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THE LEAST TRIMMED SQUARES
Part II: /n-consistency

JAN AMos VIiSEK

\/n-consistency of the least trimmed squares estimator is proved under general conditions.

The proof is based on deriving the asymptotic linearity of normal equations.

Keywords: robust regression, the least trimmed squares, \/n-consistency, asymptotic nor-
mality

AMS Subject Classification: 62J05, 62F35, 62F12

INTRODUCTION AND NOTATIONS

The paper is a continuation of [4]. That is why only brief introduction of notations
will be given. For discussion of the definitions and assumptions see Part I.

Let N denote the set of all positive integers, R the real line and RP the p-
dimensional Euclidean space. Moreover, for any set A let A° denote the interior of
the set (in the topology implied by Euclidean metric). We shall consider for any
n € N the linear regression model

Yi=a]3"+e, i=1,2,...,n (1)

where Y; and z; = (21, %, ... ,xip)T are values of response and of explanatory
variables for the ith case, respectively. 4° is the vector of regression coefficients and
e; represents random fluctuation (disturbance) of Y; from the mean value EY;. (To
be complete, let us add that of course z} 8 = Z?Zl xii055.)

Throughout the paper we shall assume that the random variables are defined on
a basic probability space (€2, A, P) (other assumptions are given below).

Let us recall that we made (in Part I) one exception from the commonly used
notation. Since in what follows we shall use for the description of sets somewhat
complicated expressions containing moreover indices, we shall write (in many cases)
I {property describing the set A} instead of traditional notation Iy, operty descriving

the set A}-

In what follows the definition of the least trimmed squares will be considered in

the form:
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Definition 1. For a compact set K such that the vector of the true regression
coefficients 3° € K° the estimator given as

h

BUTSnh) aré;eﬁin Zr@.)(g) (2)
=1

will be called the least trimmed squares (LTS).

It is clear that for given 7 the squared residual appears in the sum on the right
hand side of (2) iff 7(8) < r{,,)(8), so that we can write equivalently

BATSmR) - _ argmin Zr { )<7’(h)(ﬂ)} (3)

BeEK

arg min Z s — ) B)? { S (8) < ()(5)}-

geK

Now, denote G(z) the distribution function of €3. For any « € (0,1), u2 will be the
upper a-quantile of G(z), i.e

P2 >u2)=1-Gu2)=a. (4)
Further, denote by [a]int the integer part of a and for any n € N put
hn = [(1 = @)n]ing. ()

Moreover, for any a,b € R we shall denote (a,b)orq = (min{a, b}, max{a,b}) and the
same will be used for the closed intervals. Finally, put @, = %ZZ;I z;x¥ and for
an arbitrary a € (0,1) Qn(a) = 237wl T{r?(8°) <u2}.

Prior to continuing the discussion on the least trimmed squares it is useful to give
the assumptions which will be used in the most assertions.

Assumptions A

The sequences {z;}2, (z; € RP) is a fix sequence of nonrandom vectors from RP.
Further, the sequence {e;}32, (e; € R) is a sequence of independent and identically
distributed random variables. The distribution function F(z) of random fluctuation
e1 is symmetric and absolutely continuous with a bounded density f(z) which is
strictly decreasing on RT. The density is positive on (—oo,0) and has bounded in
absolute value the first and the second derivative. The second derivative is further
Lipschitz of the first order. Moreover,

Z |z:[|* = O(n) and Ee] = k4 € (0,00). (6)
Finally,

n—oo
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where Q is a regular matriz (and convergence is of course assumed coordinatewise).

Alternatively to the Assumptions A, we shall use Assumptions B (the reasons for
it were given in Part I).

Assumptions B

The sequences {z;}2, (z; € RP) is a fix sequence of nonrandom vectors from RP.
Moreover, (7) holds for some regular matriz Q. Further for any n € N

1 B 1l = OQ). ®)

The sequence {e;}2, (e; € R) is a sequence of independent and identically distributed
random variables with absolutely continuous symmetric distribution function F(z).
There is a neighbourhood of u, in which the distribution F'(z) has a bounded density
f(2) which is positive and has bounded in absolute value the first and the second
derivative. The second derivative is further Lipschitz of the first order. Moreover,
the density f(z) is strictly decreasing on R and Eet = k4 € (0, 00).

We have proved (in Part I) that

FLISn) — argmin Y42 () ©)

P
peER” 4

can be found among solutions of

n

> |Vi=aTBye - 1{r2®) <y @)}] =0, (10)

i=1

i.e. that at the point given as the solution of the extremal problem (9) the relation
(10) holds. Notice please that whenever we prove that the estimator given by (2) is
consistent (i.e. exists and converges in probability to 4°), it also solves (10).

