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EVALUATION OF THE REACHABILITY SUBSPACE
OF GENERAL FORM POLYNOMIAL MATRIX
DESCRIPTIONS (PMDs)

G.F. Fragulis and A. I.G. Vardulakis

We consider the concept of Reachability for systems described by PMDs, generalizing
various known results from the theory of generalized state space systems using time domain
analysis,which takes into account the finite and infinite pole-zero structure of the associated
matrix. We extend also the theory of admissible initial conditions and we introduce the
concept of Reachable subspace for PMDs providing a precise form for all future(reachable)
states of our system.

1. INTRODUCTION

Let a multivariable system described by a Polynomial Matrix Description (PMDs)
i. e. systems of the form

∑
:

A(ρ)β(t) = B(ρ)u(t)
y(t) = C(ρ)β(t), (1)

where ρ := d
dt is the differential operator, A(ρ) =

q1∑
i=0

Aiρ
i ∈ <r×r [ρ], Aiε <r×r

, i =

0, 1, 2, . . . , q1 ≥ 1 with rank<Aq1 < r, B(ρ) =
σ∑

i=0

Biρi ∈ <r×m[ρ], Bj ∈ <r×m , j =

0, 1, 2, . . . , σ ≥ 0, C(ρ) =
σ1∑
i=0

Ciρi ∈ <m1×r[ρ], Cj ∈ <m1×r, j = 0, 1, 2, . . . , σ1 ≥
0, β(t) : (0−,∞) → <r the pseudo-state of the system (

∑
) and u(t) : [0,∞) → <m

the control input to the system (
∑

). Polynomial Matrix Descriptions are governed
by singular differential equations which endow the systems with many special fea-
tures that are not found in regular state space systems. Among these are impulse
terms and input derivatives in the free and forced pseudo-state responce, nonproper-
ness of the transfer function matrix, noncausality between input and pseudo-state
(or input and output), inconsistent and admissible initial conditions and many oth-
ers which make the study of PMDs more complicated than the study of the classical
regular systems. Starting from the fact that generalized state space systems i. e.
systems of the form

∑
1 : Eρx(t) = Ax(t) + Bu(t), y(t) = Cx(t), where E ∈ <r×r,
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rankRE < r, A ∈ <r×r, B ∈ <r×m, C ∈ <m1×r represent a particular case of PMDs,
we generalize various known results regarding the smooth and impulsive solutions
of the homogeneous and the non-homogeneous system (

∑
1 ) to the more general

case of PMDs (
∑

). In recent papers (see [10, 9, 6]) various known results regarding
the smooth and impulsive solutions of homogeneous generalized state space systems
have been translated to the more general case of PMDs. Also relying heavily on
the theory regarding the Smith–McMillan form of a rational matrix at infinity and
applying it to the polynomial matrix A(s) = L−[A(ρ)] the theory of Weierstrass
canonical form of a regular matrix pencil Es − A under strict equivalence to the
more general case of polynomial matrix A(s) was generalized [9].

2. MAIN RESULTS

Theorem 1. [9] Let

A(s) = A0 + A1s + . . . + Aq1s
q1 ∈ <r×r[s] (2)

rank<(s)A(s) = r, q1 ≥ 1 with Smith–McMillan form at s = ∞ given by S∞A(s)(s) =

block diag
[
sq1 , sq2 , . . . , sqk , 1

sbqk+1
, . . . , 1

sbqr

]
, where 1 ≤ k ≤ r and q̂ = −q̂i, i =

k + 1, . . . , r so that q1 ≥ q2 ≥ . . . ≥ qk ≥ 0 and q̂r ≥ q̂r−1 ≥ . . . ≥ q̂k+1 ≥ 0.We can
write: A−1(s) = Hpol(s) + Hspr(s), where Hpol(s) ∈ <r×r[s] and Hspr(s) ∈ <r×r

pr (s)
is strictly proper. Let n = deg |A(s)|. Then n = δM (Hspr(s)). Let µ =

∑r
i=k+1(q̂i +

1). Then δM (Hpol(s)) = µ. Now let C ∈ <r×n, J ∈ <n×n, B ∈ <n×r be a minimal
realization of Hspr(s) and C∞ ∈ <r×µ, J∞ ∈ <µ×µ, B∞ ∈ <µ×r be a minimal
realization of Hpol(s). Then C, J is a finite Jordan pair of A(s) and C∞, J∞ is an
infinite Jordan pair of A(s). Furthermore A−1(s) can be written:

