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ON SOME GEOMETRIC CONTROL PROPERTIES
OF ACTIVE SUSPENSIONS SYSTEMS

Domenico Prattichizzo and Paolo Mercorelli

The geometric control properties of vehicles with active suspensions are analyzed. A
special attention is devoted to the problem of disturbance decoupling. Active suspensions of
advanced vehicles allow the active rejection of external disturbances exerted on the sprung
mass of the vehicle and caused by road surface irregularity. We focus on the road irreg-
ularity disturbances with the purpose of isolating the chassis from vibrations transmitted
through suspensions. The paper is aimed at the synthesis of a decoupling control law of
the regulated outputs, i. e., roll, pitch and chassis height, from the external disturbances.
The paper emphasizes that disturbance decoupling can be thought as a structural prop-
erty of road vehicles with active suspensions. The framework throughout is the geometric
approach to the control of dynamic systems. It is shown that a controlled and conditioned
invariant subspace exists such that it allows the geometric disturbance localization. The
decoupling problem with stability and the algebraic feedback of suspension heights, i. e.
the system measurements, are considered. Simulations with real data are included to vali-
date theoretical results. Saturating actuators are also considered in order to model a more
realistic case.

1. INTRODUCTION

The geometric approach to the system theory and control is used to derive some
structural properties of a mechanical system consisting of a vehicle equipped with
active suspensions. This paper mainly focuses on disturbance decoupling properties
of such mechanisms.

Active suspensions are employed in advanced vehicles in order to enhance both
ride comfort and safety. The actuation of suspensions along with proper sensor
systems allows the vehicles controller to actively reject external disturbances. In
most of the conventional cars, rejection of disturbances is obtained by passive de-
vices providing a damping force constraint at all frequencies and generally unable
to attenuate both low and high frequency vibrations. On the contrary, active sus-
pensions are able to change the damping force according to the sensed vibrations
and can improve dynamic performance of the whole system. The control of active
suspensions has been widely investigated in the literature. Hrovat [9] studied the
problem of optimal design of active suspensions by casting it into an equivalent
linear–quadratic (LQG)–optimization problem. H∞ control theory is applied in [8]



550 D. PRATTICHIZZO AND P. MERCORELLI

to control active suspensions in order to reduce yaw, lateral motion and roll in spite
of external disturbances. The problem of estimating suspension parameters was in-
vestigated in [14] and [15] where an adaptive observer and an extended Kalman filter
were implemented in order to identify parameters.

Two different types of disturbances can influence vehicle dynamics. One acts di-
rectly on the sprung mass of the vehicle and can be generated by lateral accelerations,
the other type of disturbances is due to road irregularity and is transmitted through
the suspensions. In this paper we focus on the last type of disturbances and our
purpose is to isolate the chassis from vibrations transmitted through suspensions.
The paper is aimed at the synthesis of a decoupling control law making the regu-
lated outputs, consisting of roll, pitch and chassis height, insensitive to the external
disturbances. Such a type of regulation is referred to as ride heights regulation, see
e. g. [17].

The framework throughout is the geometric approach to the control of dynamic
systems [3, 4, 5, 18, 19]. The geometric aspects of mechanical system dynamics are
strongly emphasized by such an approach. This paper builds upon previous results
by the authors [1, 12, 13]. The main result of this paper states that the regulated
variables (roll, pitch and height of the chassis) can be always decoupled from external
disturbances by means of a state feedback controller. The geometric localization of
unaccessible disturbances is shown to be a structural property of vehicles with active
suspensions.

In most real applications, the state may be not completely accessible for measure-
ments and the performance of an observer based controller might be unsatisfactory.
In this paper we assume that the suspension heights and their time derivatives are
accessible for measurements and analyze the possibility of decoupling disturbance
through an algebraic feedback of these sensed outputs. This part is based on previous
results by the authors [1] which are here specialized for the considered mechanical
system. The problem of disturbance decoupling with constant or static measurement
feedback attracts a large interest in the literature [1, 2, 6, 7, 10]. However, to the
best of our knowledge, the problem has not been completely solved. For instance,
open problems exist for systems which do not enjoy nor left nor right invertibility
properties. See [7] for an exhaustive presentation of the state of the art on this
subject.

Theoretical results are validated by simulations. A realistic case is considered.
In particular we will show how introducing a limit on the power of the actuators we
achieve, despite the strong limit, good performances.

The paper is organized as follows: Section 2 derives dynamic model of the full car
and analyzes the controllability and observability properties. Main results on distur-
bance decoupling without and with stability requirement are discussed in Section 3.
In Section 4 the algebraic output feedback is considered. Finally in Section 5 simu-
lations with real data are reported. The appendix describes the reduced roll/height
model of vehicles with active suspensions.