Assumptions C

There are distribution functions H(ﬁ)(t),t € R,0 € RP such that for any compact
set W C RP

sup sup 1 I{z] (8- p% <t} - HP) (t)| = O(n~2). (11)

BEWtER | TV 4T

Remark 1. Recently it was found that when X;’s are i.i.d. the first supremum in
(11) can be taken over RP, see [5].
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/n-CONSISTENCY OF THE LEAST TRIMMED SQUARES

Lemma 1. Let a € (07 %) and let Assumptions A4 or B and C be fulfilled. Then
for any ¢ > 0 and A > 0 there are § = dao > 0 and na,. € N such that for all
n>NAe

"0 (8) — ug

P sup <Al >1-e¢
BEB(B,0)

Proof. Let us fix e > 0 and A > 0. Employing Lemma 1 of Part I we can find
a constant K(2) < 0o and n(!) € N so that for any n > n(!) we have

P <sup "0 (B) = ui(ﬁ)}\ < n-éK@) >1-e (12)

BeK

Let us find na . > n® such that for all n > na . we have n=2 K(¢) < 1A. In the

proof of Lemma 2 of Part I we have shown that there is a § € (0,1) so that for all
B,6 € RP, ||B— | <6 we have

ta(B) = ua(B)| < K - 18 BII%.

Utilizing it for 3 = 3°, we can find § > 0 so that for any 18— B°| < & we have

1
|ua(ﬁ) — ua(ﬁ0)| < §A. (13)
Taking into account that u,(8°) = u, and (12) together with (13), we conclude the
proof. O

Assertion 1. Let {e;}2, (e; € R) be a sequence of independent and identically
distributed random variables with absolutely continuous distribution function F'(z).
Then for any n € N and any ¢ = 1,2,...,n we have

PO = 7 ) (7)) = =

Proof. The proof can be found in [1]. Since it is not easy available, let us give it
(moreover, it’s short). First of all, let us recall that for any ¢ # 4, i, j = 1,2,...,n
and n e N

P(r} (%) = r}(6%) = 0.
Due to the fact that the random variables e;’s are i.i.d., we have for all pairs i, j =
1,2,...,n
P(ri(8°) = 1y, (8%) = P(r}(6°) = 13, (5°))

n

D P(B%) =1, (89) = 1.
i=1
That concludes the proof. O

and
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Remark 2. The previous assertion shows that under the assumption that the
sequence {e;}$°, is i.i.d., for any n € N the probability space 2 can be decomposed
onn equlprobable sets such that for each of them it holds that on it the hth order
statistic among e?, €2, ..., e2 is represented by the square of one fix random variable,
say 62 for some ig € {1,2,...,n}. It is clear that h — 1 of the other n — 1 random
varlables have to be smaller than e? and n — h larger than it. Hence these n —1

random variables are not even conditionally independent, if the condition is e%h) =
e? . Nevertheless we may prove following:

Lemma 2. Let {e;}°, (e; € R) be a sequence of independent and identically
distributed random variables with absolutely continuous distribution function F'(z).
Then for any n € N, any ig € {1,2,...,n} and any h — 1 tuple selected from

the indices {1,2,...,i0 — 1,70 + 1,...,n} the random variables ey, ez,...,€;5—1,
€ip+1,- - -s€n are conditionally independent on the set on which efo = e%h) and
e? < e%h) for i € {i1,ia,..., ip—1} while e7 > e%h) for i ¢ {ig, 41,92, . 0n—1}-

Moreover the conditional density of each random variable (except of e;,) is propor-
tional to f(z) and the rest of the corresponding formula may be bounded by the
same constant over the whole space €.

Proof. As we have already said, due to the previous assertion for any n € N
the probability space €2 can be decomposed on n equiprobable sets, on each of them
the hth order statistic among e?,€3,...,¢e2, (h € {1,2,...,n}) is represented by the
square of one e;’s, say efo for some iy € {1,2,...,n}. Notice that none of the other
n —1 e;’s (i # ig) has a special position among the others, except of the fact that
h — 1 of them are smaller than e2h while the others are larger. So, let us select

h — 1-tuple of indices, say i1, i2,...,i,_1 of those random variables, squares of which
will be assumed to be smaller than (:’2 ,i.e. 62 2 for 7=1,2,...,h—1. By this
selection we give also the set of 1nd1ces SAY Tht1y-- -, in fOT Wthh e(h < e?. Now,

formally the conditional density is the same for all p0551b111t1es of selection of h—1
tuples of r.v.’s. So, the probability space may be decomposed into the sets so that
each of them is characterized by

2 52
® €M) = %o

e for the indices i1,49,...,95_1 e?j < e?h) while for other indices e%h) < e?j.