A−1(s) =
[

C C∞
]



sIn − J | 0n,µ

−−−−− −− −−−−−
0µ,n | Iµ − sJ∞



−1 [

B
B∞

]
. (3)

The solution of the homogeneous matrix differential equation A(ρ) β(t) = 0 is
found to be [9]:

β
h

(t) = [C C∞ ]




eJtxs(0−)

−
bqr∑

i=1

δ(i−1)J i
∞xf (0−)


 , (4)

where

xf (0−):=[B∞,J∞B∞ , . . . , Jq1−1
∞ B∞ ]




A0 A1 · · · Aq1−1
0 A0 · · · Aq1−2
...

...
...

0 0 · · · A0







β(0−)
β(1)(0−)

...
β(q1−1)(0−)


∈ <

µ

(5)
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and

xs(0−) := [Jq1−1B, Jq1−2B, . . . , B]




Aq1 0 · · · 0
Aq1−1 Aq1 · · · 0

...
...

...
A1 0 · · · Aq1







β(0−)
β(1)(0−)

...
β(q1−1)(0−)


∈<

n

(6)
xs(0−) is the “slow state at t = 0−” and x

f
(0−) is the “fast state at t = 0− ([9]).

Consider the PMD (1). Now we shall present the solution of a non-homogeneous
matrix differential equation:

A(ρ)β(t) = B(ρ) u(t). (7)

Taking the L− Laplace transform of (7) and assuming that the initial conditions
are zero i. e. β(i)(0−) ≡ 0, i = 0, 1, . . . , q1 − 1, u(i)(0−) ≡ 0, i = 0, 1, . . . , σ − 1, we
obtain:

A(s) β̂(s) = B(s) û(s). (8)

Hence in light of (3) we can write:

A−1(s)B(s) = C∞ [Iµ − sJ∞ ]
−1

B∞ B(s) + C[sIn − J ]
−1

BB(s) (9)

which after some matrix manipulations [9] can be written:

A(s)−1B(s) = [C C∞ ]
[

Jσ−1B, Jσ−2B, . . . , B 0n,(bqr+1)r

0µ,σr B∞,J∞B∞ , . . . , Jbqr∞B∞

]
(10)

×




Bσ 0 · · · 0 0 · · · 0
Bσ−1 Bσ · · · 0 0 · · · 0

...
...

. . .
...

...
...

B1 B2 · · · Bσ 0 · · · 0
B0 B1 · · · Bσ−1 Bσ · · · 0
0 B0 · · · Bσ−2 Bσ−1 Bσ · · · 0
...

...
. . .

...
0 · · · B0 · · · Bσ







Im

sIm

...
sbqr+σIm




+C[sIn − J ]
−1

[JσBBσ + Jσ−1BBσ−1 + · · ·+ BB0 ].

Taking the inverse Laplace transform of (10) and in light of (8) we obtain the
solution of (7) [7]:

β
n

(t) = [C C∞ ]




∫ t

0

eJtΩu(τ)dτ +
σ−1∑

i=0

Φi+1u
(i)(t)

bqr∑

i=0

J i
∞Ωu(σ+i)(t) +

σ−1∑

i=0

Ziu
(i)(t)




, (11)
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where the superscript (i) means distributional derivative, σ is the maximum power
of s in B(s) and

Ω =
σ∑

i=0

J iBBi = JσBBσ + Jσ−1BBσ−1 + · · ·+ BB0 (12)

Φj =
σ−j∑

i=0

J iBBi+j j = 1, 2, . . . , σ (13)

Ω =
σ∑

i=0

J iB∞B(σ−i) = B∞Bσ + J∞B∞Bσ−1 + · · ·+ J
σ

∞B∞B0 (14)