Throughout the paper the following notation is used for a three-map system
(A,B,E).

kerE is the nullspace of matrix E,
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imB is the column space of matrix B,
max I (A, kerE) is the maximal A-invariant subspace contained in kerE,
min I (A, imB) is the minimal A-invariant subspace containing subspace imB,
V is said (A, imB)–controlled invariant if AV ⊆ imB + V,
maxV (A, imB, kerE) is the maximal (A, imB)–controlled invariant contained

in kerE,
S is said (A, kerE)–conditioned invariant if A(S ∩ kerE) ⊆ S,
minS (A, kerE, imB) is the minimal (A, kerE)–conditioned invariant containing

imB.

To simplify notation, symbol “im ” is usually omitted, therefore the same symbol
may represent a matrix or its column space depending on the context.

2. DYNAMIC MODEL OF THE VEHICLE

The mechanical structures of the vehicle is reported in Figure 1 (front and side view).

Fig. 1. Mechanical models of a vehicle with active suspensions. Front and side view.

The vehicle consists of a rigid chassis and two rigid axes. The sprung mass is linked
with these axes by means of four suspensions and actuators. An independent control
action is exerted at each active suspensions of the vehicle. The controlled vertical
force uj , j = 1, . . . , 4 is generated at the expense of additional energy source such
as compressors or pumps. As the aim of the paper is to analyze the structural
properties of vehicle mechanisms with active suspensions, the actuator dynamics is
not taken into account. Saturating actuators will be considered in Section 5.

Assume that the vehicle is in an equilibrium configuration and that the roll cen-
ters, pitch centers and the gravity centers coincide. Moreover assume that tyres are
always in contact with the road surface.

According to Figure 1, let us introduce some notation for the model of the vehicle:
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θr: variation of the roll angle around the equilibrium;
Ir: moment of inertia of the chassis about the roll axis;
Mb: sprung mass;
z: variation of the height of the Mb center of gravity (CG);
θa1, Ia1: variation angle and inertia of the axis;
z1, Ma1: CG height variation and mass of the axis;
θa2, Ia2: variation angle and inertia of the rear axis;
z2, Ma2: height and mass of the rear axis.
k, β: spring and damping coefficients of suspensions;
kt, βt: visco–elastic parameters of tires;
l: half length of the two axes;
θp, Ip: pitch angle and inertia;
a: half distance between front and rear axes;
dj : independent, unaccessible, external disturbances exerted on the axes

at the jth wheel;
uj : independent control exerted on the axes at the jth wheel.

The set of strictly positive parameters is defined as

P =
{
p | p = (Ir, Ip,Mb, Ia1, Ia2,Ma1,Ma2, a, l, k, β, kt, βt), p ∈ R13, pi > 0

}
. (1)

The model has 7 degrees–of–freedom: the roll (θr), the pitch (θp) angles of the
chassis, the rotations of wheel axes (θa1, θa2) and the vertical displacements of the
sprung mass (z) and of the two axes (z1, z2). Lateral and longitudinal dynamics of
the sprung mass are not considered.

Equality of visco–elastic parameters of the passive suspensions has been assumed,
hence the dynamics of pitch, roll and vertical motions results to be decoupled. Such
an assumption can be easily satisfied by means of a proper compensating control for
the vertical forces ui’s.

Henceforth, linearized approximation of system dynamics is considered to attack
the decoupling problem. This is a reasonable assumption when θr, θp, z, θa1, θa2,
z1 and z2 are small [9] as in the ride heights regulation problem.

Linear approximation of system dynamics around the equilibrium configuration
are obtained as

Chassis dynamics (θr, θp, z):

Ir θ̈r = −4kl2θr − 4βl2θ̇r + 2kl2θa1 + 2βl2θ̇a1 + 2kl2θa2 + 2βl2θ̇a2 + (u2 − u1)l
+ (u4 − u3)l;

Ipθ̈p = −4ka2θp − 4βa2θ̇p − 2kz1a− 2βż1a+ 2kz2a+ 2βż2a+ (u3 − u1)a
+ (u4 − u2)a;

Mbz̈ = −4kz − 4βż + 2kz1 + 2βż1 + 2kz2 + 2βż2 + (u1 + u2 + u3 + u4).
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Axes dynamics (θai, zi):

Ia1θ̈a1 = −2(kt + k)l2θa1 − 2(βt + β)l2θ̇a1 + 2kl2θr + 2βl2θ̇r − (u2 − u1)l − d1l + d2l;

Ia2θ̈a2 = −2(kt + k)l2θa2 − 2(βt + β)l2θ̇a2 + 2kl2θr + 2βl2θ̇r − (u4 − u3)l − d3l + d4l;

Ma1z̈1 = −2(kt + k)z1 − 2(βt + β)ż1 − 2kaθp − 2βaθ̇p + 2kz + 2βż + d1 + d2

− (u1 + u2);

Ma2z̈2 = −2(kt + k)z2 − 2(βt + β)ż2 + 2kaθp + 2βaθ̇p + 2kz + 2βż + d3 + d4

− (u3 + u4).