Of course, i is successively 1,2, ..., n and the h—1-tuple i1, i2, . .., ip—1 runs through
all (h7—L1) possibilities. (It is easy to see that we have n - (hfl) of such sets.) Let us
call this partition S. Now, the conditional density of e, €3, ... ,e%o_l, e?ﬁh el
under the condition given by the set Sy (say) from the partition S, is evidently
proportional to

Z; Z for max z; < e and €%, < min =z 14
Hf J kl}_[+1f k) 1<j<ho1 4 " () S pii<h<n F (14)
1

and equal to 0 otherwise. Since the integral of the conditional density over the set Sy
is equal 1, we can even find the constant by which we need to multiply (14) to obtain
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the joint conditional density of e?,e2,. .. ,612071, 3120+1» ...,€2. Since the situation is
fully symmetric in all indices, the conditional density is formally the same on all
elements of the partition S. It implies that the conditional density can be bounded
by the same constant over the whole (). O

Remark 3. The most important result of the previous lemma is that the condi-
tional density can be bounded by the same constant over the whole space Q2. Of
course, this constant depends on n. Nevertheless, if we look for a probability that
e? falls into an interval, we can evaluate this probability as conditional one over all
sets of division S, except of one on which ef = e%h). The unconditional probability
(or its upper bound) is then given as the mean value over all these sets. Since the
probability of the event {e? = e%h)} is %, we conclude that the probability in ques-
tion is proportional to the (upper bound of) density and the length of the respective
interval. Moreover, due to the fact that we take mean value over all sets of the divi-
sion S, in this case the corresponding constant (of proportionality) does not depend
on n € N. That is why, at some points of the proofs in the text which follows, we
shall consider the conditional probabilities of some events under the condition that:

* €l =
o max{e},e},,....e} _ } <ef
and
° mln{ez}ﬂ, el > e(h)
Let us denote this condition C(ig, 41,42, -.,ih—1)-

Theorem 1. Let a € (07 %) and let Assumptions A or B and C hold. Further, let
KC be a compact subset of RP, 3° € K°. Then BILTS,mh) g n-consistent, i. e.

Vi (BTSN 50) = 0,(1) as n - ox.

Proof. Let us recall that

BETS.mh) — argmin p(g)
Bek

where
n

(= aT8)2 - 1{r2(8) < v3,(8)}] -
i=1

Since we already know that B(LTS’mh), independently of K is consistent, we may

restrict ourselves in the rest of proof, say, on X = B(3°,1) and on a corresponding
subset (say O;) of the space © (such that for any w € Oy TSR ¢ B(3% 1); of
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course, it means simultaneously that we restrict ourselves, without recalling it, on
n which are larger than some n1). We have shown in Part I that

() _ _2§: (il 1{r20) <y ®)] e ()

(see (19) of [4]) and so we may write!

w‘ . W\
aﬁ B=p(LTS,n,h) 85 £B=30

= _gi[( Tﬁ(LTth))x I{ 2(4IUTS R)Y < %)(B(LTS,n,h))}
=1

(¥ = T8 - 1{r2(8%) <0y (80} (16)

Including into (16)

+ i( LTth)) { (50)§ (50)}

1=1

and taking into account once again (15) together with the fact that B =
o B=B(LTS,n,h)
2
LA very first idea can be to find the second derivative 585%(5% = 237" ]
I{ (h) )} (along the same lines as it was done for the first derivative in Part I) and

then to use the Mean Value Theorem, see e.g. Hewitt and Stromberg [2]. Unfortunately, the
Assertion 1 of Part I indicates that the sets on which the hth order statistic among the squared dis-
turbances is represented by the square of one given random variable have “radiuses” approximately
of order L. In other words, as follows from the considerations which led to the formula for the

derivative in Part I, the discontinuities of the first (as well as the second) derivative have distance
~ 1
of order % On the other hand we may expect that (at the best) HB(LTS’”’h) - BOH =0(n"2), s0

that we have to conclude: For this purpose the second derivative is not continuous.
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= 0 we arrive at

% z": (0= ol e H{r28%) < o ()}
= % ZmT (BTsmm — g) 1{r2(8) < ) (8}

_\}ﬁ;( Tﬁ(LTth)) [ { ﬂ(LTth)
2 (B(LTS,n,h))} - I{rf(ﬂ ) <7y (8 H

= fZacx I{e <ua}] ((LTS”h) 60)

IN

+£ szx? [I{e? < e%h)} —I{e? < Ui}} Jn <B(LTS,n,h) _ ﬁo)

4= sz [ { (BTSSR < %h)(ﬁ(LTSm,h))}

_I{Tz’ (8°) <1y (50)}] -Vn (B(LTS’n’h) - 60)

_% Zz:; €i%; [I{TE(B(LTS,n,h)) <r 2 (ﬁ (LTS,n, h))}

{2 <o)} )

We shall study terms of (17) one by one. Let us start with that on the left hand
side. It can be written as (remember that r?(3°) = €?)