Z(σ−j) =
σ∑

i=0

J i
∞B∞B(σ−j)−i j = 1, 2, . . . , σ (15)

with B(σ−j)−i ≡ 0 for i, j : (σ − j)− i < 0.
We obtain that the complete solution of (1) is given by:

β
c

(t) = β
h

(t) + β
n

(t) = (16)

[C C∞ ]




eJtxs(0−) +
∫ t

0

eJtΩu(τ)dτ +
σ−1∑

i=0

Φi+1u
(i)(t)

−
bqr∑

i=1

δ(i−1)J i
∞xf (0−) +

bqr∑

i=0

J i
∞Ωu(σ+i)(t) +

σ−1∑

i=0

Ziu
(i)(t)




,

where the superscript (i) means distributional derivative. Let us now denote u[i](t)
the ith (ordinary) derivative of u(t). Using the identity (see [1] p. 52)

u
(i)

(t) = u[i](t) + δu[i−1](0) + · · ·+ δ[i−1]u(0) i = 1, 2, . . . (17)

β
c

(t) can be written (see [7]) as β
c

(t) = β
c

1 (t) + β
c

2 (t) where:

β
c

1 (t) = C

[
eJtxs(0−) +

∫ t

0

eJtΩu(τ)dτ +
σ−1∑

i=0

Φi+1u
[i](t)

+
σ−2∑

i=0

δ[i]




σ−2−i∑

j=0

Φj+2+iu
[j](0−)







(18)
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βc
2(t) = −C∞

bqr∑

i=1

δ(i−1)J i
∞xf (0−)

+C∞




σ−1∑

i=0

Ziu
[i](t) +

σ−2∑

i=0

δ[i]




σ−2−i∑

j=0

Zj+1+iu
[j](0−)







+C∞



bqr∑

i=0

J i
∞Ωu[σ+i](t) +

σ−1∑

i=0

δ(i)



bqr∑

j=0

Jj
∞Ωu[σ+j−i−1](0−)




+
σ+bqr−1∑

i=σ

δ(i)




bqr∑

j=i−(σ−1)

Jj
∞Ωu[j−1](0−)





 .

(19)

It is obvious that the complete solution of (1) may have impulsive components.
Since discontinous (impulsive) behaviour is not desirable we have the following:

Definition 2. A point β
c

0 ≡ β
c

(0−) ∈ <r is said to be an Admissible Initial
Condition (A.I.C.) for the system (1) if the solution β

c

(t; 0−, β
c

0 , u(t)) is continously
differentiable on [0, T ] for some input u(t) and for some T > 0, i. e. β

c

(t; 0−, β
c

0 ,
u(t)) is impulse-free.

It follows from (18) and (19) that a point β
c

0 is an A.I.C. if the following conditions
hold:

C∞
bqr∑

i=1

δ(i−1)J i
∞xf (0−) = 0 ⇒ xf (0−) ∈ Ker[J∞ ] (20)

σ−2−i∑

j=0

Φj+2+iu
[j](0−) = 0 i = 0, 1, . . . , σ − 2 (21)

σ−2−i∑

j=0

Zj+1+iu
[j](0−) = 0 i = 0, 1, . . . , σ − 2 (22)

bqr∑

j=0

Jj
∞Ωu[σ+j−i−1](0−) = 0 i = 0, 1, . . . , σ − 1 (23)

bqr∑

j=i−(σ−1)

Jj
∞Ωu[j−1](0−) = 0 i = σ, . . . , σ + q̂r − 1. (24)
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The set of Admissible states for t ≥ 0− is given by:

β
c

(t) = [C C∞ ]




eJtxs(0−) +
∫ t

0

eJtΩu(τ)dτ +
σ−1∑

i=0

Φi+1u
[i](t)

bqr∑

i=0

J i
∞Ωu[σ+i](t) +

σ−1∑

i=0

Ziu
[i](t)




. (25)

From (25) for t = 0− the set of A.I.C. is:

HIu =





β
c

(0−) ∈ <r/β
c

(0−) = [C C∞ ]




xs(0−) +
σ−1∑

i=0

Φi+1u
[i](0−)

bqr∑

i=0

J i
∞Ωu[σ+i](0−) +

σ−1∑

i=0

Ziu
[i](0−)








(26)
or equivalently:

HIu =



β

c

(0−) = [C C∞ ]
[

xc
s(0

−)
xc

f (0−)

]
/x

c

s(0−) ∈ <n,

and x
c

f (0−) ∈
bqr∑

i=0

J i
∞ImΩ +

σ−1∑

i=0

Im Zi + Ker J∞

}
.

