̂xp(t + τ) = Apx̂p(t + τ) + Bpu(t) (17)

and its prediction error ε(t) = xp(t + τ) − x̂p(t + τ) is governed by the differential
equation

ε̇(t) = Aε(t).

The feedback controller using both the output and output prediction is described
in a state–space representation as

ż(t) = Mz(t) + Gyf (t)
yf (t) = r(t)− y(t) + Cx̂p(t)− Cx̂p(t + τ)
u(t) = Dz(t). (18)
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where z ∈ Rp is the controller state vector and M , G, D are real matrices. The
closed–loop system (12), (18) has exactly the same transfer function as the system
in Theorem 8 (i). However, the deadbeat performance of the predictor (13) makes a
good deal of difference, since the prediction error influences the plant under a limited
period of time, whereas in the case of the Smith Predictor the contribution of the
prediction error subsides asymptotically. Furthermore, when the deadbeat predictor
is used and an exact model of the plant is available, it appears that the prediction
error is completely decoupled from the plant. Because of the finite–memory property
of the FMDO estimating the prediction error, the transient response of the plant
caused by e(t), t ∈ [0, max(τi)) can be attributed to initial conditions of the plant.
The same decoupling property can be proved by demonstrating that

D12e(s) = 0.

However, if the plant (12) is subject to unmodeled disturbances and is unstable, then,
as can be easily concluded from the closed–loop equations, the variable x̄ might be
unbounded. To cure this problem, two approaches can be suggested. The first one
is to exploit a dynamic model of the disturbance. Exactly in the same way as for the
prediction error, the disturbance signal can be estimated from the observer residual
and, after that, used in a control law to compensate for the disturbance contribution
to the plant output. In more detail, though for systems without delay, this method
is described in [6].

Another possible approach is to stabilize the model which simulates plant dy-
namics by means of a feedback from the residual signal. Note that a direct update
of the estimate x̄ by feeding back the weighted residual K(y − Cx̂) is feasible but
complicated since it results in the error equation

ė(t) = Ae(t)−KCe(t− τ0).

Here K should be chosen so that the system is asymptotically stable. A possibility
to develop an effective technique enabling such design is rather vague not least due
to the fact that A could be unstable and KC is singular.

Theorem 9. Consider the system (12), and assume that the pair (A, C) is ob-
servable. Then there is a set of time delays τi > τ0; i = 1, . . . , k such that the
observer

˙̃x(t + τ0) = Ax̃(t + τ0) + Bu(t) + Kẽk(t)
Zi(t− τ0) = y(t− τi)− Cx̃(t− τi) (19)

ẽk(t) = W−1
k

k∑

i=0

exp(−AT
o τi)CT Zi(t),

where

Ao = A−K

Wk =
k∑

i=0

exp(−AT
o τi)CT C exp(−Aoτi)
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is an Asymptotic Predictor (AP) of x(t) in the sense that the prediction error e(t) =
x(t + τ0) − x̃(t + τ0) tends to zero as t → ∞ at the same decay rate as the system
ė(t) = Aoe(t) does.

P r o o f . The prediction error for the observer (19) is governed by the differential
equation

ė(t) = Ae(t)−Kẽk(t) (20)

ẽk(t) = W−1
k

k∑

i=0

exp(−AT
o τi)CT Ce(t− τi).

Compare now the equation above to the autonomous system

ė(t) = (A−K)e(t).

Assuming that the initial function φe = [e(t),−max(τi) ≤ t ≤ 0] belongs to a
trajectory of the latter systems which is always true in this case, brings us to the
conclusion that the two system are equivalent. 2

The closed–loop properties of the AP are summarized in the following assertion.

Theorem 10. If the pair (A,B) is controllable, then the closed–loop system com-
prising the plant (12) and the controller

u(t) = r(t) + Gx̃(t + τ0)

possesses the following properties: (i) the transfer function from the reference input
to the output is

y(s) = C(sI −Ap)
−1

Be−sτ0r(s)

(ii) the characteristic polynomial is

det(sI −Ap) det(sI −Ao) = 0.

P r o o f . The closed–loop system equation is

ẋ(t) = Apx(t) + Br(t− τ0)−BGe(t− τ0), (21)

where e is given by (20). Since the differential equation describing the prediction
error is autonomous, the term related to e has no influence on the reference signal
transfer function. Thus, taking the Laplace transform of the closed–loop system
equation yields (i). By the same reason, the characteristic polynomial of the closed–
loop system is the product of the characteristic polynomial of the observer (19) and
the characteristic polynomial of the controlled plant (21), as stated in (ii). 2

In comparison with the DP, the AP does not include the original modes of the
plant and provides an arbitrarily fast convergence rate of its prediction error. The
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AP-based controller is very much akin to conventional Luenberger observer–based
controllers, especially when it comes to design issues.