O CERCCREN B EE) S

+% ; [eixi . I{e? < ui}] .
Evidently
I{e?ﬁe%h)}—f{efgui}zl & ud<e? <e(h) (19)
and
I{e? < e%h)} —Hef<ul}=-1 & e%h) <el<ul. (20)
Prior to continuing in proof, let us denote by C(ig,41,%2,...,in—1,2) the condi-

tion under which C(ig,1,42,..., in—1) holds (see Remark 3) and ,/e%h) =z€R

(and for the sake of space and simplicity of notations let us write C(z) instead of
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C(i0,%1,%2,...,%n—1,2)). Then Lemma 1 of Part I implies that for any v € (0,1)
there is n, € N and a constant K') < 0o so that for all n > n, there is a set A4,, so
that P(4,) > 1 —v and for any w € A,

‘e?h) - ui‘ <n iKW

so that whenever (19) and (20) hold, then for all n > n, and any w € A, also for
some finite K () )
lles] — ual < n 2 K@, (21)

Lemma 2 then guarantee that there are K) < oo and K*) < oo such that

P ({f\/% <e < fua} N An\C(z)) =P ({ua <e < e%h)} ﬂAn|C(z))

= K® . f(ug) (2 — ug) + ¢V (22)
as well as
P ({—ua <e < — e%h)} N An\C(z)) =P ({, /e%h) <e < ua} ﬂAn|C(z)>
=K@ f(ua) (e — 2) + ¢V (23)
where ‘
P <n K@) =12 (24)

(Let us recall that, as follows from Lemma 2, K ) as well as K4 are the same for
all i = 1,2,...,n and z € R.) But (21), (22), (23) and (24) immediately implies

that
E {ei [I{e? < e%h)} —I{e} < “i}} 'I{An}}

_ [_ua —n3% .K(2>} . {K(z’)) fua) (g —2) — L K(4>}

_ [ua _pt 'K(z)} . [K(?)) fua) (ua — 2) — 0! .K<4>]}

where the subscript C(z) indicates that the mean value is taken over the condition
C(z). In this case it means that we should take into account all possible values

of z = 1/6?}0 (see Lemma 2). Of course, due to the presence of I{A,} in the

expression the values of z are restricted on {—uq—n"2 K@, —uqg+n" 2 K@} Ufu, —
n*%K(Q), Ug +n*%K(2)}. In the same way we can find the lower bound for the mean
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value in question. Finally taking into account that |z — us| = O(n~2), we conclude
that there is a constant K(®) < oo so that for all n > n, we have

‘Eei [I{ef < efh)} —1{e? < ug}] .I{An}‘ < KO, (25)
Along similar lines we can find K©) < oo so that for all n > n,,
var {ei [I{ef < e(2h)} — {2 < ui}} -I{An}} <nEK©). (26)
As a side product of the previous considerations we obtain (for some K(7) < oco)
E ‘ [I{e? < e%h)} —I{e} < ui}] -I{A,}
which we shall need later on. As all z;’s are deterministic, we have
HE {eixi [I{e? < e?h)} —I{e} < ui}} : I{An}}H
= ||z - ’E{ei [I{e? < e%h)} —I{e} < ui}} } -I{A,}
and then (25) and (26) imply that there is some K®) < oo so that for all n > n,,
HE (e [1{e < et} = 1{e <} -I{An}}H <n Yz |K® (28)
and similarly for any j =1,2,...,p
var {eayy [1{ef < ey} = It <u2}] 1A} <o Bl PKO. 29)

Now (18) can be modified into the form

<n 2K (27)

n

%Z{ei:ry {I{e? < e?h)} —I{ef < ui}

i=1

-E {eixi [I{e? < e%h)} —I{ef <u? ] }]} (30)
+\}E;{E{eixi-[I{e?ﬁe%h)}—l{efgui ]}} (31)

Finally, taking into account (29) we conclude that for any A > 0

ﬁ . {eixij . [I{ef < e%h)} - I{ef < ui}}
i=1

—E{eimij {I{e? < e%h)} — I{e? < ui}} } } ‘ > A)
< E {A%ar [1n il {eixij . [I{ef < e%h)} — I{ef < ui}}

—E{eixij [I e? < e%h)} —I{e} < ui}} } } ‘C(z)] }

< AR a? KO (32)

i=1
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Then (6) implies that (30) is o,(1). Similarly, employing (28) we find that also

% Zn: HE {eixi . {I{e? < e%h)} —I{e} < ui}] }H <n-3 Zn: ]| - K©),
=t i=1

i.e. (31) is o(1). Combining just derived facts we conclude that the left hand side
of (17) is equal to

%Z leiw; - I{e? <uZ}] +0p(1) (33)
i=1

and taking into account once again (6), we can utilize Central Limit Theorem and
then conclude that the left hand side of (17) is O,(1). (It is clear that it was possible
to show that the left hand side of (17) is O,(1) in a simpler way. But we shall need
the fact that the left hand side has just the form given in (33) later on.)