(27)

Remark 3. Note that the zero vector 0 belongs to HIu because there exist xs(0−) ≡
0 and input u(t) such that u[i](0−) ≡ 0 for i = 0, 1, 2, . . . , q̂r or i = 0, 1, 2, . . . , σ − 2
in the case σ − 2 > q̂r.

Now we shall generalize the notions of Reachability given in [8, 11] in such a way
to cover the general case of PMDs as in (1).

Definition 4. Given a point β
c

0 = β
c

(0−) ∈ HIu, we say that another point
βT ∈ <r is Reachable from β

c

0 if there exists an input u(t) and T > 0 such that
β

c

(t) = β
c

(t; 0−, β
c

0 , u(t)) is impulse-free on [0−, T ] and holds:

β
c

(T ) = βT . (28)

Let R(β
c

0 ) denote the set of Reachable states from β
c

0 ∈ HIu . R(β
c

0 ) 6= ∅ means
that there exists an input which will make the solution β

c

(t) impulse-free on [0, T ].
We shall try to describe R(β

c

0 ) in terms of its finite and infinite spectral data i. e.
the finite Jordan triple (C, J,B) and the infinite Jordan triple (C∞ , J∞ , B∞) of the
matrix A(s).
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We firstly assume that β
c

0 = 0 ∈ H
Iu

and describe the set R(0) i. e. the set of
Reachable states from 0 ∈ HIu . We introduce the following notation (see also [11]):

〈A/ ImB〉 := Im B + A Im B + · · ·+ A
n−1

Im B. (29)

Following the lines of [11] we can prove that:

Theorem 5.

R(0) = [C C∞ ]




〈J / Im Ω〉+
σ−1∑

i=0

ImΦi+1

〈
J∞ / Im Ω

〉
+

σ−1∑

i=0

Im Zi




,

where Zi , i = 0, 1, . . . σ − 1 is given by (15) and Φj , j = 1, . . . , σ is given by (13).

In the above theorem we have examined the structure of R(0). We shall now
examine the structure of R(β1) with β1 ≡ β

c

(0−) 6= 0 ∈ <r. To this end consider
the following two sets of admissible initial conditions (taken from (27)):

i) A.I.C. with x
c

s(0−) = 0 ∈ <n and x
c

f (0−) 6= 0 i. e.

H2 =

{
β

c

(0−) = [C C∞ ]
[

xc
s(0−)

xc
f (0−)

]
/x

c

s(0−) = 0 ∈ <n, x
c

f (0−) ∈
bqr∑

i=0

J i
∞Im Ω

+
σ−1∑

i=0

Im Zi + Ker J∞

}

(30)
and

ii) A.I.C. with x
c

s(0−) 6= 0 and x
c

f (0−) = 0 i. e.

H3 =
{

β
c

(0−) = [C C∞ ]
[

x
c
s (0−)

x
c

f (0−)

]
/x

c

s(0−) 6= 0 ∈ <n and x
c

f (0−) = 0 ∈ <µ

}
. (31)

The complete set of A.I.C. can be written:

HIu =





β
c

(0−) ∈ <r/ β
c

(0−) ⊂ [C C∞ ]




<n

〈
J∞ / ImΩ

〉
+

σ−1∑

i=0

Im Zi








(32)

or equivalently from (30) – (31) and Remark 3:

HIu = H2 ∪H3 ∪ {0}, (33)

where {0} denotes the zero vector corresponding to xs(0−) ≡ 0 and to an input u(t)
such that u[i](0−) ≡ 0, i = 1, 2, . . . , q̂r + 1 + σ. Now the complete set of Reachable
states β

c

(T ) ∈ <r from β ε H
Iu

is:

R̃ =
⋃

β∈HIu

R(β) = R(0) ∪R(β2) ∪R(β3), (34)
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where R(0) is the set of Reachable states from 0 ∈ H
Iu

, R(β2) is the set of Reachable
states from β2 ∈ H2 , i. e. from all A.I.C. which have x

c

s(0−) = 0 and x
c

f (0−) 6= 0
and

R(β3) =

{
β3(t) ∈ H3/β3(t) = [C C∞ ]

[
x

c
s (t)

x
c

f (t)

]
/x

c

s(t) = eJtxs(0−)

+
σ−1∑

i=0

Φi+1u
[i](t) ∈ <n, xf (t) ≡ 0 ∈ <µ ∀t > 0

} (35)

which represents the free-state reachable set from starting point(state) β3(0−) =

Cxs(0−) +
σ−1∑
i=0

Φi+1u
[i](0−). From Theorem 5 we have the form of R(0). From the

form of R(β3) in (35) we have:

R(β3) ∈ [C C∞ ] [<n ⊕ {0}]. (36)

Hence it remains only to find R(β2) where β2 ∈ H2 .We can easily prove that:

Proposition 6. Let β2 ∈ H2 as in (30). Then:

R(β2) = [C C∞ ]




<n

〈
J∞ / Im Ω

〉
+

σ−1∑

i=0

Im Zi


 . (37)

Taking into account that 〈J / ImΩ〉+
σ−1∑
i=0

Im Φi+1 ⊂ <n and {0} ⊂ 〈
J∞ / Im Ω

〉
+

σ−1∑
i=0

ImZi from (34) and Theorem 5, (36) and (37) we obtain that the complete set

of Reachable states from any β ∈ HIu is given by:

R̃ =
⋃

β∈HIu

R(β) = [C C∞ ]




<n

〈
J∞ / Im Ω

〉
+

σ−1∑

i=0

Im Zi


 . (38)

Remark 7. Taking into account that 〈J / ImΩ〉 +
σ−1∑
i=0

ImΦi+1 ⊂ <n we obtain

that every point y in R, where:

R := [C C∞ ]




〈J / ImΩ〉+
σ−1∑

i=0

Im Φi+1

〈
J∞ / ImΩ

〉
+

σ−1∑

i=0

Im Zi




(39)

is Reachable (according to Definition 4) from every point x in R.

We have the following definition:
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Definition 8. The system (1) is called Reachable if every point β
T
∈ <r is Reach-

able from every point β0 ∈ HIu.

Proposition 9. The system (1) is Reachable iff: R = <r.

Definition 10. The set R as in (39) is called the Reachable subspace of the system
(1).

Now we shall give some useful Reachability tests for Polynomial Matrix Descrip-
tions which are natural extensions of the corresponding tests for generalized state

space systems. Let the subspace Rs := 〈J / ImΩ〉+
σ−1∑
i=0

Im Φi+1 ⊂ <n. Rs is spanned

by the linearly independent columns of the matrix:

Qs = [Ω, JΩ, . . . , J
n−1

Ω, Φ1 , Φ2 , . . . , Φσ ] ∈ <n×(n+σ)m. (40)

Let also the subspace Rf :=
〈
J∞ / ImΩ

〉
+

σ−1∑
i=0

Im Zi ⊂ <µ. Rf is spanned by the

linearly independent columns of the matrix:

Qf = [Ω, J∞Ω, . . . , Jbqr∞Ω, Z0 , Z1 , . . . , Zσ−1 ] ∈ <µ×(bqr+1+σ)m. (41)

From the form of R in (39) and (40) – (41) it follows:

Definition 11. The Reachable subspace R is spanned by the linearly independent
columns of the matrix

Q = [C C∞ ]
[

Qs 0
0 Qf

]
∈ <r×(n+bqr+1+2σ)m (42)

which is called pseudo-state Reachability matrix of (1).