Sign conventions for forces, motion and other parameters of vehicle dynamics are
defined in Figure 1.

In this paper we are interested in controlling the chassis posture in spite of distur-
bances dj transmitted through the suspensions and generated by road irregularities.
Such a type of regulation will be referred to as ride heights regulation [17] and con-
sists in controlling the roll and pitch angles and the height of the sprung mass CG.
For this regulation problem, the output vector is defined as

e = (θr, θp, z)T . (2)

2.1. State space model

Vehicle dynamics is here described in the state space domain. Let us define the 14–
dimensional state vector x, the 4–dimensional input vector and the 4–dimensional
disturbance vector as

x = (xT
r xT

v )T ; where

{
xr = (θr θa1 θa2 θ̇r θ̇a1 θ̇a2)T ;

xv = (θp z z1 z2 θ̇p ż ż1 ż2)T ;

u = (u1 u2 u3 u4); d = (d1 d2 d3 d4).

Note that roll dynamics has been grouped in vector xr, while vector xv contains
the pitch and vertical dynamics. From the chassis and axes dynamics the state
space model of linearized dynamics around the equilibrium configuration is simply
obtained as {

ẋ = Ax + Bu + Dd
e = Ex (3)

where the state matrix is

A =
[

A11 0(6×8)

0(8×6) A22

]
,

with

A11 =
[

03 I3

M1k M1β

]
; A22 =

[
04 I4

M2k M2β

]
;
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M1k =




−4kl2

Ir

2kl2

Ir

2kl2

Ir

2kl2

Ia1

−2(kt+k)l2

Ia1
0

2kl2

Ia2
0 −2(kt+k)l2

Ia2


 ;

M1β =




−4βl2

Ir

2βl2

Ir

2βl2

Ir

2βl2

Ia1

−2(βt+β)l2

Ia1
0

2βl2

Ia2
0 −2(βt+β)l2

Ia2


 ;

M2k =




−4ka2

Ip
0 −2ka

Ip

2ka
Ip

0 −4k
Mb

2k
Mb

2k
Mb

− 2ka
Ma1

2k
Ma1

−2(kt+k)
Ma1

0
2ka
Ma2

2k
Ma2

0 −2(kt+k)
Ma2


 ;

M2β =




−4βa2

Ip
0 −2βa

Ip

2βa
Ip

0 −4β
Mb

2β
Mb

2β
Mb

− 2βa
Ma1

2β
Ma1

−2(βt+β)
Ma1

0
2βa
Ma2

2β
Ma2

0 −2(βt+β)
Ma2



,

the input matrix is

B =
[

B1

B2

]
;

with

B1 =
[

0(3×4)

B1L

]
; B2 =

[
04

B2L

]
;

B1L =




−l
Ir

l
Ir

−l
Ir

l
Ir

l
Ia1

− l
Ia1

0 0
0 0 l

Ia2
− l

Ia2


 ; B2L =




−a
Ip

−a
Ip

a
Ip

a
Ip

1
Mb

1
Mb

1
Mb

1
Mb−1

Ma1

−1
Ma1

0 0
0 0 −1

Ma2

−1
Ma2


 ,

the disturbance matrix is

D =
[

D1

D2

]
;

with

D1 =
[

0(3×4)

D1L

]
; D2 =

[
04

D2L

]
;

D1L =




0 0 0 0
−l
Ia1

l
Ia1

0 0
0 0 −l

Ia2

l
Ia2


 ; D2L =




0 0 0 0
0 0 0 0
1

Ma1

1
Ma1

0 0
0 0 1

Ma2

1
Ma2


 ,
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and finally the output matrix is

E =
[

E1 E2

]
(4)

with

E1 =
[

1
0(2×1)

0(3×5)

]
, E2 =

[
0(1×2)

I2
0(3×6)

]
.

Controllability and observability properties of dynamic system (3) are analyzed
in the next proposition.

Proposition 1. Dynamic system (A,B,E) in (3) is controllable and observable
almost everywhere over the set of parameters p ∈ P defined in (1).

P r o o f . Because of the structure of matrices A, B and E, after some algebra,
one gets that the maximal A-invariant subspace contained in kerE is zero:

max I (A, kerE) = 0.

In fact its orthogonal complement results

min I (AT ,ET ) =
[

min I (AT
11,E

T
1 ) 0

0 min I (AT
22,E

T
2 )

]

where min I (AT
11,E

T
1 ) = R6 and min I (AT

22,E
T
2 ) = R8, almost everywhere over the

set of parameters P.
As regards controllability, it holds that the minimal A-invariant subspace con-

taining imB results

min I (A,B) =
[

min I (A11,B1) 0
0 min I (A22,B2)

]

with min I (A11,B1) = R6 and min I (A22,B2) = R8. 2

Controllability and observability properties hold for system (3) almost every-
where, that is in the whole set of parameters P less a zero-measure set. For instance,
it can be observed that unobservable modes appear if parameters are such that

Ma1 = Ma2, Ia1 = Ia2,

that is in the special symmetry case where the front and rear axes have the same
inertia and mass.

