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PARALLEL ALGORITHM FOR SPATIALLY ONE-
AND TWO-DIMENSIONAL INITIAL-BOUNDARY-
VALUE PROBLEM FOR A PARABOLIC EQUATION

PavoL Purcz

A generalization of the spatially one-dimensional parallel pipe-line algorithm for so-
lution of the initial-boundary-value problem using explicit difference method to the two-
dimensional case is presented. The suggested algorithm has been verified by implementa-
tion on a workstation-cluster running under PVM (Parallel Virtual Machine). Theoretical
estimates of the speed-up are presented.

1. INTRODUCTION

The importance of the boundary-value problems (BVP) for engineering applications
attracts and motivates continuous development of fast numerical algorithms for its
solution. A number of various approaches have been suggested, such as finite ele-
ments methods, fast Fourier transform methods, multigrids methods and difference
methods (e.g. [1, 2, 3, 5, 6, 7, 8, 10]), etc.

Some theoretical aspects of the use of an explicit difference method in the case of
spatially one-dimensional initial-boundary-value problem (IBVP) were considered by
P. M. Kogge [4]. Based on Kogge’s ideas, E. E. Tyrtyshnikov [9] suggested a possible
approach to development of a numerical algorithm for solving the spatially one-
dimensional IBVP. In the present work such an algorithm is developed for spatially
one- and two-dimensional IBVP, and verified on a workstation-cluster running under
PVM (Parallel Virtual Machine). Moreover, some theoretical estimates of the speed-
up of the algorithms are presented.
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2. ONE-DIMENSIONAL INITIAL-BOUNDARY-VALUE PROBLEM

First, we describe the suggested algorithm for a spatially one-dimensional IBVP. Let
us consider a spatially one-dimensional IBVP for a parabolic equation

2
% = %, t>0, 0<zx<l, (1)
u(0,2) = @(z), 0<z<l, (2)
u(t,0) = aft), t>0 (3)
U(t, lw) = ﬁ(t)a t>0 (4)

where ¢, «, 8 are given sufficiently smooth functions such that ¢(0) = «(0), p(l.) =
5(0). We look for a sufficiently smooth function u(¢, x), which satisfies the equation
(1) and conditions (2)—(4). For the numerical solution of the problem (1)—(4), let
us consider the following explicit difference method of the form

k k—1 k=1 o k—1 k—1
u; — U, Uy 2u; " + Uy g 5
- h2 bl ( )

T xr

where 7 > 0 and h, > 0 are the time step and the spatial step of discretization,
satisfying the condition of convergence 7/h2 < 0.5 and uf — is an approximate value
of the solution at the point (k,i), (i =1,2,...,(ne — 1), k =1,2,...; ng - hy = lz).
Moreover, uf = a(ty), uk = B(ty), and u = ¢(z;), where z; = ihg, t;, = k7.

Let us consider a natural number n, such that n, = ¢.n, where ¢ > 2, n > 2.
Then the explicit difference method (5) can be realized on a parallel computer with
n processors Py, Ps, ..., P,. A geometrical interpretation of the pipe-line implemen-
tation for n = 5 is depicted in Figure 1.

Fig. 1. Geometrical interpretation in one-dimensional case.

Each processor starts computations with the initial conditions, and computes the
values of solution in a triangle block. Then the data exchange between processors is
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performed in the “north-west” direction. In the case of a pipe-line implementation
with processors connected in series, each processor sends data to its “left” neigh-
bour. After finishing the data exchange, a new step of computations is performed;
each processor computes the values of solution in a corresponding turned square
block. The “boundary” processors also use the boundary conditions. Then the data
exchange and computation of the values of solution in turned square blocks repeats.
Generally for n processors we can write the whole data exchange process in the form:

P(i+1) mod(n) P; — Pn[(n—i+1) div(n)]+(i—1) mod(n) » (Z =12,... ,’I’L). (6)

3. GENERALIZATION OF A PARALLEL ALGORITHM IN
A GEOMETRICAL WAY

Now let us describe a generalization of the spatially one-dimensional algorithm for
the two-dimensional case. There is a certain difficulty consisting in the following. In
the one-dimensional case, the triangle and square blocks give us a complete covering
of the considered domain (see Figure 1). However, in the two-dimensional case we
have pyramids instead of triangles, and dipyramids instead of squares; these two
types of blocks do not cover the considered domain completely, and there are also
other types of blocks. The complete set of blocks which give the complete covering
in the case of the spatially two-dimensional problem is shown in Figure 2.

