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ESTIMATES OF STABILITY OF MARKOV CONTROL
PROCESSES WITH UNBOUNDED COSTS1

Evgueni I. Gordienko and Francisco Salem

For a discrete-time Markov control process with the transition probability p, we compare
the total discounted costs Vβ (πβ) and Vβ(π̃β), when applying the optimal control policy
πβ and its approximation π̃β . The policy π̃β is optimal for an approximating process with
the transition probability p̃.

A cost per stage for considered processes can be unbounded. Under certain ergodic-
ity assumptions we establish the upper bound for the relative stability index [Vβ(π̃β) −
Vβ(πβ)]/Vβ(πβ). This bound does not depend on a discount factor β ∈ (0, 1) and this is
given in terms of the total variation distance between p and p̃.

1. INTRODUCTION

The problem of stability (or robustness) of policy optimization in control processes,
naturally arises when a controller has no complete information on a law governing
a dynamics of a process. In most cases of interest a controller needs to rely on some
approximation of a law obtained from theoretical models or/and from statistical
data. Such an uncertainty is typical in real applications of optimal control theory.
It appears also in adaptive control models.

In setting of a problem of stability estimation for general discrete-time Markov
control processes (MCP’s) we will follow the approach proposed in [2, 3]. Let P and P̃
be two discrete-time MCP’s defined on the same Borel state spaceX and action space
A equipped with the same nonnegative one-stage cost (possibly unbounded). The
only difference between processes P and P̃ is their transition probabilities denoted,
respectively, by p and p̃. We interpret p̃ as a known approximation to an unknown
“true” transition probability p of a “real” process P.

The original goal of control optimization is to look for a policy for P that provides
performance as close to the optimal value Vβ (x, πβ) as possible. Here πβ is the
optimal policy for P (supposing the existence of it). As a performance criterion we
use the expected total discounted cost Vβ (x, π) which is a function of an initial
state x of a process and of a policy π applied; β ∈ (0, 1) is a given discount factor.
Not having an opportunity to find the policy πβ without knowing p, one can try the

1Research supported by Consejo Nacional de Ciencia y Tecnoloǵıa conacyt under grant
4002000-5-25159-E.
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policy π̃β optimal for the completely known process P̃ as an approximation to πβ .
The answer to the question:

“In what extent is it a good approximation?” depends on the value of Vβ(x, π̃β)−
Vβ(x, πβ) ≥ 0 of the additional cost paid for replacing πβ by π̃β . Sometimes it is
more reasonable to be interested in a value of a relative increase of cost:

∆β(x) := [Vβ(x, π̃β)− Vβ(x, πβ)]/Vβ(x, πβ), (1.1)

that we call “relative stability index”.
The rate of vanishing of ∆β(x) as p̃ approaches p depends heavily on properties

of a class of processes under consideration, and even more, on type of convergence
p̃ to p. In general, the relative stability index might not vanish as p̃ → p. (In the
example 1 of the last section ∆β(x) does not go to zero and supβ∈(0,1) ∆β(x) = ∞
in spite of p̃ converges to p in the weak topology.)

The aim of the present paper is finding upper bounds for ∆β(x) which do not
depend on a discount factor β. In the papers [2, 3, 17, 18, 20] some results have
been obtained on the similar problem with the average cost per unit of time as a
criterion of optimization of control. In particular, in [3] we used Zolotarev’s metric
approach developed in [21] for some uncontrollable stochastic processes. In the case
of the discounted total cost optimization some known bounds of Vβ(π̃β) − Vβ(πβ)
(see [7, 6, 17, 18, 20]) have the following structure:

Vβ(π̃β)− Vβ(πβ) ≤M(1− β)ψ(p, p̃), (1.2)

where ψ is some “measure of difference” between p and p̃, and M(y) y ∈ (0, 1) is
some given function.

It is well-known that under broad conditions 0< lim supβ→1(1−β)Vβ(πβ)<∞ (see,
for instance, [8]). Thus, having in the mind finding bounds for ∆β(x) independent
of β we need something as (1.2) with M(1− β) = O((1− β)−1) as β → 1.

In the paper [7] optimality equation and the technique of contractive operators
were used to establish bounds as in (1.2). Unfortunately, this approach provides
M(1 − β) = O(

(1 − β)−2
)

as β → 1. The papers [17, 18, 20] apply other methods
than [7], and deal with Markov control processes on denumerable state spaces. The
results of [17, 18], for example, allow to obtain simple and tight bounds for many
queueing control systems. The order of the constant M(1− β) (as β → 1) depends
in [17, 18, 20] on properties of some quantities involving an optimal discounted
cost Vβ , and, finally, on assumptions about processes considered. Under some mild
assumptions, again the constant is M(1− β) = O(

(1− β)−2
)

as β → 1. To extract
from the results of [17, 18, 20] the bounds as in (1.2) withM of order of O(