It is worth noting, that both the DP and AP render an arbitrary predefined finite
spectrum to the infinite-dimensional plant (12) and reduce the controller design
problem to that of an ordinary LTI system. Naturally, letting τ0 = 0 does not
violate any assumption made in Theorem 7 or Theorem 9 which means that they
are valid for LTI systems without delay as well. In this case, the predictors take
the form of respectively a deadbeat and an asymptotic observer and they are still
feasible for conventional feedback control.

6. NUMERICAL EXAMPLE

To exemplify the application of Continuous Deadbeat Observers to feedback control,
we consider a simple numerical example. The state differential equation of the system
to be simulated is

ẋ(t) =
(

0 1
0 −a

)
x(t) +

(
0
b

)
u(t− τ0)

y(t) =
(
1 0

)
x(t), (22)

where the following numerical values are used

a = 4.6; b = 0.787; τ0 = 0.1.

First we apply the observer structure (13) to the state vector prediction problem
for the plant (22). To minimize transient response time, the time delays for the
predictor are chosen as τ0 = 0.1; τ1 = 0.15. This means that the prediction error
residual is to be fed into the FMDO undelayed and delayed by τ1 − τ0. Thus, the
prediction error vanishes for all t > 0.15, as can be seen in Figure 1.
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Fig. 1. Continuous Deadbeat Predictor. The predicted values x̂(t + τ0) are delayed for τ0

to facilitate comparison with the corresponding state variables of the plant.

Furthermore, the closed–loop performance of the DP is investigated. The plant
(22) is controlled by the feedback law

u(t) = r(t) + Gx̂(t + τ0)
r(t) = 5 sin(5t).

The gain matrix G =
(−11.4358 −1.7789

)
places two closed–loop system poles at

s12 = −3. Figure 2 shows the responses of the closed–loop system reference signal
and the system without delay in the control loop. The model is given by

ẋm(t) = (A + BG) xm(t) + Br(t).

Inspection of Figure 2 shows no difference in the dynamics of the model and the
closed–loop system after the deadbeat time has expired, short of the constant time
delay τ0, which perfectly agrees with the theory presented in the previous section.
Note also that the closed–loop system does not inherit the deadbeat performance of
the predictor, and its transient response settling time is also defined by the eigen-
values of (A + BG).
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Fig. 2. Continuous Deadbeat Predictor. Closed–loop system reference signal response.

Consider now the implementation of predictive control through the AP (19).
Assume also that the poles of the prediction error equation are to be placed at
s1 = −1, s2 = −2. This can be achieved by the observer gain matrix

K =
(−1.6 0

9.36 0

)
.

The observer prediction error is shown in Figure 3. Clearly, the transient response
due to initial conditions is identical with that of the model in the form of ordinary
differential equations.
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Fig. 3. Asymptotic Predictor. The prediction error e is given in comparison with the

corresponding state variables of the model ėm(t) = (A−K)em(t).

In the same manner as the DP’s, the AP’s estimate is used in the controller

u(t) = r(t) + Gx̃(t + τ0).

Fig. 4. Asymptotic Predictor. Closed–loop system reference signal response.

Results of a simulation run are presented in Figure 4, and they are quite similar
to those obtained for the closed–loop system based on the Deadbeat Predictor.
Actually, this can be expected, taking into account that the closed–loop transfer
functions are equal in the both cases. The differences at the initial stage of the
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transient response are explained by dissimilar processing of the initial conditions in
the corresponding structures.

7. CONCLUSIONS

A deadbeat observation problem is posed for continuous linear multivariable systems.
Two BIBO-stable deadbeat observers possessing respectively finite and infinite pro-
cess memory are discussed.

As an application of the introduced continuous deadbeat paradigm, a predic-
tive control problem for systems with time delay along the forward path is solved
generalizing the Smith Predictor and ordinary Luenberger observer–based feedback
control.

8. APPENDIX

P r o o f of Theorem 2. Assume that both u and y, the inputs to the observer, are
bounded

|y| ≤ m1; |u| ≤ m2

then for each t

|Yi(t)| ≤ |y(t− τi)|+ ‖C‖ |(Ψτiu)(t)|
≤ m1 + ‖C‖ |(Ψτiu)(t)|.

To evaluate the second term on the right–hand side of the above inequality, consider
the norm of the integrand in Ψτi . After the change of variables θ = t− ξ we get

(Ψτiu)(t) =
∫ τi

0

exp(A(θ − τi)) Bu(t− θ) dθ.

Using the properties of matrix measure

| exp(A(θ − τi))Bu(t− θ)| ≤ ‖B‖m2e
µ(A)(θ−τi),

where ‖ · ‖ and µ(·) are respectively the matrix norm and matrix measure induced
by the vector norm | · |. Suppose now that µ(A) 6= 0, then integrating both sides of
the inequality over the interval [0, τi] yields

|(Ψτiu)(t)| ≤ ‖B‖m2

µ(A)

(
1− e−µ(A)τi

)
. (23)

For the case µ(A) = 0, the upper bound is given by

|(Ψτiu)(t)| ≤ lim
µ(A)→0

‖B‖m2

µ(A)

(
1− e−µ(A)τi

)
.