Combining (42) with Proposition 9 we can state the obvious:

Theorem 12. Every βT ∈ <r is Reachable iff:

R ≡ <r ⇒ rank[Q] = r. (43)

Remark 13. We have the following:

[C C∞ ] ∈ <r×(n+µ) and rank [C C∞ ] = r (44)

n + µ = r +
k∑

i=1

(qi − 1). (45)

Hence generally it holds:
n + µ > r. (46)

From Theorem 12 and Remark 13 we can state the following:
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Corollary 14. The system (1) is Reachable iff:

rank [C C∞ ] = r (47)

and
rank

[
Qs 0
0 Qf

]
≥ r. (48)

3. ILLUSTRATIVE EXAMPLE

Let A(s) =
[

s + 1 s2

0 1

]
be a polynomial matrix with Smith–McMillan form at

s = ∞ : S∞A(s)(s) =
[

s2 0
0 1

s

]
and r = 2, n = 1, µ = 2; hence n + µ = 1 + 2 = 3 >

2 = r. Let also C =
[

1
0

]
, J = [−1], B = [1−1] a minimal realization of the strictly

proper part of A−1(s) and C∞ =
[ −1 1

0 1

]
, J∞ =

[
0 1
0 0

]
, B∞ =

[
0 0
0 −1

]
a

minimal realization of the polynomial part of A−1(s). Then

rank [C C∞ ] = rank
[

1 −1 1
0 0 1

]
= 2 = r.

Hence the first condition (47) of Corollary 14 holds true.

CASE A. Let B(s) = B0 +B1s =
[

1 0
0 1

]
+

[
1 0
0 1

]
s =

[
s + 1 0

0 s + 1

]
i. e.

σ = 1. Then:

Ω = JBB1 + BB0 = [0, 0] , Φ1 = BB1 = [1,−1]

Ω = B∞B1 + J∞B∞B0 =
[

0 −1
0 −1

]
, Z0 = B∞B0 =

[
0 0
0 −1

]

i) rank[Qs] = rank [Ω, Φ1] = rank [0, 0, 1,−1] = 1

ii) rank [Qf ] = rank
[
Ω, J∞Ω, Z0

]
= rank

[
0 −1 0 −1 0 0
0 −1 0 0 0 −1

]
= 2

iii) rank
[

Qs 0
0 Qf

]
= rank




0 0 1 −1 | 0 0 0 0 0 0
0 0 0 0 | 0 −1 0 −1 0 0
0 0 0 0 | 0 −1 0 0 0 −1


= 3 > r

i. e. the system is Reachable according to Corollary 14.

CASE B. Let B(s) = B0 + B1s =
[

0
0

]
+

[
1
0

]
s =

[
s
0

]
i. e. σ = 1. Then:

Ω = JBB1 + BB0 = [−1], Φ1 = BB1 = [1]

Ω = B∞B1 + J∞B∞B0 =
[

0
0

]
, Z0 = B∞B0 =

[
0
0

]
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i) rank[Qs] = rank [Ω, Φ1] = rank [−1, 1] = 1

ii) rank [Qf ] = rank
[
Ω, J∞Ω, Z0

]
= rank

[
0 0 0
0 0 0

]
= 0

iii) rank
[

Qs 0
0 Qf

]
= rank



−1 1 | 0 0 0
0 0 | 0 0 0
0 0 | 0 0 0


 = 1 < r

i. e. the system is Not Reachable because the condition (48) does not hold.

4. CONCLUSIONS

The concept of Reachability for Polynomial Matrix Descriptions (PMDs) is consid-
ered. After generalizing various known results regarding the smooth and impulsive
solutions of generalized state space systems (which represent a particular case of
PMDs) we developed a theory regarding Reachability properties of PMDs using
time-domain analysis. This analysis extends in a general way a number of results
previously known only for regular and generalized state space systems. Finally we
have to point out that our definition of Reachability is equivalent and natural gener-
alization of the notions of Controllability [2], C-Controllability [11] and Reachability
[8]. However, the way that our theory is related to further aspects such as the no-
tions of Strong Controllability, Observability and duality for the case of PMDs are
topics for further research.
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