(1−β)−1
)
,

one needs to exploit some sort of ergodicity assumptions.
In this paper we work out the approach different from those used in [7, 17, 18, 20]

which allows to get the explicit bounds of the form:

sup
β∈(0,1)

∆β(x) ≤ ψ(‖p− p̃‖), (1.3)

where ψ is the power function of the total variation distance between p(·|x, a) and
p̃(·|x, a) (uniform over states x and actions a). To achieve the goal as (1.3) we
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are forced to impose rather restrictive ergodicity hypotheses on a class of processes
dealt with. As it was shown in the paper [4], such hypotheses lead to uniform
(over stationary policies) geometric ergodicity of a control process. To show this
we have applied in [4] the results from [11] on geometric ergodicity of uncontrolled
discrete-time Markov processes. The uniform ergodicity (together with some addi-
tional technique) permits to reduce the problem to the study of stability of ergodic
uncontrolled processes, and so to apply Zolotarev’s metric technique [21]. This
technique proposes using some estimates of the proximity of the distributions of a
couple of processes on finite time-intervals, and the known rate of convergence these
distributions to stationary ones.

2. CONTROL MODEL AND ASSUMPTIONS

We consider a pair of standard discrete-time (t = 0, 1, 2, . . .) Markov control models
(see, for instance, [1]) P = (X,A,A(x), p, c) and P̃ = (X,A,A(x), p̃, c) with Borel
state space X and action space A. The sets A(x) ⊂ A, x ∈ X are sets of feasible
control actions when a process is in state x. We assume A(x) to be nonempty and
compact for each x ∈ X, and we suppose the set IK := {(x, a) : x ∈ X, a ∈ A(x)} of
admissible state-action pairs to be a Borel subset of the Cartesian product X × A.
Saying about measurability we will mean in what follows measurability with respect
to a corresponding Borel σ-algebra B.

The one-stage cost is a nonnegative measurable function c : IK → IR, possibly
unbounded. The only different components of the above models are the transition
probabilities p(B|x, a) and p̃(B|x, a), (x, a) ∈ IK, B ∈ BX , those are stochastic
kernels on X given IK.

We use the standard definition [1] of a control policy π, and of a stationary
(deterministic) policy as a given measurable function f : X → A with graph (f) ⊂ K
such that at the state xt the control at = f(xt) is used. We denote by Π the class of
all policies, and by S ⊂ Π the subclass of all stationary policies, using the notation
f = (f, f, . . .) for policies from S. By Eπ

x we will denote the expectation in the space
of trajectories of a process when using the policy π with the initial state x of a
process.

As a performance criterion we use the total expected β-discounted cost (β ∈ (0, 1))
defined for the process P as:

Vβ(x, π) :=
∞∑

t=0

βtEπ
x c(xt, at), (2.1)

when using the policy π with the initial state of the process x0 = x.
Similarly, to (2.1) the total expected β-discounted cost Ṽβ(x, π) is defined for the

process P̃.
Policies πβ , π̃β are called optimal, respectively, for the process P and P̃ if:

Vβ(x, πβ) = V ∗β (x) := inf
π∈Π

Vβ(x, π); (2.2)

Ṽβ(x, π̃β) = Ṽ ∗β (x) := inf
π∈Π

Ṽβ(x, π), (2.3)
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for all x ∈ X.
Also we will appeal to the optimal value of long-run expected average cost for P:

J∗(x) := inf
π∈Π

lim sup
n→∞

n−1Eπ
x

n−1∑
t=0

c(xt, at). (2.4)

Let us fix throughout a measurable function (“test function”) W : X → [1,∞) and
introduce the assumptions which we use to prove our results.

Assumption 1. (Continuity and bounding conditions)

(a) inf(x,a)∈IK c(x, a) ≥ κ > 0;

sup
a∈A(x)

c(x, a) ≤ [W (x)]1/s, x ∈ X;

where κ and s > 1 are given constants;

(b) for each x ∈ X the map a→ c(x, a) is lower semicontinuous on A(x);

(c) both kernels p and p̃ are strongly continuous on A in the sense: for every
measurable and bounded function u : X → IR and x ∈ X the following maps
are continuous:

a→
∫

X

u(y) p(dy|x, a), a→
∫

X

u(y)p̃(dy|x, a),

a→
∫

X

W (y) p(dy|x, a), a→
∫

X

W (y)p̃(dy|x, a).

Assumption 2. (Recurrence condition) For each stationary policy f ∈ S the
Markov processes with the transition probabilities p(·|x, f(x)) and p̃(·|x, f(x)) are
positive Harris-recurrent.

Remark that the Markov process x0, x1, x2, . . . in the state space X is said to be
Harris-recurrent if there exists a nontrivial σ-finite measure λ on X such that

P (xt ∈ B for some t|x0 = x) = 1 for all x ∈ X,
whenever λ(B) > 0 [13].