Now, let us turn to the terms on the right hand side of (17). The first one can
be written as

LS T [{e? <)~ EI{e? < u2)] - i (AOTSm - )
i=1

4= le (1-a)-vn (B(LTS,n,h) _ ﬁo) .
Now taking into account (7) and applying the law of large numbers on the sequences

{x”xw [I{e <ua} EI{e <ua}] I{A, }}Z .

(for j,£ =1,2,...,p), we conclude that the first term of the right hand side of (17)
is equal to

(Qu (1= ) +0p(1)] - v (BETS™ — 5°) (34)

Let us consider the second term of the right hand side. Taking into account (27),
we obtain for any ¢ > 0
- )

J(D I IERE SRR
<71_%5_1i||xi\\21((7)7 (35)

i=1

< quxzn E|r{e < et} - 1{et <}

so that the second term is of order o0, (1) - v/n (B(LTS*”vh) - 60>.

Now let € and 7 be positive numbers and denote by J the upper bound of the
density f(z). Due to (6) there is a finite K(®) and n") € N so that for all n > n(!)

1 — 5 1 — 3
gZ“sz‘H <K and nglwiH < KO, (36)
=1 =1
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Let usput 7 = Lte-n- [K(g) . J] - Employing Lemma 1 of Part I and Lemma 1 of
this part of paper, we can find n. > n), K19 < o0 and 6. € (0,1) so that for all
n >n. and all § € RP, ||5 — ﬂOH < d. the set

1
<47 and ‘e?hn) —ud

B, = {w €eQ: sup ‘T(Zhn)(ﬂ) —u?

<n 2 K010 -1
BeB(A0,6.)

has probability

P(B,)>1- e (37)

Since B(LTS’"’}’) is consistent, there is ng > n. such that for all n > ns
R 1
Cp = {w cQ: Hﬁ@TSv”xh) - BOH < 65} and  P(Co)>1-22  (38)

Now, let us restrict ourselves on n > ns and w € B, N C,, and let us make an idea
when

1{r2(B0Tsmmy < g (BATSmINL - 1{2(8%) <93, (8} £0. (39)
If (39) holds then either
PABUTSI) <o (BETSTI)and e8> 0f,(8)  (40)

or
PP (US> ) (BETS) - and rE(8%) <y (8°) (41)

Due to r;(fETS™h)) = ¢; — 2T (B(LTS’”JL) - BO), we immediately find that (40)
holds iff either

— (BUTS M) 4 T (B(LTS,mh) _ ﬂo) <e < _\/% (42)

/e%h) <e <12 (BUTS)) 4 o T (B(LTS,n,h) _ 50) _ (43)
Similarly, (41) holds iff either

or

—\Jehy < e < =\ frgy (BOTS) 0T (BETS — 0) (44)

or

B (BUTS ) T (B0TSn _g0) << JR )

Now taking into account that the event in (42) is a subset of

1
~Ua = 4T = K0 —|z|r < e < —tg +n 2 K10 (46)
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we conclude that it has, for n > ng) = max{ng, (64K©® - K19 . J. (3en)~1)2},

probability less than w Of course, we may carry out similar considerations

for all events in (43), (44) and (45). Then we obtain for any n > n(y)

(23 ] rfrzensnn < o)
—I{T?(BO) <rdy (@)} - 1B} - 1160} > )

E{iinxﬂ |- ‘ {T (BLTSR)Y < (h)(B(LTS,mh))}
~1{r2(8%) < 13y (8") }| - 1{Ba} - H{Ca}} <& (47)

So we have shown that

,ZHz xTH ‘{ 5(LTth))Sr?h)(B(LTS,n,h))}

~{r2(8%) <78, (8% }] - T{Ba N Cu} = 0,(1)

Since the last but one term in (17) can be written as

,Zm [1{r2 sy < o8 (BOETSmmy L 1fi2(3%) < (87 }]

X {I{Ba} - I{Cu} + I{B5} + I{C5}} - v/ (BETSm) — 0)
(47) implies that the last but one term of (17) is equal to

Vi (TS — g0) < ,(1). (48)

It remains to cope with the last term of (17). For the (substantial) sake of space
let us write (up to the end of the considerations about this term) r(gh) (8) instead
of 7"(2}1) (BETSmh)Y and A, instead of T (B(LTS’"JL) — %9). In what follows we shall

carry out the analysis of the last term in (17) in a rough way, in order to show
that it is Op(1). It is due to the fact that at the present moment we are able

to estimate |7"(2h)(/3’(LTS’”’h)) - e%h)| only by means of Lemma 1. When we shall

know that SLTSmh) jg v/n-consistent, we will analyze this term better (in order to
establish an asymptotic representation of ﬁ(LTS’”’h)). Similarly as in previous it is
straightforward to find that the difference of indicators