From a practical point of view, the full characterization of the zero-measure set
where structural properties of Proposition 1 are lost is not worthy of consideration.
Henceforth we assume that

p ∈ P̄ =
{
p ∈ P, min I (A,B) = R14, max I (A, kerE) = 0

}

or, in other terms, that system (3) is controllable and observable.
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3. LOCALIZATION OF DISTURBANCES

According to the state space description of vehicle dynamics derived in Section 2, the
ride heights regulation can be formalized as a problem of unaccessible disturbance
localization [1, 12]:

Problem 1. Given dynamic system (3), determine, if possible, a state feedback
u = Fx such that, for the feedback system starting at zero state, it holds e(t) =
0, t ≥ 0, for all admissible d(·).

Problem 1 is approached in a geometric control framework [3, 18]. A well known
result on unaccessible disturbance localization states that Problem 1 admits solution
if and only if the column space of disturbance matrix D is contained in V∗, the
maximal (A,B)–controlled invariant contained in kerE:

imD ⊆ V∗ := maxV (A,B, kerE). (5)

The following proposition shows that the unaccessible disturbance localization of
regulated output e for dynamic system (3), i. e. the ride heights regulation, is a
structural property of vehicles with active suspensions.

Proposition 2. Refer to the dynamic system in eq. (3) of a vehicle with active
suspensions. Problem 1 always admits a solution, i. e. there always exists a state
feedback gain F which localizes disturbances d(·) in the nullspace of the regulated
output matrix E.

P r o o f . Define subspace J , included in the nullspace of matrix E in (4),

J = imJ; with J =
[

J1 0
0 J2

]
(6)

where

J1 =




0(1×2)

I2
0(3×2)

0(3×2)
0(1×2)

I2


 ; J2 =




02

I2
0(4×2)

0(4×2)
02

I2


 .

The proof will show that

imD ⊆ J (7)
J ⊆ maxV (A,B, kerE). (8)

The proof of inclusion (7) is trivial. As regards condition (8), being imJ ⊆ kerE,
it is sufficient to prove that imJ is controlled invariant:

A J ⊆ J + imB (9)
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that is

im
[

A11J1 0
0 A22J2

]
⊆ im

[
J1 0
0 J2

]
+ im

[
B1

B2

]
.

Now, being

A11J1 =


 0(3×2)

0(1×2)

I2

M23
1k M23

1β




where M23
1k and M23

1β are (3 × 2)-matrices obtained selecting only the 2nd and the
3rd columns of M1k and M1β , respectively and, being

A22J2 =


 0(4×2)

02

I2

M34
2k M34

2β




where (4×2)-matrices M34
2k and M34

2β are built selecting the 3rd and the 4th columns
of matrices M2k and M2β inclusion (9) is proved if there exists two matrices X1 and
X2 such that

A11 imJ1 ⊆ im (J1) + im (B1X1) (10)
A22 imJ2 ⊆ im(J2) + im (B2X2) (11)

and

B2X1 = B1X2 = 0. (12)

Let us start to prove that condition (10), with constraint (12), is satisfied. By
looking at its structure, matrix B1 can be rewritten as

B1 =
[

0(3×4)

[V11,−V11,V13,−V13](3×4)

]
,

where vector V1j is the jth column vector of B1L.
Now, choose

X1 = im




1 0
−1 0
0 1
0 −1


 .

Because of the structure of B2

B2 =
[

0(4×4)

[V21,V21,V23,V23](4×4)

]
,

where vectors V2j are the jth column vectors of B2L, constraint (12) holds.
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To verify condition (10), simply compute

im




0(1×2)

I2
0(3×2)

0(3×2)
0(1×2)

I2


 + im




[
0(3×4)

[V11,−V11,V12,−V12](3×4)

]



1 0
−1 0
0 1
0 −1







= im




0(1×2)

I2
0(3×2)

0(3×2)
0(1×2)

I2


 + im




0
0
0
−2l
Ir
2l

Ia1

0

0
0
0
−2l
Ir

0
2l
Ir2




= im




0(1×2)

I2
0(3×3)

0(3×2) I3




which certainly includes

A11J1 = im


 0(3×2)

0(1×2)

I2

M23
1k M23

1β


 .

Finally, it is an easy matter to verify that conditions (11) under constraint (12) is
satisfied by

X2 = im




1 0
1 0
0 1
0 1


 . 2

The following property is central to the analysis of disturbance decoupling with
stability addressed in the next section.

Proposition 3. Refer to dynamic system in (3), for subspace J defined in (6) it
holds

J = maxV (A,B, kerE),

the maximal (A,B) controlled invariant contained in kerE.