Assumption 3. (Ergodicity conditions) There exist a probability ν on (X,BX)
and a number α ∈ [0, 1) for which the following holds:

For each stationary policy f ∈ S there is a nonnegative measurable function hf

on X such that for every x ∈ X and B ∈ BX :

(a) p(B|x, f(x)) ≥ hf (x) ν(B);

(b)
∫

X
W (y) p(dy|x, f(x)) ≤ αW (x) + hf (x)

∫
X
W (y) ν(dy) <∞;

(c) inff∈S

∫
X
hf (x) ν(dx) =: γ > 0.
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Assumption 3∗. Assumption 3 holds for the transition probability p̃ with the
same W, ν, α, γ and some h̃f (f ∈ S).

Comments on the assumptions.

(1) In the last section of the paper we give an example of GI|GI|1|∞ queueing
system with controlled service rates. For this example all above assumptions
are satisfied.

(2) In view of Proposition 1 below the above assumptions guarantee the existence
of optimal stationary policies for both processes P and P̃. This is useful for
our purposes, but it is not necessary (see the comments (4) below). Moreover,
optimal stationary policies exist under less restrictive conditions. What is im-
portant for us is that under Assumptions 2 and 3 for each stationary policy
the corresponding Markov process is Harris-recurrent with a unique invariant
distribution, and with the geometric rate of convergence to this distribution.
It is stated in Proposition 2 below. Moreover, the cumbersome constants in
(26), (27) allow to give explicit bounds for the constants involved in the esti-
mation of the rate of convergence. This is important for us to obtain explicitly
calculated bounds in the stability inequality. The proof of Proposition 2 given
in [4] relies on corresponding results by Kartashov [11], where the estimates
in the geometric rate of convergence were given for some uncontrolled Markov
processes.
To get the inequality similar to (3.1) in Theorem of the next section one can
use any known estimates of geometric convergence, for example, the new rather
tight estimates in [16] for some particular classes of Markov processes.

(3) The parts (b) and (c) of Assumption 3, can be checked for the process P̃ with
some γ̃ > 0, α̃ < 1; then to satisfy Assumption 3∗ one can take max(α, α̃) and
min(γ, γ̃).

(4) In view of given below Proposition 1 Assumptions 1, 2, 3 and 3∗ ensure the
existence of optimal stationary policies fβ , f̃β for the processes P and P̃. These
policies are used to define the relative stability index in (1.1). On the other
hand, Assumptions 2, 3 and 3∗ which, as it will be seen guarantee ergodicity
of processes, can fail to hold for some (and even for many) stationary policies.
To see this, one can consider MCP’s given by linear recurrent equations (see,
for example [12]). Examination of the proof of Theorem in the next section
shows that we can significantly relax Assumptions 2, 3 and 3∗ postulating the
existence of optimal policies fβ and f̃β and some subset S0 ⊂ S of stationary
policies such that fβ , f̃β ∈ S0 and Assumptions 2, 3 and 3∗ are satisfied for
each f ∈ S0 (but probably not for each f ∈ S). The bound (3.1) holds true
under such modification of hypotheses, and, moreover, in this situation we do
not need to use parts (b) and (c) of Assumption 1, and the supposition about
compactness of sets A(x) (x ∈ X). Also, it is not difficult to modify slightly
the definition of ∆β(x), the inequality (3.1) and its proof in order to make
it sufficient to suppose only the existence of ε-optimal policies fε,β , f̃ε,β ∈ S0

(ε > 0).
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Proposition 1. ([4]) Suppose Assumptions 1, 2, 3 and 3∗ hold and let β ∈ (0, 1) be
an arbitrary, but fixed discount factor. Then there exist stationary optimal policies
fβ , f̃β ∈ S, correspondingly, for the processes P and P̃.

Also, the optimal average cost J∗(x) in (2.4) is independent of x ∈ X.
We will use the notation J∗ for J∗(x). Also, in view of Proposition 1 we can

rewrite the value functions defined in (2.2), (2.3) as follows V ∗β (x) = Vβ(x, fβ) and
Ṽ ∗β = Ṽβ(x, f̃β).

To write down the next proposition we introduce below certain constants which
have arisen in the estimate of the rate of convergence in the ergodic Lemma 3.4 in
[4]. The appearance of these constants is a little bit intricate, but it is important
that they are calculated precisely in terms of quantities involved in Assumptions 1,
2, 3 and 3∗. Also, all inequalities given below for constants follow from the proof of
Lemma 3.4 in [4].

Fix any positive number γ̄ such that γ̄ ≤ γ ≤ 1 (γ is from Assumption 3, part
(c)), and using the convention: (log 1)/(1− 1) := −1, we define:

ω = 2 exp{[1− ‖ν‖W /(1− α)](log γ̄)/(1− γ̄)} − 1,

where ‖ν‖W :=
∫

X
W (y) ν(dy), and then we set:

d = 1− (1− α2)/[(1− α) + αω‖ν‖W ] < 1;

ρ := d+ q < 1,
(2.6)

where q is an arbitrary positive number such that q < 1−d. Now let t∗ = [d/(1−d)]
([·] is the integer part), τ = max{0, 1/ log(1 + q/d)− 2}, and

b1 = dτ (τ + 2)/(d+ q)τ if τ > t∗,

b1 = dt∗(t∗ + 2)/(d+ q)t∗ if τ ≤ t∗.