A B (@
q q
a q
q
D E F
2 2

Fig. 2. A complete set of blocks in the two-dimensional case.
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Let us consider the spatially two-dimensional IBVP for the parabolic equation

% = 224—22, t>0, O<z<l,, O0<y<l, (7)
uw0,z,y) = ¢(z,y), 0<z<l, 0<y<l, (8)
uw(t,0,y) = a(ty), t>0, 0<y<ly (9)
u(t,ly,y) = Bty), t>0, 0<y<ly (10)
u(t,z,0) = ~(t,x), t>0, 0<z<l, (11)
u(t,z,ly) = o(t,z), t>0, 0<z<l, (12)

a(0,1,) = 6(0,0). We look for the solution u(t, x,y), that satisfies (8)—(12). For the
numerical solution we use the difference scheme of the following form:

k k—1 k-1 k-1 k-1 k—1 k—1 k-1

U5 — Uy _ Ui —qy = 2 iy Wy — 22Uy gy (13)

T h2 h2 ’

where 7 > 0 is the time step and h, > 0, hy > 0 are spatial steps of a discretization,
satisfying the condition of convergence 7/ max (h2, hi) < 0.5 and ufj is the approx-
imate solution in the point (k,i,7), ¢ = 1,2,...,(my — 1), j = 1,2,...,(n, — 1),
k=1,2,...; mg.he = ly, ny.hy = 1,. Moreover, uf; = a(ty, y;), ul, ; = B(te, y;),
uby = y(ty, ), ufny = 0(tg,x;) and u% = ¢(z;,y;), where z; = i.hy, y; = j.hy,
tr = k7. The algorithm is based on the same idea as in Section 2 and presented
using a geometrical interpretation for parallel processing of the considered problem.

Let us take natural numbers m,n such that m, = gm, ny, = gqn where ¢ > 2,
ny > 2, ny, > 2. For instance, let m = 4 and n = 2. Then the explicit difference
scheme (13) can be realized on a parallel computer with m x n processors ordered
as shown (see Figure 3).

Let us introduce the following types of three dimensional blocks for the two-

dimensional problem:

A — tetragonal pyramide,

B — rhombic sfenoide,

C — half a rombic sfenoide,

D — tetragonal dipyramide,

E — half a tetragonal dipyramide,

F — quarter of a tetragonal dipyramide.

At the beginning, all processors compute values lying in the blocks of the type
A. At this step, computations in each processor are based on the formula (13) and
initial conditions (8) are also used. After finishing these computations, the data
exchange is performed. The values at the points lying on the west and south walls
of the considered type A blocks, as well as the values at the nearest points lying
inside the type A blocks, are transferred according to the following rule, depicted in
Figure 4:

P(i-l—l)mod(m),jaPi,(j—i—l)mod(n) - Pi,jv (Z = 1723"'7m; j = 1,271) (14)
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21 22 23 24
Pl 1 P12 P13 P14

Fig. 3. An example: 4 x 2 processors.

5 Y DY 5y
} }
~P ~P ~P ~P
11 12 13 14
} | | }

Fig. 4. Data exchange between processors: a layer of blocks A.

During further steps, the domains processed by each processor move gradually in
the “north-east” direction, as shown in the diagrams below.

At the next step, we have a layer formed by blocks of types B and C. There
is no analogy for such a layer in the one-dimensional case. This layer is shown in
Figure 5, as well as the directions of the data exchanges. For example, each of the
processors Pj1, Pjo and P53 processes two blocks of the type B; each of the processors
Piy, Ps1, Py and Pa3 processes one block of the type B and two blocks of the type
C' (meanwhile, two blocks of the type C create one block of the type B); processor
Py, processes four blocks of the type C. Afterwards, the data (input and output)
exchange is performed according to the following rules:

Processor P;; receives the data from processors Pjo and P before starting its
computations, and sends the computed values to processors P4, Ps after finishing
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P P P -—P

21 22 23 24
P P P P P
24 21 22 23 24
J J J J J
N D) ~P3 Py
514 51 1 5’12 513 514
5 Ty Ty 5,

Fig. 5. Data exchange between processors: a layer of blocks B and C'.

its computations; other processors work similarly. Since we consider the pipe-line
implementation, then in the considered problem the following permanent data ex-
change rules hold for all further layers:

P i = Projm—it1)=(m)]+(i—1) mod(m),js Fin[(n—j+1) = (n)]+(—1) mod(n) (15)
P(i+1)mod(m),j7Pi,(j+1)m0d(n),j *)Pi,j (Z: 1723"'7m; .7 = 1,271) (16)
Objects D, E, and F create the layer of blocks which is analogous to the layer con-

sisting of squares and triangles in the one-dimensional case. For this layer, processors
work as shown in Figure 6.