P r o o f . Since, for a triple (A,B,E) it holds [3] that

maxV (A,B, kerE) =
(
minS (AT ,ET , kerBT )

)⊥

and being
J ⊆ maxV (A,B, kerE) and dimJ = 8, (13)

it is sufficient to prove that

dim minS (AT ,ET , kerBT ) = 6.
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After some algebra, we obtain

minS (AT ,ET , kerBT )

=




0 0 0 1 −1/2 Ir
Ia1

−1/2 Ir
Ia2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 −1/2 Mb
Ma1

−1/2 Mb
Ma2

0 0 0 0 0 0 0 0 0 0 1 0 1/2
Ip

aMa1
1/2

Ip

aMa2
1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0




T

which is full column rank. 2

3.1. Disturbance localization with stability

For the localization problem to be technically sound, it must be required that the
state feedback, other than localizing disturbances in the nullspace of the output
matrix, strictly stabilizes the whole system.

The disturbance localization problem with stability is formalized in the following
statement.

Problem 2. Given dynamic system (3), determine, if possible, a static state feed-
back u = Fx which solves Problem 1 and is such that the dynamic matrix of the
feedback system A + BF results asymptotically stable.

From [3], Problem 2 is solvable if and only if an (A,B)–controlled invariant V
exists such that it solves Problem 1 and is internally and externally stabilizable.

The following proposition shows that the ride heights regulation problem (Prob-
lem 2) for vehicles equipped with active suspensions is solvable.

Proposition 4. Refer to system (3), the (A,B)–controlled invariant J defined in
(6) and solving Problem 1 is internally and externally stabilizable. Thus, J solves
Problem 2.

P r o o f . The external stabilizability of J comes directly from the stabilizability
of dynamic system (3), cf. Proposition 1.

For the internal stabilizability let us recall that a controlled invariant is internal
stabilizable if and only if all its internal unassignable eigenvalues belongs to the left
half complex plane, cf. [3]. Being triple (A,B,E) in (3) observable and controllable
the internal unassignable eigenvalues of J = maxV (A,B, kerE) correspond to the
transmission zeros of dynamic system (3) which can be computed as those z ∈ C
whereby the system matrix, first introduced in [16],

R(z) =
[
zI−A B

E 0

]

looses rank.
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System matrix R(z) is a (17 × 18) matrix and determinants of its 18 minors of
order 17 annihilate for

z = 1/2−2βt±2
√

β2
t−2ktMa1

Ma1

z = 1/2−2βt±2
√

β2
t−2ktMa2

Ma2
.

(14)

which are the transmission zeros of (A,B,E).
Being βt, kt, Ma1 and Ma2 positive parameters, unaccessible invariant zeros be-

long to the strict left half plane of C and the proof ends. 2

Algorithms for computing the state feedback matrix solving Problem 2 are dis-
cussed in [3].

4. ALGEBRAIC OUTPUT FEEDBACK

In most real applications, the state is not completely accessible for measurements and
the performance of an observer based controller might be unsatisfactory. From an
engineering point of view, the localization of disturbance through algebraic feedback
of the sensed outputs is very appealing.

The problem of disturbance decoupling with constant or static measurement feed-
back has always attracted large interest in the control community also recently
[1, 2, 6, 7, 10]. However, to the best of our knowledge, the problem has not been
completely solved. For instance, open problems exists for systems which do not en-
joy nor left nor right invertibility properties. For a presentation of the state of the
art on this subject, the reader is referred to [7].

In this section, the disturbance decoupling problem by algebraic measurement
feedback is analyzed for the ride heights regulation of vehicles with active suspen-
sions. Let suspension heights and their time derivatives be accessible for measure-
ments. The output vector is defined as

y =
[
yT

h , ẏ
T
h

]T
(15)

with

yh =




(z − θrl − θpa)− (z1 − θa1l)
(z + θrl − θpa)− (z1 + θa1l)
(z − θrl + θpa)− (z2 − θa2l)
(z + θrl + θpa)− (z2 + θa2l)


 . (16)

and in state space
y = Cx (17)

where

C =
[

CH 0(4×3)

0(4×3) CH

CL 04

04 CL

]
(18)
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and

CH =




−l l 0
l −l 0
−l 0 l
l 0 −l


 ; CL =




−a 1 −1 0
−a 1 −1 0
a 1 0 −1
a 1 0 −1


 .

The problem of localizing disturbances by means of an algebraic output feedback is
stated as follows.

Problem 3. Given dynamic system (3) with sensed output y (15), determine, if
possible, a static state feedback u = Ky such that, for the feedback system starting
at zero state, it holds

e(t) = 0, t ≥ 0, for all admissible d(·).

The following theorem proved in [3] is basic to solve Problem 3.