Finally, we define:

B̄ = max
{[

1 + b1de/α][1 + ‖ν‖W /(1− α)
]
,
[
max

{
1, (‖ν‖W + α/ρ

]t∗

+ ‖ν‖W /[(1− α)ρt∗
]}
.

(2.7)

Let us fix an arbitrary stationary policy f ∈ S, and let {x(f)
0 , x

(f)
1 , . . .}, {x̃(f)

0 , x̃
(f)
1 , . . .}

be Markov processes with the transition probabilities, correspondingly, p(·|x, f(x))
and p̃(·|x, f(x)). Assumption 2 ensures the existence and uniqueness of the invariant
probabilities qf and q̃f for these processes (see for instance, [14]). The following
result has been proven in [4] provides the estimates of the rate of convergence of
distributions of the processes to invariant distributions with respect to the total
variation metric σ.

Proposition 2. ([4]) Under Assumptions 2, 3 and 3*

sup
f∈S

σ(x(f)
t , x(f)

∞ ) ≤ B̄W (x)ρt; (2.8)
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sup
f∈S

σ(x̃(f)
t , x̃(f)

∞ ) ≤ B̄W (x)ρt; (2.9)

t = 1, 2, . . .; where the random elements x(f)
∞ , x̃

(f)
∞ (with values in X) have, respec-

tively, the distributions qf , q̃f , and the constants B̄ < ∞, ρ < 1 were introduced in
(2.6), (2.7).

The total variation distance σ, used in (2.8), (2.9) and in the theorem of the next
section, is defined as follows (see, for instance, [15]):

σ(ξ, ζ) ≡ σ(µξ, µζ) := 2 sup{|P (ξ ∈ B)− P (ζ ∈ B)| : B are Borel}. (2.10)

Here µξ and µζ are the distributions of the random elements ξ and ζ taking values
in Borel space X.

If ξ and ζ are random vectors in IRk, having the densities, respectively, gξ and gζ

then,

σ(ξ, ζ) =
∫

IRk

|gξ(y)− gζ(y)|dy. (2.11)

Also, for random variables ξ and ζ taking values in the same countable set {y1, y2, . . .}
we have:

σ(ξ, ζ) =
∞∑

j=1

|P (ξ = yj)− P (ζ = yj)|.

3. STABILITY INEQUALITIES

Throughout of the rest of the paper we fix an arbitrary x ∈ X as an initial state of
both processes P and P̃, i. e. x0 = x, x̃0 = x. By virtue of the above Proposition 1
we rewrite the relative stability index in (1.1) as

∆β(x) = [Vβ(x, f̃β)− Vβ(x, fβ)]/V ∗β (x).

By Assumption 1, (a) this quantity is well-defined, i. e. V ∗β (x) > 0.
Our main results looks as follows.

Theorem. Suppose that Assumptions 1, 2, 3 and 3∗ hold. Then

∆β(x) ≤M(β, x) δ(s−1)/s max{1, logρ δ}, (3.1)

where:
δ = sup

(x,a)∈IK

σ(p(·|x, a), p̃(·|x, a)); (3.2)

M(β, x) = B(x)/[(1− β)V ∗β (x)] ≤ B(x)/κ; (3.3)

lim
β→1

(1− β)V ∗β (x) = J∗, (3.4)

and, finally,

B(x) = 2{2W (x) [1 + 2B̄ρ−1] + 2(1− α)−1‖ν‖W + 1}.
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Corollary 1. (The inequality for the value functions)

|V ∗β (x)− Ṽ ∗β (x)| ≤ [2(1− β)]−1B(x) δ(s−1)/s max{1, logρ δ}. (3.5)

P r o o f . In view of Proposition 1 V ∗β (x) = sup
f∈S

Vβ(x, f) and Ṽ ∗β (x) = sup
f∈S

Ṽβ(x, f).

Thus,
|V ∗β (x)− Ṽ ∗β (x)| ≤ sup

f∈S
|Vβ(x, f)− Ṽβ(x, f)|. (3.6)

On the other hand, the proof of Theorem given below is, in fact, finding upper
bound for the right-hand side of the inequality (3.6). This bound appears in (3.1).
Therefore, (3.6) is a consequence of (3.1) and (3.3). 2

Corollary 2. Let models P and P̃ be given by recurrent equations:

xt+1 = F (xt, at, ξt), (3.7)

x̃t+1 = F (x̃t, at, ξ̃t), t = 0, 1, . . . (3.8)

where {ξt}, {ξ̃t} are sequences of independent and identically distributed (i.i.d. for
short) elements in some Borel space (Y,BY ) with the common distributions µξ and,
respectively, µξ̃.

