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Editorial Office:
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PLANAR ANISOTROPY REVISITED

Viktor Beneš and Arun M. Gokhale

The paper concerns estimation of anisotropy of planar fibre systems using the relation
between the rose of directions and the rose of intersections. The discussion about the
properties of the Steiner compact estimator is based on both theoretical and simulation
results. The approach based on the distribution of the Prokhorov distance between the
estimated and true rose of directions is developed. Finally the curved test systems are
investigated in both Fourier and Steiner compact analysis of anisotropy.

1. INTRODUCTION

Several methods have been suggested for the estimation of the rose of directions of
a planar fibre system. We discuss those of them which are based just on counting
the number of intersections with a test line system, cf. Hilliard [4], Digabel [2],
Mecke [8], Kanatani [5], Rataj and Saxl [11]. Some of those papers are written in
the design-based approach with deterministic structure and random probes, others
in the model-based approach. We use the latter approach in this paper assuming
that a stationary random fibre process (Stoyan et al [14]) is investigated by means
of a linear probe. The results of both approaches are comparable and have the same
value for practical stereological applications.

The basic integral equation which relates the rose of directions of a stationary fi-
bre process to its rose of intersections has been used for the estimation of anisotropy
in basically three ways. First a direct solution of integral equation is available un-
der some assumptions, which requires to estimate the second derivative of the rose
of intersections from discrete data. Secondly the Fourier analysis may be applied
which also arises some statistical difficulties of the problem. The most recent is
the Steiner compact method which makes use of convex geometry and the relation
between symmetric convex bodies and finite measures on the unit semicircle. How-
ever, very little is known about the statistical properties of this estimator since in
fact a measure is estimated and a suitable probability metric has to be used for the
quantification of the properties. The main aim of the present paper is to develop
the investigation of the Steiner compact method. The consistency with respect to
Hausdorff metric proved by Rataj and Saxl [11] is a qualitative asymptotic result.
From practical stereology we have the experience that besides asymptotic theory
also the small sample properties of estimators are desired. Since these are gener-
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ally hardly tractable, we obtain some quantitative results at least for a special type
of the fibre process, namely the anisotropic Poisson line process. The approach is
different, finally the distribution of the Prokhorov distance between the estimator
and the true rose of directions is obtained by means of computer simulations. The
procedure moreover contributes to the theory and practice of spatial sampling.

In the second half of the paper the attention is paid to the question whether the
curved test systems may have some advantage against straight line test systems.
This important problem has not yet been investigated in detail.

2. BACKGROUND

Consider Z = [0, π) with addition modulo π. This addition may be interpreted as
a rotation of straight lines around origin in the plane R2 equipped with the Borel
σ-algebra B2. Thus for z1, z2 ∈ Z corresponding to angles (with x−axis) of given two
lines, z1 + z2 is the sum of angles. Denote by M, P the system of finite measures,
probability measures on the borel σ-algebra B of subsets of Z, respectively. Let Φ be
a stationary fibre process in R2 (Stoyan [14]), LA its length density, R ∈ P its rose
of directions, i. e. the distribution of fibre tangent orientations. Let PL(z), z ∈ Z be
the rose of intersections, i. e. the mean number of points Φ ∩ l(z) per unit length of
a test straight line l(z) with orientation z. It holds

PL(z) = LAGR(z), (1)

where we denote the sine transform

GR(z) =
∫ π

0

| sin(z − u)|R(du). (2)

The aim is to estimate R given PL(zj), zj ∈ Z, j = 1, . . . n. If a continuous proba-
bility density ρ of R exists we have

P ′′L(z) + PL(z) = 2LAρ(z),

which yields an explicit solution. This is in practice hardly tractable since the second
derivative P ′′L has to be evaluated from discrete data. The formula helps in the use
of parametric models of R, cf. Digabel [2].

Several authors showed that for the Fourier images

R̂(k) =
∫ π

0

e2kiz R(dz) (3)

and P̂L(k) =
∫ π

0
PL(z)e2kiz dz, k = . . .− 1, 0, 1 . . . it holds

R̂(k) =
1

2LA
(1− 4k2) P̂L(k), k = . . . ,−1, 0, 1, . . . (4)

When getting P̂L(k) from data and using (4) the variances of R̂(k) may tend to
infinity. We return to this estimator in Section 5.
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The third approach to the estimation of the rose of direction is based on the
notion of a Steiner compact set. Let K1 be the system of all compact convex sets
in R2. In convex geometry (Schneider [13]) elements of K1 are called convex bodies.
Let S = [0, 2π), for s ∈ S let s be the corresponding point (cos s, sin s) on the unit
circle in R2. If K ∈ K1 then for each s ∈ S there is exactly one number pK(s) such
that the line

{x ∈ R2 : 〈x, s〉 − pK(s) = 0}
intersects K and 〈x, s〉 − pK(s) ≤ 0 for each x ∈ K. This line is called the support
line and the function pK(s), s ∈ S, the support function of K.