Theorem 1. Refer to a general triple (A,B,C). There exists a matrix K such
that a given subspace V is an (A + BKC)-invariant if and only if V is both an
(A,B)–controlled and an (A, kerC)–conditioned invariant.

From Problem 3, it is an easy matter to show that Problem 3 is solvable if and
only if there exists a subspace V so that, cf. [1]

i) imD ⊆ V ⊆ kerE;

ii) V is an (A,B)− controlled invariant;

iii) V is an (A, kerC)− conditioned invariant.

(19)

Starting from conditions (19), the solvability of disturbance decoupling by mea-
surement outputs is proved for the active suspension system.

Proposition 5. Consider vehicle dynamics in (3) with measurement equation
y = Cx (17). There always exists a feedback gain K from y to u which local-
izes disturbances d(·) in the nullspace of the regulated output e = (θr, θp, z).

P r o o f . Since subspace J in (6), satisfies condition i) and ii) in (19), it is suffi-
cient to show that resolvent J , is an (A, kerC) conditioned invariant. Simply verify
that

J ∩ kerC = 0 (20)

in fact being

CJ =
[

CH1 04 CL1 04

04 CH1 04 CL1

]

with

CH1 =




l 0
−l 0
0 l
0 −l


 ; CL1 =




−1 0
−1 0
0 −1
0 −1


 ,
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it ensues that rank(CJ) = rank(J) = 8. and the proof ends. 2

4.1. Algebraic output feedback with stability for roll/height dynamics

In [1], authors analyzed in a geometric framework the problem of disturbance de-
coupling using algebraic output feedback without and with stability requirement.
Although the necessary and sufficient conditions for the structural problem without
stability are constructive and easily checkable, unfortunately, for the problem with
stability, conditions are not constructive anymore and solutions must be find case
by case. They must be searched among the output-to-input matrices solving the
structural problem without stability.

Consider a general five-map system (A,B,C,D,E):




ẋ = Ax+Bu+Dd
y = Cx
e = Ex,

(21)

in [1] authors derived conditions to solve the disturbance decoupling problem by
static output feedback with stability under the hypothesis that triple (A,B,E) is
left invertible or triple (A,B,C) is right invertible. Unfortunately the mechanical
model of vehicles with active suspensions described in Section 2 is nor left nor right
invertible.

However, in the appendix it is proven that the simplified roll/height model of vehi-
cles with active suspensions enjoys the left invertibility property for triple (A,B,E),
see Proposition 6 in the appendix. In such cases we can apply results of [1] which
are here reported for completeness.

In order to present next theorem, some further notation must be introduced. De-
fine lattice φ((imB+imD), kerE) as the lattice of all (A, (imB+imD))–controlled
invariants self bounded with respect to kerE:

φ((imB + imD), kerE)
:= {V | AV ⊆ V + imB + imD; V ⊆ kerE; V̄∗ ∩ (imB + imD) ⊆ V}

whose supremum and infimum are given by

V̄∗ := maxV (A, imB + imD, kerE) (22)
V̄m := V̄∗ ∩ minS (A, kerE, imB + imD) (23)

respectively. Moreover, define lattice ψ((kerC ∩ kerE), imD) as the lattice of all
(A, (kerC ∩ kerE))-conditioned invariants self hidden with respect to imD:

ψ((kerC ∩ kerE), imD)
:= {S | A(S ∩ kerC ∩ kerE) ⊆ S, imD ⊆ S, S ⊆ S̄∗ + (kerC ∩ kerE)}

whose supremum and infimum are given by, respectively

S̄∗ := minS (A, (kerC ∩ kerE), imD) (24)
S̄M := S̄∗ + maxV (A, imD, (kerC ∩ kerE)). (25)
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Note that all the above subspaces can be easily determined through the standard
geometric approach algorithms.

The following theorem, proved in [1], holds.

Theorem 2. Consider the general five-map system (21). Under the assumption of
left invertibility for triple (A,B,E) and stabilizability for couple (A,B), an algebraic
feedback matrixK of measurements y (u = KCy) solving the disturbance decoupling
problem with stability exists if and only if

i) V̄m is an (A, kerC)-conditioned invariant

ii) subspace V̄M := V̄m + S̄M is internally stabilizable

iii) ∃F | (A+BF )V̄M ⊆ V̄M , (A+BF )X/V̄M
is stable , kerC ⊆ imF

This Theorem, directly apply to the ride heights regulation problem for the re-
duced roll/height model of vehicles with active suspensions derived in the appendix.
Note that conditions i and ii refer to the problem without the stability requirement
and are constructive and easily checkable while condition iii is not constructive.

Moreover, if the structural part (conditions i and ii) of the decoupling problem
with static output feedback have only one solution, we have no freedom on choosing
matrix K and condition iii is easily checkable. Otherwise, in a general decoupling
problem, it may be possible to choose sensed output such that condition iii of
Theorem 2 is satisfied, in particular the condition kerC ⊆ imF . This condition can
always be guaranteed by using more independent sensor systems, the trivial solution
is when all the state space is sensed and thus kerC = 0.