Then under hypotheses of Theorem

∆β(x) ≤M(β, x) [σ(µξ, µξ̃)]
(s−1)/s, (3.9)

provided that σ(µξ, µξ̃) ≤ e−s/(s−1).

Remark. When the second inequality in Assumption 1, (a) holds for large s the
power of δ in (3.1) is closed to the best possible value 1. In the example of the next
section X = [0,∞) and W (x) = b̄ehx, h > 0, and b̄ > 0 is arbitrary. Therefore, if
supa∈A(x) c(x, a) is bounded by some polynomial then, for each ε > 0 one can choose
b̄ = b̄(ε) is such a way that (3.1) holds with δ1−ε.

P r o o f o f T h e o r em . In view of Proposition 1 of the previous section we get
(see (2.1) – (2.3))

Vβ(x, f̃β)− Vβ(x, fβ)

≤ |Vβ(x, f̃β)− Ṽβ(x, f̃β |+
∣∣∣∣ inf
f∈S

Ṽβ(x, f)− inf
f∈S

Vβ(x, f)
∣∣∣∣

≤ 2 sup
f∈S

|Ṽβ(x, f)− Vβ(x, f)|

≤ 2 sup
f∈S

∞∑
t=0

βt|Ef
xc(xt, f(xt))− Ef

xc(x̃t, f(x̃t))|

≤ 2
1− β

sup
f∈S

sup
t≥1

εt(f),

(3.10)
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where
εt(f) := |Ef

xc(xt, f(xt))− Ef
xc(x̃t, f(x̃t))|. (3.11)

Thus, to prove (3.1) it suffices to show that for all f and t

εt(f) ≤ (B(x)/2) δ(s−1)/s max{1, logρ δ}. (3.12)

To reduce the last inequality to estimation of quantities similar to those as in
(3.11), but with bounded cost functions we first ensure that for every policy f ∈ S

sup
t≥0

Ef
xW (xt) ≤W (x) +

‖ν‖W

1− α
=: CC, (3.13)

sup
t≥0

Ef
xW (x̃t) ≤ CC. (3.14)

Indeed, from Assumption 3(a) and 3(b) we have
∫

X
W (y) p(dy|xt−1, f(xt−1)) ≤

αW (xt−1) + | ν|W , and by Markov property of {xt} we get for any fixed history
ht−1 (t ≥ 1):

Ef
x[W (xt)|ht−1] =

∫

X

W (y) p(dy)|xt−1, f(xt−1)) ≤ αW (xt−1) + | ν|W ,

or
Ef

xW (xt) ≤ αEf
xW (xt−1) + | ν|W .

Iterating the last inequality we obtain

Ef
xW (xt) ≤ αtW (x) + ‖ν‖W (1 + α+ · · ·+ αt−1)

≤ W (x) + ‖ν‖W /(1− α) that implies (3.13).

The proof of (3.14) is the same.
Now, for arbitrary, but fixed b > 0 we define

cb(x, a) :=

{
c(x, a) if c(x, a) ≤ b

0 otherwise.

Applying Assumption 1, (a), the Hölder and the Chebyshev inequalities we get for
every t ≥ 0, f ∈ S (below: 1/s+ 1/` = 1):

|Ef
xc(xt, f(xt))− Ef

xcb(xt, f(xt))| = Ef
x {c(xt, f(xt)); c(xt, f(xt)) > b}

≤ Ef
x[W 1/s(xt)I{W (xt)>bs)}] ≤

{
Ef

xW (xt)
}1/s {P (W (xt) > bs)}1/`

≤ {
Ef

xW (xt)
}1/s {

Ef
xW (xt)

}1/`
b−s/` ≤ CCb1−s.

Similarly we obtain:

|Ef
xc(x̃t, f(x̃t))− Ecb(x̃t, f(x̃t))| ≤ CCb1−s,

f ∈ S, t = 0, 1, . . ..
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Therefore (see (3.11)).

εt(f) ≤ |Ef
xc(xt, f(xt))− Ef

xcb(xt, f(xt))|

+|Ef
xcb(xt, f(xt))− Ef

xcb(x̃t, f(x̃t))|

+|Ef
xcb(x̃t, f(x̃t))− Ef

xc(x̃t))|

≤ 2CCb1−s + εb,t(f),

(3.15)

where εb,t(f) stands for next to the last term in the first inequality in (3.15).
Fix an arbitrary f ∈ S, and let qf , q̃f be invariant probabilities for Markov pro-

cesses with transition probabilities, correspondingly, p(·|x, f(x)) and p̃(·|x, f(x)). To
apply Zolotarev’s approach (see [21]) for estimation of supf∈S εb,t(f) we need the uni-
form over f ∈ S convergence of distributions of xt and x̃t to invariant probabilities.
Such convergence is provided by Proposition 2.