{2 (BUTsahy <o (BOTSmIN Y 1fi2(50) < 0B (8} (49)

is equal to one iff

— /r%h)(ﬁ) +A;<e < —4 /e%h) or ,/e%h) <e < T(Qh)(,é) + A (50)
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and is equal to minus one iff

—,/e%h) <e; < —\/r(zh)(ﬁ) + A, or \/T(Qh)(é) + A <e < e?h). (51)

The indicators of the events given in (50) and (51) can be further written as

@+ o se < e b= 1B < o<~ o

1 {ming= 15, B~ ) + B} < s < minf— [ = e () + 8}
+I{—W+Ai§ei<min{—m,— efh)}}, (52)

{ ey <es @+ ad 1] \Ja, <a< 6}

I{max{\/e%T,m+Ai}<e¢§max{\/r(2 B).y/r2(5) +A}}

+I{max{m, ot <ei< T(Qh)(ﬁ)—FAi}, (53)

e < e <=0+ af =1{ -, <<}

_I{max{—\/%,—erAi}gei<max{—\/r(2h) ) +A}}
—i—I{maX{—\/T \/7}<ez<—\/r7)+Al}7 (54)

and

1{1/7’(2]1)([;)) + A <e < \/%} = I{q/T(Qh)(B) <e < \/%}
= 1 iy 73 () /15 (B) + A < e < mind 6575, (B) + A3}
+1 {\/r?h)(ﬁ) +A;<e < min{\/r?h) (3), e?h)}} , (55)

So, taking into account that the difference in (49) attains value 1 iff (50) holds
and —1 for (51), the last term of (17) can be written as

Zexl[{—\/T<el \/Z}—FI{ y<ei< r(Qh)(B)H

(56)
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S 1 <o <) 1V << )

+I{ — [ (B) + A < e < min{— /72, (B), e%h)}} o
1 { max( /e, /12 (B) + A} < e, < max{y/r2, (), /12, (5) + Ai}}
+I{max{m, e} < e <\[12(B) +A¢}
+1 {max{—\/%, 720 (B) + A} < e < max{—\ /12, (B). —\[r2, (B) + Ai}}
_I{max{—m,— 2 V<o < —W+Ai}
o {8 31,7y () + ) < i < mind 5. /15,(5) + A}
—I{WJrAi < e; < min{y/r2, (5), e§h)}}. (58)

Taking into account the tables in the proof of Assertion A.2, we can observe that
for each i there is at most one of all indicators in (58) equal to one. Nevertheless,
let us start with the term in (56). Since

s o { <o 2o} = {2t <)

(56) can be written as

RN X
NG ZeixiTI {e%h) <el< r%h) (ﬂ)} . (59)
i=1

Let us observe that the indicator in (59) depends, what concerns e;, only on its
square. Moreover, let us recall (once again) that

h

BETSR) —  arg min ZT(Qi)(/B) (60)

St

(see (2)), i.e. BLTSmh) depends only on the order statistics of the squared residuals.
Now let us consider any (but fix) wg € O1 (for O; see the remark at the beginning
of the proof, the fifth and sixth line of proof). Similar considerations as we have
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carried out at the start of the paper then show that there is an h-tuple of indices,
SAY 11 w05 12,w0 5 « - - 5 Thow, Such that

h

arg min 2. — 2 (BLTSmR) (). 61
cremin 3ty (8) = X, (BT (61)
Let us denote for a moment this value of B(LTS*”’h) by B(“’O). The corresponding

squared residuals are (in this notation) equal to
R . 2
r?(ﬁ(wo)) _ (yi _ x}“ﬁ(a«:o)) . (62)
In other words, if we select any other 3 € B(3°,1) and any other h-tuple of indices
we obtain the sum of squared residuals equal to or larger than the sum on the
right hand side of (61). Now, let us consider instead of values of disturbances at

point wg, i.e. instead of ej(wp), ea(wo), - - ., en(wo), the values ef = —eq(wp), e =
—eg(wp), ... e = —en(wp). Then values of the response variable will be
V=2l 8% +ef =a] 3% — ei(wo). (63)

Consequently, the squared values of residuals for (1) = 50 — (B(“’O) - ﬁo) will be

"= [o78° — eutun) — T (8 — ) 4 )]

2

20 = (¥ —aTs0)
(vi—afpe)