P, <P ~P ~P ~P
24 21 22 23 24
. f { . !
P P ~P ~P ~P
14 11 12 13 14
: : { : :
By Ty o b3 By

Fig. 6. Data exchange between processors: a layer of blocks D, F and F'.

According to this diagram, processors Pi1, P2, and Pj3 process type D blocks;
processors Pi4, Py1, Pys and Ps3 process two blocks of the type E; processor Poy
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processes four blocks of the type F' (four blocks of the type F' create two blocks of the
type E or one block of the type D). The data exchange is performed in accordance
with the above permanent rules (15)—(16).

At the next step, we have again a layer consisting of blocks of the types B and
C. This layer is similar to the previously considered layer of B and C blocks, but
the roles of processors are slightly different. In our geometrical interpretation of the
algorithm, the data exchange diagram for this layer can be obtained by shifting the

processors in Figure 5 in the “north-east” direction, which gives the data exchange
rules depicted in Figure 7.

P P P P
24 21 22 23
§ i i i
Py 1 Py T Py
P P P P
14 11 12 13
} } } }
By 5 5y By Ty
By b1 By By

Fig. 7. Data exchange between processors: a layer of blocks B and C.

The last layer in our description is a layer of blocks of the type D. The corre-
sponding data exchange diagram is shown in Figure 8.

By M RERED: REREE
| |
~Pp ~P ~P ~P
24 21 22 23
' ' |

Fig. 8. Data exchange between processors: a layer of blocks D.
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During the following steps, the sequence of the described layers (BC, DEF, BC,
D) repeats, and we can use the above rules (15)—(16) for the data exchange in each
sub-step.

4. SAMPLE IMPLEMENTATION

The suggested algorithm has been verified in both cases, one- and two-dimensional,
by implementing it in FORTRAN with parallel extensions (Fortran-Lib version
3.3.11) on a workstation-cluster running under PVM (pvm version 3.3.11) using
two sample examples:

a) for spatially one-dimensional IBVP:

g—? = %, t>0, O<ax<4 (17)
u(0,2) = 2°, 0<x<4 (18)
ut,0) = 2, t>0 (19)
u(t,4) = 2t+16, t>0. (20)

Let us take the spatial step of discretization h = 0.25, the time step 7 = 0.01, the
number of processors nproc = 4 and the maximum number of nodes processed by
one processor at each time layer ¢ = 4 (¢ may be only even). The number of steps
taken is pc = 10.

The results of computations were checked by comparing them with the exact
solution u(t,z) = 2t + 22, while the accuracy 10~¢ was reached.

b) for spatially two-dimensional IBVP:

% = g:;JrgZZ, t>0, O0<z<4, O<y<?2 (21)
u(0,z,y) = 22+y% O<z<4, 0<y<?2 (22)
u(t,0,y) = 4dt+y% t>0, 0<y<?2 (23)
u(t,4,y) = 4t +164+9% t>0, 0<y<2 (24)
u(t,z,0) = 4t+2? t>0, 0<z<4 (25)
u(t,z,2) = 4t+2?+4, t>0, 0<z<A4. (26)

Let us take the spatial steps of discretization h, = h, = 0.25, the time step
7 = 0.01, the number of processors nproc = 8 and the maximum number of nodes
processed by one processor at each time layer ¢ = 4 (¢ may be only even). The
number of steps taken is pc = 10.

The results of computations were checked by comparing them with the exact
solution u(t,z) = 4t + 22 + y2, while accuracy comparable to the previous example
was reached.
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5. SPEED-UP

Spatially one-dimensional IBVP: Let us suppose that values in the points u?,
i=0,1,...,n,, determined by initial condition ¢(x), are computed in advance and
stored in memory. Let’s consider a layer, which is ng + 1 points long (in the spatial
axis) and ¢ points wide (in the time axis).

In general, the number of arithmetical operations for computing one value in the
point uf inside the considered layer and on its border is not the same. It depends
on the computational complexity of the points specified by boundary conditions.

Each processor computes the values in %~ points inside the considered area, which
corresponds in geometrical interpretation to a rotated square block (see Figure 1).