5. SIMULATIONS

A realistic simulation of a road vehicle with active suspensions is reported. The
parameters of the vehicle geometry and dynamics are reported in Table 1 and have
been taken by the work of Peng and Tomizuka, [11].

Table 1. Parameters of vehicle geometry and dynamics;
spring and damping coefficients of tires and suspensions.

l 0.9 m a 2 m

Mb 1500 kg Ir 360 kg m2

Ip 2300 kg m2 Ma1 40 kg

Ma2 40 kg Ia1 10.8 Kg m2

Ia2 10.8 Kg m2 K 18E4 N/m

β 1E3 Ns/m Kt 1.96E5 N/m

βt 1.92E3 Ns/m

Consider the full car dynamics in eq. (3) with measurements y (15). From
Proposition 4, a state feedback exists that solves the ride heights regulation problem.
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By using standard algorithms of the geometric approach [3], the state feedback gain
is computed as

F = −103

[
160, −250, 88, −4, −1.7, 0.77, −440, 880, 190, 10, −30, 43, 1, −56

−240, 250, −88, 13, 1.7, −0.77, −520, 950, 190, 10, −32, 44, 1, −56
−95, 88, −250, −7, 0.77, −1.7, 770, 1300, 10, 190, 36, 49, −56, 1
−170, −88, 250, 10, −0.77, 1.7, 700, 1300, 10, 190, 34, 50, −56, 1

]
.

It localizes disturbances d in the nullspace of the regulated output e = (θr, θp, z).
Geometrically, feedback gain F, makes the resolvent J (6) invariant and asymptot-
ically stabilizes the closed loop system.

In what follows the influence of external disturbances, due to road surface irreg-
ularities, is simulated for the full car model with and without the state feedback
u = Fx.

Suppose that the vehicle has a constant speed of 60 km/h and that the variation
of the road surface profile occurs every 16 m on the right side of the car (d1 6= 0; d3 6=
0; d2 = d4 = 0). Assuming that the front and rear wheels pass the same path, i. e.,
d1 = d(t) and d3 = d(t − Tc) with Tc = 0.24 s (first plot in Figure 2), a ride of 10
seconds has been simulated with and without the decoupling feedback

Fig. 2. Disturb, roll, pitch angles and vehicle height for a ride of 10 seconds during

which the disturbance d1 and d3 are exerted on the vehicle. Both outputs for systems

with and without disturbance decoupling are reported. Signals identically zero refer to

the vehicle with the decoupling feedback.

The last three plots in Figure 2 refer to the regulated outputs, roll, pitch angles
and vehicle height. The outputs are those relative to both system with and without
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decoupling. As it is expected, variations of roll and pitch angles and of the vehicle
height, due to disturbance d, disappear when the disturbance decoupling gain is fed
back. The plots in Figure 5. illustrate the behaviour of signals performed by active
suspensions and commanded by the disturbance decoupling controller.

The first three plots in Figure 3 report the behaviour of the regulated outputs
roll, pitch angles and vehicle height for the decoupled system when an actuator
with saturation level at 1200 N is adopted [14]. The control signal is reported as a
function of time in Figure 3. It results that the perfect disturbance decoupling cannot
be achieved because of saturation of actuators. But, even in presence of a strong
saturation, a considerable reduction of the disturbance is obtained, in particular the
energy of the disturbance is strongly reduced.

Fig. 3. Active suspensions control outputs.

As regards the reduced model for the roll/height dynamics of the vehicle in eq.
(30) with sensed outputs (33), the ride heights regulation problem is solved by means
of the output feedback gain

K = 104

[
9.5 0.5 0.1056 0.0056
0.5 9.5 0.0056 0.1056

]
,

which localizes disturbances d in the nullspace of the regulated output e = (θr, z).
Geometrically, the output feedback gain K, makes the resolvent J (32) invariant in
(A + BKC).

The stability requirement can be met manipulating the stabilizing state feedback
matrix according to the third condition of Theorem 2.

Fig. 4. Roll, pitch angles and vehicle height active suspension control behaviour for

disturbance decoupling acting through actuators with saturation level at 1200 N.

6. CONCLUSIONS

This work shows how the geometric approach to the system and control theory can be
applied to a class of mechanical systems. Geometric control tools, like the well known
conditioned and controlled invariants, allow to emphasize some control properties,
like disturbance decoupling, that, because of the generality of the approach, can be
viewed as structural properties of the whole system.

The mechanical problem studied, consists in decoupling external disturbances
in vehicles with active suspensions. The problem of ride heights regulation was
considered. The main result of the paper states that there always exists an algebraic
feedback able to decouple external disturbances transmitted through suspensions.
The aim of this paper is to emphasize that such a decoupling property is a structural
property of road vehicles with active suspensions.