In other words, for the symmetric values of disturbances, i.e. for values ej =
—ei(wp),e5 = —ea(wp),..., e = —en(wo), we have found that values of squared
residuals (for 3 = (M) = g% — (B(WO) — %)) are the same as the squared values of
the “original” residuals and the “new” SETS:m:h) namely 41, is symmetric, around
3%, to the “original” B(LTS’"”” = B(‘*’O). So the interval given in the indicator in
(59) is the same for “original” disturbances as well as for “symmetric” ones. So
we conclude that the distributions of random variables e;z;[{ef,) < e <17, (3},
t=1,2,...,n are symmetric and (6) then implies that their mean values exist and
are equal to zero. Now, due to the consistency of LTS n.h) applying Lemma 1 for
any positive n we can find n, > ns (see (38)) so that for all n > n,,

{e%h) <el< T(Qh)(ﬂA)} NnB,NC, C {ui —n K0 gl <2 ¢ u? + 77} (64)
(let us recall that by J we have denoted the upper bound of the density f(z); for

K19 B, and C, see the part of this proof between (36) and (38)). Since 7 was
arbitrary, (64) implies that for any positive v, there is n, > n,, so that for all n > n,,

var (eixil {e%h) <el< T(Qh) (B)} 'IBnan> <v-(1+mn). (65)
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Considerations, similar to those which produced (32) (of course, with a condition,

say, C(z,y) which assumes, in addition to C(z) also r(Qh) (8) = y) allow to apply
conditional Tchebyshev inequality on the triangular array of random variables

{{eutt{cty st <@}, (%)

i=1

and due to the fact that v was arbitrary we can conclude that (56) is O,(1). Along
the same lines we find that the same is true for (57). Hence both these terms “can
be moved” on the left hand side of (17).

It remains to study (58). Unfortunately, the terms in (58) have not mean values
equal to zero. Hence we have to study the terms of the type

% lzj; {eixi [I{ - W+ Aj<e < min{—m, - e%h)}}
—EI{ [ (B) + A < e < minf— /12, (), - eﬁh)}H } . (67)

First of all, taking into account the tables from the proof of Assertion A.2 once
again, we observe that the length of all intervals inside the indicators in (58) is less
or equal to A;. Then, due to Lemma 1, performing considerations about condi-
tional probabilities of the events in question similar as in previous (see the proof of
Theorem 1 of [4]) we find that

P ({—, /r%h)(ﬁ) +A;<e < min{—\/r(zh)(ﬁ), -\ /e%h)} Ip,nc,)

= [£(ua) +0(V)]- A = [f(ua) +o(1)] - af (FETS™) — 7).

Now, employing Lemma 1 once again we conclude that

le; — uq| -I{ — r(Zh)(B) +A;<e < min{—\/r%h)(ﬁ), — e%h)}} I, ne, =o(1)

(notice that due to the fact that on B, e}%" as well as szln are bounded, the previous
expression is really o(1) not only o0,(1); we shall need it for the next step). Finally
we arrive at

e { = \[r5,(0)+ & < & < min{ 78, (B = [} | T,

= [2u0f (ua) + o()] gzl (IS — 50 (68)

Of course, the analysis of the mean value of other terms from (58) is in fact the
same. Then the analysis of the terms of type (67) is very similar to the analysis of
(56).
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Finally, let us denote the sum of mean values of terms given in (58) by 7,,. Now
recalling that we have observed that for any ¢ = 1,2,...,n at most one indicators
in (58) is nonzero and taking into account (68), we can conclude that there is R,, so
that

|Rn| < 2uo f(ua)

for all n € N and
T, = Q- (Ru+o0,(1)) v (BUTSmM — 6) = 0,(1).
So, the analysis of (17) is finished. It yields that
0,(1) = {(Q+0,(1)) - [(1 = @) = Ry} - v/ (BETS"M — 7).
From the assumption that f(z) is strictly decreasing on RT, we have 1 — a >

2uq f(uq) (it is immediately clear from the graph of f(z)). So, finally utilizing
Lemma A.3 we conclude the proof. O

APPENDIX

Lemma A.1. Let for some p € N, {V™}, V) = {vl(]")}z:llgg be a se-
quence of (p X p) matrices such that for i =1,2,...,pand 7 =1,2,...,p

lim vgt) = qij in probability (A.69)
n—oo
where Q = {q”}f;lg;: is a fixed nonrandom regular matrix. Moreover, let

{™}22 | be a sequence of p-dimensional random vectors such that
I (e>0)V (K >0) limsup P (||e<")|| > K) >e. (A.70)
n—oo
Then

3(6>0) Y(L>0)

so that
limsup P (HV(")Q(")

n—oo

>L)>5.

For the proof see [3].

Assertion A.1. Let a,b € (0,00), A € R. Then

I{—a+A<e<—-b}=I{-a<e<-b}
—I{min{—a,—a+ A} < e < min{-b, —a+A}}
+I{—a+ A <e<min{—a,—b}}, (A.71)

(min{—a, —a + A}, min{—b, —a + A}) C (—a, —a + A) (A.72)
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and
(—a+ A,min{—a,—b}) C (—a+ A, —a).