Let n ≥ 1 be some fixed integer.
Then

εb,t(f) ≤ bσ(xt, x̃t) ≤ bmax
t≤n

σ(xt, x̃t) if t ≤ n, (3.16)

and for t > n by (2.8), (2.9) following [21] we get

εb,t(f) ≤ b[σ(xt, x
(f)
∞ ) + σ(x(f)

∞ , x̃
(f)
∞ ) + σ(x̃t, x̃

(f)
∞ )]

≤ b[2B̄W (x)ρn + σ(x(f)
∞ , x̃

(f)
∞ )].

(3.17)

On the other hand,

σ(x(f)
∞ , x̃

(f)
∞ ) ≤ σ(x(f)

∞ , xn) + σ(xn, x̃n) + σ(x̃n, x̃
(f)
∞ )

≤ 2B̄W (x)ρn + maxt≤n σ(xt, x̃t).
(3.18)

Combining (3.16) – (3.18) we see

εb,t(f) ≤ b[4B̄W (x)ρn + max
t≤n

σ(xt, x̃t)], t = 1, 2, . . . . (3.19)

Exploiting the following dual representation

σ(µξ, µζ) = sup
ϕ:‖ϕ‖∞≤1

∣∣∣∣
∫

X

ϕ(x) dµξ −
∫

X

ϕ(x) dµζ

∣∣∣∣

of the total variation metric defined in (2.10) (see, for instance, [15]), the Markov
property of xt, x̃t, the assumption x0 = x̃0, and induction arguments one can easily
show that for every f ∈ S

max
t≤n

σ(xt, x̃t) ≤ n sup
x∈X

σ(p(·|x, f(x)), p̃(·|x, f(x)) ≤ nδ. (3.20)
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From (3.15), (3.19) and (3.20) for any n ≥ 1, b > 0

εt(f) ≤ 2CCb1−s + b(4B̄W (x)ρn + nδ) (3.21)

with the right-hand side being independent of a policy f. Choose in (3.21) n =
max{1, [logρ δ]}, b = δ−1/s; here [z] means the greatest integer ≤ z. Then, by
elementary calculations

εt(f) ≤ 2CCδ(s−1)/s + δ−1/s(4B̄W (x)ρ−1δ + max{1, logρ δ}δ)

≤ {2CC + 4B̄W (x)ρ−1 + 1}δ(s−1)/s max{1, logρ δ}.
(3.22)

The last inequality implies (3.12), and hence in view of (3.10) we come to the required
inequality (3.1).

The inequality (3.3) is an evident consequence of the definition (2.2) and As-
sumption 1, (a).

Finally, the existence and the value of the limit in (3.4) can be readily established
by insignificant changes in the proof of the Theorem 4.2 in [8]; (see also the proof of
theorem 2.6 in [4]).

To get the inequality (3.9) in Corollary 2 it is enough to observe than the function
z(s−1)/s max{1, logρ z) is increasing for z ≤ e−s/(s−1) and the following inequality
for the processes (3.7), (3.8):

σ(p(·|x, a), p̃(·|x, a)) = 2 sup
B∈BX

|P (F (x, a, ξ0) ∈ B)− P (F (x, a, ξ̃0) ∈ B)|

= 2 sup
B∈BX

|P (ξ0 ∈ G−1
x,a(B)−P (ξ̃0 ∈ G−1

x,a(B))| ≤ σ(ξ0ξ̃0), where Gx,a(·) := F (x, a, ·).

2

4. EXAMPLES

Example 1. We start with an example of unstable model of the discounted cost
optimization. This example illustrates also a point that the convergence of the value
functions Ṽβ → Vβ (as in Corollary 1) can not be regarded as stability of a problem
if we are interested in magnitude of ∆β .

Consider the pair of MCP’s given by equations:

xt+1 = xtatξt; (4.1)

x̃t+1 = ε+ x̃tatξ̃t; t = 0, 1, . . . (4.2)

on the spaces X = [0,∞) A(x) = A := {0, 1}, with the same initial states x0 =
x̃0 = x = 1. In (4.1), (4.2) ε is some number from (0, 1); {ξt}, {ξ̃t} are sequences of
i.i.d. random variables (r.v’s, for short) such that ξ0 has the uniform distribution
on [1/2, 1], and

P (ξ̃0 ∈ (y, y + dy)) = 2(1− ε) dy, y ∈ [1/2, 1],
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P (ξ̃0 = bε) = ε with some bε ≥ 1 which will be chosen later on.
Let β ∈ (0, 1) be a discount factor and the one-stage cost be defined as follows:

c(x, 0) =





0 if x = 0;

2− x if x ∈ (0, 1];

1 otherwise;

(4.3)

c(x, 1) = 2− x, x ∈ [0,∞). (4.4)