The problem of controlling vehicles equipped with active suspensions has been
formalized as a decoupling problem and solved in a geometric framework, thus guar-
anteeing an easy derivation of structural properties as, controllability, observability,
left invertibility and decoupling.
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The problem of decoupling disturbances through algebraic feedback of sensed
outputs was also investigated. In practical applications, the solution of the distur-
bance decoupling problem through algebraic output feedback strongly simplifies the
structure of the control systems and enhances the whole system robustness.

A case study with a realistic simulation has been reported and some aspects of
control implementation were discussed. For instance, it has been shown that, even
though a saturation at 1200 N of the active suspensions’ actuators is present, a
considerable disturbance decoupling action is obtained. Work is in progress on the
synthesis of the disturbance decoupling control law taking into account different
actuators’ dynamics other than the saturation level.

Finally, let us remark that the aim of this paper consists in enlightening some
structural properties of vehicles with active suspensions more than synthesizing dif-
ferent algorithms taking into account various kinds of available actuators’ dynamics.

APPENDIX

This Appendix analyzes the roll/height dynamics of the chassis of the vehicle. Nota-
tion refers to Figure 1–a). The system dynamics in the state space and its properties
are analyzed.

For the roll/height dynamics of the chassis, the controlled output vector reduces
to

e = (θr, z)T . (26)

The 8–dimensional state vector, the 2–dimensional input and disturbance vectors
are

x = (xT
r xT

v )T ; (27)
xr = (θr θa1 θ̇r θ̇a1)T ;
xv = (z z1 ż ż1)T ;
u = (u1 u2)T ; (28)
d = (d1 d2)T (29)

and the state space linearized dynamics around the equilibrium configuration is given
by {

ẋ = Ax + Bu + Dd;

e = Ex,
(30)

where the state matrix is

A =
[

A11 04

04 A22

]
,

with

A11 =
[

02 I2

M1k M1β

]
; A22 =

[
02 I2

M2k M2β

]

M1k =

[
−2kl2

Ir

2kl2

Ir

2kl2

Ia1

−2(kt+k)l2

Ia1

]
; M1β =

[
−2βl2

Ir

2βl2

Ir
2βl2

Ia1

−2(βt+β)l2

Ia1

]
;
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M2k =

[ −2k
Mb

2k
Mb

2k
Ma1

−2(kt+k)
Ma1

]
; M2β =

[ −2β
Mb

2β
Mb

2β
Ma1

−2(βt+β)
Ma1

]
,

the input matrix is

B =
[

B1

B2

]
;

with

B1 =
[

02

B1L

]
; B2 =

[
02

B2L

]
;

B1L =
[ −l

Ir

l
Ir

l
Ia1

− l
Ia1

]
; B2L =

[ 1
Mb

1
Mb−1

Ma1

−1
Ma1

]
,

the disturbance matrix is

D =
[

D1

D2

]
;

with

D1 =
[

02

D1L

]
; D2 =

[
02

D2L

]
;

D1L =
[

0 0
−l
Ia1

l
Ia1

]
; D2L =

[
0 0
1

Ma1

1
Ma1

]
,

and finally the output matrix of e in (26) is

E =
[

1
0 0(2×3)

0
1 0(2×3)

]
. (31)

For this simplified model, the controlled invariant J solving Problem 1 is given by
the column space of

J =
[

J1 0
0 J2

]
; J1 = J2 =




0
1 0(2×1)

0(2×1)
0
1


 . (32)

It can be shown that J = maxV (A,B, kerE) and that all the unassignable
eigenvalues of J are in the strict left half plane. Moreover system (A,B,E) is
controllable and observable almost everywhere and therefore, J is the resolvent
subspace also for the disturbance decoupling problem with stability (Proposition 4).

As regard the algebraic output feedback, measured outputs are for the simplified
model

y =
[
yT

h , ẏ
T
h

]T
with yh =

[
(z − θrl)− (z1 − θa1l)
(z + θrl)− (z1 + θa1l)

]
. (33)

The next proposition proves the left invertibility of triple (A,B,E) and allows to
apply Theorem 2 to the simplified vehicle dynamics.
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Proposition 6. The roll/height dynamics of a vehicle with active suspensions
described in (30) is left invertible.

P r o o f . Recall that a necessary and sufficient condition for a system to be left
invertible with respect to input u is that

maxV (A,B, kerE) ∩ imB = ∅. (34)

Equation (34) is easy to prove:



0
1 0(2×1)

0(2×1)
0
1

0(4×2)

0(4×2)

0
1 0(2×1)

0(2×1)
0
1




∩




0 0
0 0
−l
Ir

l
Ir

l
Ia1

−l
Ia1

0 0
0 0
l

Mb

l
Mb−1

Ma1

−1
Ma1




= ∅.

2

(Received February 2, 2000.)
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