We need five arithmetic operations for computing the values uf, (1=1,2,...,n,1,
k > 0) according to the difference scheme (5).

Each processor, which uses for computing also the boundary conditions, computes
values in % — ¢ points inside the considered layer and in 2 X ¢ points on its border.
In the geometrical interpretation it corresponds to two triangles standing opposite
to each other on both boundaries (left and right) along the time-axis (see Figure 1).
Let us denote the number of arithmetic operations needed for computing the values
in the points uf and u¥ as r(a) and r(3), respectively. The number of arithmetic
operations needed in the sequential case is 5[(ng — 1)q] + [r(a) + 7(8)]g, and in the
parallel case it is max{5¢?; 5§ + 5(% —q) + [r(a) + r(8)]q}-

Now we are able to define the speed-up function f(n,q) as a rate of the number
of the arithmetic operations for computing the considered layer of the values in
(ng+ 1) x ¢ points in the sequential case to the number of arithmetic operations in
parallel. This gives:

5(ng —1)q + [r(a) + r(B)lg
max{5¢*;5(¢q> — 1)q + [r(a) +7(0)]q}

5(ng — 1) + r(a) + r(0)
max{5¢%;5(¢> — 1) +r(a) +r(3)}

If the functions «(t), 5(t) are constant, then r(a) = r(8) = 0 and we can write the
speed-up function in the form:

f(n’Q) =

f(n,q) = 5[("3;2 Da] _ nq; 1

n.

Spatially two-dimensional IBVP: Since all aforementioned considerations for
one-dimensional case hold for two-dimensional case as well, we only briefly describe
obtaining of the speed-up function for this case. As above, suppose that the values
in the points u?j, i=20,1,...,ng, 7 = 0,1,...,n, determined by initial condition
o(z,y), are computed in advance and stored in memory.

Let’s consider a three-dimensional layer of (mg+ 1) x (ng+ 1) points of plane (in
the spatial axes) times g points of height in the time-axis. Each processor computes

2 2
the values in 2 x w points at the main layer and the values in 4 X % points at
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the secondary layer inside the considered area, which corresponds in the geometrical
interpretation to the blocks of types D and B (see Figure 2). We need nine arithmetic
operations for computing the values ufj, t=12....my,—1,j=1,2,...,n, — 1,
k > 0) according to the difference scheme (13). Each processor, which is used for

computing also the boundary conditions, computes the values at least in q(q D _

2 ' i ooa@®+2) g
g~ + q points at the main layer, and in =55 — %4~ points at the secondary layer

inside the considered area, and at most in 2 x (¢% — ¢) points at the main layer and

2 x ‘14—2 points at the secondary area on its border. In the geometrical interpretation
this corresponds to four blocks of type F standing in the corners (see Figure 6), and
2xtwo blocks of type C standing opposite to each other on both boundaries (left
and right, or up and down) — see Figure 5 or Figure 7). Let us denote the number of
arithmetic operations needed for computing the values in the points ulgj, u’fLT o ufo,
ufny as r(«a), r(8), r(v) and r(d). The number of the arithmetic operations needed
in the sequential case is 9(mq — 1)(ng — 1)q + ng[r(a) + r(8)] + mgq[r(y) + r(5)], and
in the parallel case

{q(qQS— D, q(¢* = 1) i +q+4(q(q2+2) _ ﬁ)}

9¢%;9
max{ 7 3 12 4

2 2
+<% _ g + 2%) [r(a) + r(B) +r(v) + 7“<5)]}~

Now we can define the function of the speed-up f(m,n,q) similarly to the one-
dimensional case:

9(mg —1)(ng —1) + mr(a) +r(B)] +nfr(y) +r(6)]
max{9¢% 9(¢* — 2¢ + 1) + (¢ — 3)[r(a) + r(8) +r(7) +r(9)]}

If the functions «(t, y), B(t, y), v(t,x) and 6(¢, ) are constant, then r(a) = r(8) =
r(y) =r(6) = 0 and we can write the speed-up function in the form:

f(m,n,q) = (mq—lq)z(nq—l) ~m X n.

fm,n,q) =

6. CONCLUDING REMARKS

The theoretical estimates showed the significant speed-up of order n in one-dimensional
case and of order m X mn in two-dimensional case, in comparison with the serial im-
plementation of the difference methods (5), (13). Further theoretical estimates and
computational experiments are the subject of the continuing study of the suggested
algorithm.
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