If U = [−u, u] is a line segment in R2, we have pU (s) = |〈s, u〉| (the absolute
value of the scalar product of vectors). For the Minkowski sum K = ⊕n

i=1[−ui, ui]
of line segments (which is a convex polygon) it holds pK(s) =

∑n
i=1 |〈s, ui〉|. Then

for a centrally symmetric convex body K ⊂ R2 we have the representation

pK(s) =
∫
|〈s, u〉|η (du) (5)

for a finite Borel measure η on S. Each convex body K can be considered as a limit
of convex polygons with respect to Hausdorff metric

d(K,L) = inf{ε > 0 : K ⊂ Lε, L ⊂ Kε},

where Kε = K ⊕ b(0, ε), b(0, a) is a ball with radius a centred is 0 and K, L ∈ K1.
The Hausdorff metric on K1 can be expressed equivalently by means of support

functions as

d(K,L) = sup{|pK(s)− pL(s)|, s ∈ S}, K, L ∈ K1.

In fact if d(K, L) < α then K ⊂ Lα and pK(s) < pL(s) + α, by reversing this
argument we get the formula.

Let TK(s) be the intersection point of the support line with K (if the inter-
section is a line segment, TK(s) will be the endpoint with respect to the anti-
clockwise orientation of the boundary ∂K of K). If x, y are two points of ∂K
by lK(x, y) the length of the corresponding arc of ∂K is denoted. Denote K = {K ∈
K1, K is centrally symmetric} and for R ∈M let R be a measure on S which sat-
isfies R(B) = R(B + π) = 1

2R(B) for any B ∈ B. The following result was obtained
by Matheron [7]) in a more general setting.

Proposition 1. There is a one-to-one correspondence between the elements R ∈
M and K ∈ K given by

R((s, t]) = lK(TK(s), TK(t)), s, t ∈ S.

The weak convergence on M is equivalent to d-convergence on K.

In the situation of Proposition 1, K is called the Steiner compact set correspond-
ing to R. For K ∈ K the support function is uniquelly determined by its values on
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Z. Stoyan et al [14] call this restriction of pK to Z the modified support function,
we will denote it again pK . Thus for a stationary fibre process Φ and the Steiner
compact K associated to the rose of directions R of Φ it holds

pK(z) =
1
2
LAGR(z), z ∈ Z. (6)

i. e. comparing with (1) 2pK(z) = PL(z), z ∈ Z. In fact the measure η in (5) is here
interpreted as an LA−multiple of the rose of directions, rotated by π

2 , cf. (2).
Rataj and Saxl [11] suggested a graphical method of estimation of the rose of

directions by means of its related Steiner compact set. Let pi = 1
2

ni

h be the estima-
tors of support function values at orientations zi ∈ Z, i = 1, . . . , n, where ni is the
number of intersections of the studied fibre system (realization of a fibre process)
with test segment of length h and orientation zi. Then the convex polygon

Kn = {x : 〈x, zi〉 ≤ pi, i = 1, . . . , 2n} (7)

provides an estimator of the Steiner compact K related to R. The measure Rn

corresponding to Kn according to Proposition 1 is

Rn =
n∑

i=1

hiδzi
, (8)

where hi are the lengths of edges of the polygon Kn and δz is the Dirac measure
concentrated at z. The hi’s have outer normals zi, in fact Kn may have less edges
than 2n if hi = 0 for some i. The relation between pi and hi follows (we denote
a+ = max(a, 0)):

Lemma 1. It holds

hi =
(

min
−π<βij<0

pi cos βij − pj

sin βij
− max

0<βij<π

pi cosβij − pj

sin βij

)

+

, i = 1, . . . , n, (9)

where βij are anticlockwise oriented angles between zi and zj .