Further we have
Ib<e<a+A}=I{b<e<a}
— I {max{b,a + A} < e <max{a,a+ A}}
+I {max{a,b} <e<a+A},

(max{b,a + A}, max{a,a + A}) C (a + A,a)

and
(max{a,b},a+ A) C (a,a+ A).
Similarly
I{-b<e<—a+A}=I{-b<e<a}
—I{max{-b,—a+A} < e < max{—a, —a+A}}
+I {max{—a,—b} < e < —a+A},
(max{—b,—a + A}, ax{—a,—a+ A}) =0
and
(max{—a,—b},—a+ A) C (—a,—a+ A).
Finally
I{a+A<e<b}=I{a<e<b}
— I'{mim{a,a+ A} < e <min{b,a + A}}
+I{a+ A < e <min{a,b}},
(mim{a,a + A}, min{b,a + A}) C (a,a + A)
and

(a + A,min{a,b}) C (a+ A, a).

199

(A.73)

(A.74)

(A.75)

(A.76)

(A.77)

(A.78)

(A.79)

(A.80)

(A.81)

(A.82)

Proof. We shall consider successively all possible cases. Let us start with (A.71)

and let us abbreviate the left hand side by
To=I{-a+A<e<-b}
and the terms of the right hand side by

Ty =I{-a<e<—=b}, Top=I{min{—a,—a+ A} <e<min{-b, —a+ A}}

and
Ts=I{—a+ A <e<min{—a,—e}}.

Then
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Table Al.

a<b

To T Ty T3
b<e<-a<—-a+A 0 0 0 0
—-b<—a<e<—a+A 0 0 0 0
-b<e<—a+A< —a 0 0 0 0
b< —a+A<e< —q 0 0 0 0
—a+A<e<-b< —a 1 0 0 1
—a+ A< -b<e< —q 0 0 0 0

b<a
—a<e<-b<—-a+A 0 1 1 0
—a<-b<e< —a+A 0 0 0 0
—a<e< —a+A<-b 0 1 1 0
—a< —a+A<e<-b 1 1 0 0
—a+A<e<—-a<-b 1 0 0 1
—a+ A< —-—a<e<-b 1 1 0 0

Similarly for (A.72) let us denote
I, = (min{—a, —a + A}, min{—b, —a + A})

and for (A.73)
I, =(—a+ A min{—a,-b}).

Then we have

Table A2.
a<b
I I
-b<—a<—-a+A (—a,—b) =10 (—a+A,=b)=10

—b< —a+A< —a

(—a+A,—-b)=10

(—a+A,—b) =0

—a+A<-b< —a

(—a+ A, —a+A)=10

(—a+A,-b) C (—a+ A, —a)

b<a
—a<-b<—-a+A | (—a,—b) C (—a,—a+A) (—a+A,—a)=10
—a<—a+A<-b (—a,—a+ A) (—a+A,—a)=10
—a+A<—-a<-b (—a+A,—a+A)=10 (—a+ A, —a)
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Let us continue with (A.74). Abbreviating the left hand side again by
To=I{b<e<a+ A}
and the terms of the right hand side by
Ty =I{b<e<<a}, Tp=I{max{b,a+ A}, max{a,a+ A}}

and
T3 = I {max{a,b},a + A}}.

Then

Table A3.

a<b

a<e<b<a+A
a<b<e<a+A
a<e<a+A<D
a<at+A<e<b
at+A<e<a<d
a+A<a<e<b

o|lo|o|lo|o|O
o|lo|o|o|o|O
o|o|o|o|+|O

S
A
olo|o|~|—|—|2|c|o|lo|lo|lo|lo|lS

b<e<a<a+A
b<a<e<a+ A
b<e<a+A<a
b<a+A<e<a
at+A<e<b<a
a+A<b<e<a

~lol~|lolo|~
—lo|l~lo|lo|lo
olo|lo|~|~|o

Similarly for (A.75) let us denote
I = (max{b,a + A}, max{a,a + A})

and for (A.76)
I, = (max{a,b},a + A}).

Then we have
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Table A4.
a<b
Il I2
a<b<a+A (a+Aa+A)=10 (bya+ A) C (a,a+ A)
a<a+A<Db (bya+A)=10 (bya+A)=10
a+A<a<b (b,a) =10 (bya+A)=10
b<a
b<a<a+A (a+Aa+A)=10 (a,a+ A)
b<e<a+A<a (a+Aja+A)=10 (a,a+A)=10
b<a+A<a (a+ A a) (a,a+ A) =10
a+A<b<a (b,a) C (a+ A,a) (a,a+A)=10
The rest of proof runs along similar lines. ]
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