It is clear for every policy π xt ∈ [0, 1], t = 0, 1, . . ., hence the stationary policy
with f∗(x) = 0, x ∈ X is optimal for the process (4.1), and V ∗β (1) = Vβ(1, f∗) = 1.
On the other hand, applying any policy π to the process (4.2) we get

x̃t ∈ [ε,∞), x̃∗t ≥ x̃t, t = 0, 1, . . . , (4.5)

where {x̃∗t } is the trajectory corresponding to use of the stationary policy with
f̃∗(x) = 1, x ∈ X. From (4.3) – (4.5) we have the policy f̃∗ to be optimal for the
process (4.2), and taking bε to make µ = µ(bε) := Eξ̃0 ∈ (1, 1/β) we obtain

Ṽ ∗β (1) = Ṽβ(1, f̃∗) =
∞∑

t=0

βtE f̃∗
1 C(x̃∗t , 1)

=
∞∑

t=0

βtE(2− x̃∗t ) =
1

1− β

(
2− ε

1− µ

)
+

1
1− βµ

(
ε

1− µ
− 1

)
.

(4.6)

The last inequality in (4.6) is due to the fact that

x̃∗t = ξ̃0ξ̃2 . . . ξ̃t−1 + ε(ξ̃1 . . . ξ̃t−1 + ξ̃2 . . . ξ̃t−1 + . . .+ ξ̃t−1 + 1),

and, thus,

E(2− x̃∗t ) = 2− ε

1− µ
+ µt

(
ε

1− µ
− 1

)
.

It is easily to calculate that the limit of the right-hand side of (4.6) as µ → 1 is
(1+ ε) (1−β)−1 > 1, and this is equal to −∞ as µ→ 1/β. Therefore, by continuity,
there exists bε = bε(β) such that

Ṽ ∗β (1) = 1 = V ∗β (1) (4.7)

for each ε. At the same time, the relative stability index in this situation is

∆β(1) =

[ ∞∑
t=0

βtE f̃∗
1 C(xt, at)− 1

]
/
1

=
∞∑

t=1

βtE(2− ξ0ξ1 . . . ξt−1) =
2β

1− β
− 3β

4− 3β
> 0.

(4.8)
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Now, let ν̄ be the Fortét–Mourier probability metric (corresponding to the weak
convergence of random variables, see [15]). From the well-known properties of ν̄ and
(4.1), (4.2) we readily find that in this example

sup
x,a

ν̄(p(·|x, a), p̃(·|x, a)) → 0 as ε→ 0

independently of a choice of bε.
On the other hand, for a fixed discount factor β using bε to guarantee (4.7) we

have equality of the value functions and infε∈(0,1) ∆β(1) > 0. Moreover, from (4.8)
supβ∈(0,1) ∆β(1) = ∞ for each ε ∈ (0, 1).

Example 2. The next example presents a stable Markov control model for which
all Assumptions of Section 2 are satisfied, and what is important all these assump-
tions and constants involved are expressed here in rather simple terms of existence
of exponential moments. We appealed to this example in [5] for other purposes.

Let X = [0,∞), A(x) = A for all x ∈ X with A being a compact subset of some
interval (0, θ] (with θ ∈ A). Define

xt+1 = (xt + atηt − ξt)+, (4.9)

x̃t+1 = (x̃t + atη̃t − ξ̃t)+, t = 0, 1, . . . , (4.10)

x0 = x̃0 = x given, where z+ = max(0, z); {ηt}, {ξt}, {η̃t} and {ξ̃t} are sequences of
nonnegative i.i.d. r.v.’s such that {ηt} is independent of {ξt} and {η̃t} is independent
of {ξ̃t}. The equations (4.9) and (4.10) represent controlled versions of random walk
on a half-line, which arises in several applied models, for example, in inventory-
production or water resources models (see [9]). Other important application of the
process given by (4.9) is a model of control of service rates at in a single server
queueing system of type GI|GI|1|∞. In this case xt is interpreted as the waiting
time of the tth customer, while ξt is the interarrival time between the tth and (t+1)th
customers. The r.v.’s ηt (t = 0, 1, . . .) describe deviations of real services times from
designed values at. The variables in the approximating process (4.10) are interpreted
in the same way. Comments on applications of such control model can be found, for
instance, in [19].

We are going to check the hypotheses of the theorem of the previous section
supposing the following Assumption E1 and E2. We write η, ξ, η̃, ξ̃ for generic r.v.’s
distributed, respectively, as η0, ξ0, η̃0, ξ̃0, and denote

ζ = θη − ξ, ζ̃ = θη̃ − ξ̃.

Assumption E1.

(a) R.v.’s η, ξ, η̃, ξ̃ have bounded densities continuous on [0,∞);

(b)
Eζ < 0, Eζ̃ < 0; (4.11)



208 E.I. GORDIENKO AND F. SALEM

and there are positive constants h′, h̃′ such that

E exp(h′ζ) <∞, E exp(h̃′ζ̃) <∞. (4.12)

As it was observed in [5] (4.11) and (4.12) yield the existence of h > 0 such
that

α := max{E exp(hζ), E exp(hζ̃)} < 1. (4.13)

Assumption E2. The one-stage cost c is a strictly positive measurable function
such that, for every x ∈ [0,∞), c(x, ·) is lower semicontinuous on A, and

sup
a∈A

c(x, a) ≤ (b̄)1/s exp(xh/s),

where s > 1, and b̄ is an arbitrary positive constant.