P r o o f . Fix i and consider the support line li of pi and the unique point x ∈ li
with distance pi from origin. On the right hand side of (9) there are two terms.
The ratio in the first term corresponds to the signed distance between x and the
intersection point of support lines corresponding to pi, pj . The ratio in the second
term has the same interpretation for pj ’s with positive angles βij between zi and zj .
Clearly the difference between appropriate extremes of these terms in (9) yields the
edge length which may be zero if the difference is negative. 2

The Hausdorff d-convergence of Kn to K is investigated by Rataj and Saxl [11].
Since the weak convergence on M is metrized by the Prokhorov metric, according to
Proposition 1 this is a convenient metric to describe the convergence of corresponding
Rn to R. The Prokhorov distance between measures Q,T ∈M is defined as

r(Q, T ) = inf{ε > 0; Q(C) ≤ T (Cε) + ε, T (C) ≤ Q(Cε) + ε for all closed C ⊂ Z}.
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This definition is equivalent (Rachev [10]) to restricted condition which we use in
the form

r(Rn,R) = inf{ε > 0; Rn(C) ≤ R(Cε) + ε for all closed C ⊂ Z}. (10)

In our case Rn is discrete with finite support suppRn ⊂ {z1, . . . , zn} so we have the
following reduction to finitely many conditions.

Lemma 2. It holds

r(Rn,R) = inf{ε > 0; Rn(C) ≤ R(Cε) + ε for all C ⊂ suppRn}. (11)

P r o o f . Rewrite (10) as r = inf D1 and (11) as ρ = inf D2. Since D1 ⊂ D2 we have
ρ ≤ r. If it were ρ < r, then there is an ε > 0, ε < r such that Rn(C) ≤ R(Cε)+ε for
all C ⊂ suppRn. Since ε < r, there exists a C ⊂ Z closed with Rn(C) > R(Cε)+ ε.
Let C1 = C∩suppRn, then C1 ⊂ C andRn(C1) = Rn(C) > R(Cε)+ε ≥ R(Cε

1)+ε,
a contradiction. Thus r = ρ. 2

3. EXPLICIT RESULTS FOR POISSON LINES

The most tractable model of a fibre process in the plane is a stationary line process
Φ with the line density LA and the rose of directions R. Any straight line l(x)
can be represented by a point x = (z, y) in the parametric space formed by a set
C1 = (0, π] × (−∞,∞). Here z is the orientation of the line and y its oriented
distance from the origin. We have d positive, negative for lines intersecting the
positive, negative semiaxis x, respectively. If z = 0, y is positive for lines in the
upper half plane. We can thus represent a stationary line process Φ by means of a
point process Ψ on C1, such that the intensity measure Λ of the process Ψ is (Stoyan
et al [14])

Λ(d(y, z)) = LA dyR (dz). (12)

If the stationary line process Φ is Poisson then the point process Ψ is Poisson sta-
tionary with respect to y coordinate. Conversely, a random point process on C1

stationary in d-coordinate defines a stationary line process in R2.
We will investigate the intersections of a stationary Poisson line process with test

segments of the same length h and of varying orientations. To each segment s a
subset A(s) ⊂ C1 can be found such that x = (z, y) ∈ A(s) if and only if the line l(x)
hits s. If the test segment is parametrized by its center (xs, ys), orientation β ∈ Z
and length h > 0, and the line (z, y) has slope k = tan z, z =/π

2 , the hitting condition
is

kxs − ys + y
√

k2 + 1
sin β − k cos β

∈
[
−h

2
,
h

2

]
. (13)

More generally we shall consider n test segments si with varying orientations
βi, i = 1, . . . , n and the same length h. Then for any subset I = {i1, . . . , im} of
{1, . . . , n} denote

A(sI) = A(si1 , . . . , sim) =
m⋂

k=1

A(sik
) ∩

⋂

j∈Ic

Ac(sj) (14)
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the subset of C1 corresponding to lines which intersect exactly m given test segments
and not any other. The corresponding A(sI), A(sJ ) are disjoint for different I, J.

When Φ is a stationary Poisson line process, then the number of lines N(I) =
N(i1, . . . , im) of Φ intersecting exactly m given test segments is a random variable
with Poisson distribution Po(λ) with parameter

λ = LA

∫

A(si1 ,...,sim )

dyR (dz), (15)

cf. (12). For different I, J the corresponding N(I), N(J) are independent. From a
realization of the process Φ we get estimators of support function values

pj =
1
2h

n∑
m=1

∑
{i1,...,im}=I

j∈I

N(i1, . . . , im), j = 1, . . . , n.