Application of l’Hospital’s rule immediately brings us to the result

|(Ψτiu)(t)| ≤ ‖B‖m2τi. (24)
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Observing that
| exp(−AT τi)CT Yi| ≤ ‖C‖|Yi|e−µ(A)τi

and taking into account (23) and (24) we arrive to the upper bound (4). 2

P r o o f of Theorem 3. First note that the gramian matrix Wk can be factorized
as

Wk = WT
k Wk,

where Wk is a block matrix of the form

Wk =




C exp(−Aτ0)
...

C exp(−Aτk)


.

Therefore the condition det(Wk) 6= 0 is equivalent to rank(Wk) = n.
Following [10], let the characteristic polynomial of A be

D(s) = sn − (p1 + p2s + · · ·+ pnsn−1).

Define the auxiliary polynomials

D(j)(s) = sn−j − (pj+1 + pj+2s + · · ·+ pnsn−j−1).

Then if G is a closed contour enclosing all eigenvalues of A, we have

exp(At) =
n∑

j=1

φj(t)Aj−1

φj(t) =
1

2πi

∮

G

D(j)(θ)
D(θ)

etθ dθ. (25)

Using the definitions above, we write the matrix Wk as

Wk = (Φk,n ⊗ I`)Po(A,C), (26)

where Po(A, C) is the observability matrix of (A,C),

PT
o (A, C) =

(
CT AT CT . . . An−1T

CT
)
,

I` is the unit matrix of dimension `, ⊗ denotes the Kronecker product, and

Φk,n =




φ1(−τ0) . . . φn(−τ0)
...

. . .
...

φ1(−τk) . . . φn(−τk)


.

Consider the case when k + 1 = n and the matrix Φk,n is square. We now show
that there is always a set of τi, i = 0, . . . , k on I such that the matrix Φk,n is
nonsingular. Assume the contrary, i. e. that the matrix Φk,n has linearly dependent
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rows for all possible values of τi in I. Letting the rows i and j be linearly dependent,
it then follows from (25) that

exp(−Aτi) = ρ exp(−Aτj)

for all τi, τj and some real constant ρ, which brings us to the conclusion that ρ = 1,
A = 0. This contradicts the assumptions made on (1) and therefore the matrix Φk,n

is proved to be nonsingular. Due to the observability condition rank(Po) = n. Since

det(Φk,n ⊗ I`) = det(Φk,n)`

and
det(Φk,n) 6= 0

equation (26) implies that
rank(Wk) = n.

In the case k + 1 > n, by the same reason as above, the matrix Φn,k can always be
partitioned as

Φn,k =
(

Φ1

Φ2

)
,

where Φ1 ∈ Rn×n and det(Φ1) 6= 0. Substituting the partitioned Φn,k in (26) yields
the desired result

rank(Wk) = n

and the proof is completed. 2

P r o o f of Theorem 5. To begin with, one can observe that

|x̄(t)| ≤
∫ ∞

0

‖ exp(Acθ)‖dθM3

or using the properties of matrix measure,

|x̄(t)| ≤
∫ ∞

0

eµ(Ac)θ dθM3.

For any Hurwitz Ac the improper integral on the right–hand side of the inequality
converges, giving

|x̄(t)| ≤ − 1
µ(Ac)

M3.

Further, the upper bound on the solution of (10) is

|ē(t)| ≤ m3e
µ(Ac)t.

Taking into account the finite memory used in the estimate ed and (4) yields

|ed(t)| ≤ M4

k∑

i=0

eµ(Ac)(t−τi).
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Summarizing the partial results above provides (11). 2

P r o o f of Theorem 6. Along the lines of Example 3.3-5 in [3] but reasoning for
the dual case, the relationship between the observability matrix of the pair (A,C)
and the observability matrix of the pair (Ac, C) is given as follows

Po(A,C) = DPo(Ac, C), (27)

where

D =




I 0 0 . . . 0
CK I 0 . . . 0

CAK CK I . . . 0
...

...
...

. . .
...

CAn−2K CAn−3K CAn−4K . . . I




.

This result can be easily checked out by substituting A = Ac + KC in Po(A,C).
Because of the unit matrices on the main diagonal it is clear that detD 6= 0 and

rankPo(A, C) = rankPo(Ac, C)

In other words, the estimation error of the Luenberger observer ē is observable from
the residual y` iff the pair (A,C) is observable. Carrying out the same argument
as in the proof of Theorem 3 results in the conclusion that for any observable pair
(Ac, C) there is a set of time delays τi, i = 0, . . . , k; k ≥ n − 1 such that Uk is
nonsingular. Noting that application of (27) equates observability of (A,C) with
that of (Ac, C), completes the proof. 2

(Received November 24, 1993)
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