Remark. For many particular distributions of η, ξ, η̃ and ξ̃ it is not too hard to
evaluate h and α in (4.13). (See [5] for the explicit formulas in the case of exponential
distributions.)

Under above Assumptions E1, E2 the work to verify Assumptions 1, 2, 3, 3∗ in
Section 2 was done in [5] provided we choose: W (x) = b̄ exp(hx),

hf (x) = P (x+ f(x)η − ξ ≤ 0),

h̃f (x) = P (x+ f(x) η̃ − ξ̃ ≤ 0), x ∈ [0,∞);

ν = δ0 (the Dirac distribution).

Thus the bounds (3.1), (3.9) and Corollary 1 hold for the processes (4.9) and (4.10).
Moreover, using (2.11) the total variation distance in (3.9) is easy to calculate in
terms of densities of η, ξ, η̃, ξ̃. The power (s − 1)/s can be chosen as close to 1 as
desired if supa∈A c(x, a) is dominated by some polynomial. Unfortunately, we are
not able in this example to simplify expressions for the constants involved in B(x) in
(3.3) (compared with (2.6), (2.7)). The only observation is that ‖ν‖W = b̄. For this
reason it seems better using the same arguments as in the theorem of Section 3 to
prove for this example the bound as (3.1) replacing in (3.3) B(x) by another constant
D(x). The point is to replace the inequalities of Proposition 2 by other estimates of
the rate of convergence found in [16] due to specific properties of a particular class
of Markov processes on [0,∞) called “stochastically ordered”. Surely, the bounds
on the rate of convergence in [16] are much simpler and more tight compared with
B̄ in (2.8), (2.9). (See Example 4.1 in [16]). The use of them allows in the example
considered to get a more tight bound for ∆β(x) (comparing with (3.1)).
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[7] E. I. Gordienko and F. S. Salem: Robustness inequality for Markov control processes
with unbounded costs. Systems Control Lett. 33 (1998), 125–130.

[8] O. Hernández-Lerma and J. B. Lasserre: Average cost optimal policies for Markov
control processes with Borel state space and unbounded costs. Systems Control Lett.
15 (1990), 349–356.

[9] O. Hernández-Lerma and J. B. Lassere: Discrete–time Markov Control Processes.
Springer–Verlag, New York 1995.

[10] H. Hinderer: Foundations of Non–Stationary Dynamic Programming with Discrete
Time Parameter. (Lecture Notes in Operations Research 33.) Springer–Verlag, New
York 1970.

[11] N.V. Kartashov: Inequalities in theorems of ergodicity and stability for Markov
chains with common phase space. II. Theory Probab. Appl. 30 (1985), 507–515.

[12] P.R. Kumar and P. Varaiya: Stochastic Systems: Estimation, Identification and
Adaptive Control. Prentice–Hall, Englewood Cliffs, N. J. 1986.

[13] S. P. Meyn and R. L. Tweedie: Markov Chains and Stochastic Stability. Springer–
Verlag, Berlin 1993.

[14] E. Nummelin: General Irreducible Markov Chains and Non–Negative Operators.
Cambridge University Press, Cambridge 1984.

[15] S. T. Rachev: Probability Metrics and the Stability of Stochastic Models. Wiley, New
York 1991.

[16] D. J. Scott and R. L. Tweedie: Explicit rates of convergence of stochastically ordered
Markov chains. In: Proc. Athens Conference of Applied Probability and Time Series
Analysis: Papers in Honour of J. M. Gani and E. J. Hannan (C.C. Heyde, Yu.V. Pro-
horov, R. Pyke and S. T. Rachev, eds.). Springer–Verlag, New York 1995, pp. 176–191.

[17] N.M. Van Dijk: Perturbation theory for unbounded Markov reward processes with
applications to queueing. Adv. in Appl. Probab. 20 (1988), 99–111.

[18] N.M. Van Dijk and M.L. Puterman: Perturbation theory for Markov reward
processes with applications to queueing systems. Adv. in Appl. Probab. 20 (1988),
79–98.

[19] R.R. Weber and S. Stidham jr.: Optimal control of service rates in networks of
queues. Adv. in Appl. Probab. 19 (1987), 202–218.

[20] W. Whitt: Approximations of dynamic programs I. Math. Oper. Res. 3 (1978),
231–243.



210 E.I. GORDIENKO AND F. SALEM

[21] V.M. Zolotarev: On stochastic continuity of queueing systems of type G|G|1. Theory
Probab. Appl. 21 (1976), 250–269.

Prof. Dr. Evgueni I. Gordienko, Departamento de Matemáticas, Universidad Autónoma
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