Using the transfomation formula (9) we get from here the estimators of edge lengths
hi of the Steiner compact Kn and from (8) the desired Rn. Given the true R the
ultimate goal is to evaluate the distribution of the Prokhorov distance r(Rn,R).
We use formula (11) and search for ε in discrete steps ε = jν, j = 1, 2, . . . , ν > 0,
where only finitely many conditions have to be verified (over all subsets of suppRn

in each step). Distribution of the Prokhorov distance is finally obtained by means of
the Monte–Carlo simulation of intersection counts. The whole procedure is demon-
strated in the following situation.

Consider the unit semicircle x = cos β, y = sin β, β ∈ [−π, π]. Denote αn = π
2n and

define the test system T of n segments si inscribed in the semicircle, see Figure 1a.
The segments have centres (xj , yj), xj = cos βj cos αn, yj = sin βj cos αn, normal
orientations βj = (2j − n − 1)αn, j = 1, . . . , n. The segments have equal lengths
h = 2 sin αn. The total length of T converges to π with n → ∞. Any straight line
in the plane has at most two intersections with the test system T so we need at
most two-point subsets I ⊂ {1, . . . , m} and denote by Ai, Aij the subsets of C1

corresponding to lines which intersect exactly one, two segments, respectively. In
Figure 1b these subsets are drawn in the case of n = 3.

Fig. 1. The test system T for n = 3 (a), the corresponding subsets

Ai, Aij , i, j = 1, . . . , n, i < j, (b).
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Consider a stationary Poisson line process Φ with intensity LA and rose of direc-
tions R. Denote Ni, Nij the Poisson distributed random variables with parameters
λi, λij , respectively, corresponding to numbers of intersections of Φ with given one
or two segments.

Lemma 3. For the test system T it holds

λi = 2LA

{
sin αn

[ ∫ (n−i)αn

0

cos(γ − βi)R (dγ)−
∫ π

(2n−i+1)αn

cos(γ − βi)R (dγ)
]

(16)

+ sin(2αn + βi − βn)
∫ (n−i+1)αn

(n−i)αn

cos
1
2
(2γ − βn − βi)R (dγ)

+ sin(βi − β1 − 2αn)
∫ (2n−i+1)αn

(2n−i)αn

cos
1
2
(2γ − β1 − βi)R (dγ)

}
, i = 1, . . . , n,

and

λij = 2LA

[
sin

βj − βi

2

∫ (2n−i−j+1)αn

(2n−i−j)αn

cos
(
γ + αn − βi + βj

2

)
R (dγ) (17)

+ sin
βi − βj

2

∫ (2n−i−j+2)αn

(2n−i−j+1)αn

cos
(
γ − αn − βi + βj

2

)
R (dγ), i, j = 1, . . . , n, i < j.

For
pi =

1
2h

(Ni +
∑

j 6=i

Nij), i = 1, . . . , n (18)

it holds
cov (pi, pj) =

1
4h2

var Nij .

P r o o f . The first part needs the expression for boundaries between Aij , Ai, cf.
Figure 1b, which are essentialy shifted sine curves. The inner integral in (15)
is evaluated and transformed to (16) using elementary trigonometry. The second
part follows from the independence properties of Nij , Ni : It holds cov (pi, pj) =

1
4h2 [E(Ni +

∑
k 6=i Nik)(Nj +

∑
l 6=j Njl) − E(Ni +

∑
k 6=i Nik)E(Nj +

∑
l 6=j Njl)] =

1
4h2 (EN2

ij − (ENij)2). 2

Instead of theoretical formulas (16), (17) we may use the Monte–Carlo approach
for evaluation of parameters λi, λij . It consists in simulation of a large number m of
points (d, α) in [−1, 1]× [0, π] ⊂ C1 so that the d coordinate is uniform random and
α coordinate is simulated from distribution R. Then λi ≈ 2LA

mi

m , λij ≈ 2LA
mij

m ,
where mi,mij are numbers of points in corresponding subsets Ai, Aij . These numbers
are obtained using the hitting conditions (13).

From a simulation of Ni, Nij , where only one-dimensional Poisson random vari-
ables are required, we get a realization of the random variable PD = r(Rn,R)
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using subsequently formulas (18), (9), (11) and the discrete step approximation for
getting infimum in (11). Repeating this step independently we obtain the desired
distribution of Prokhorov distance PD = r(Rn,R). A computer program has been
developed for the test system T to investigate the changes of distribution of PD
with respect to the following variables: a) the intensity LA, b) the rose of directions
(corresponding to uniform distribution U , a unimodal and a bimodal distribution),
c) the number of segments n. It is not the aim of this paper to present many sim-
ulation results, two typical graphs are in Figure 2 (probability densities f obtained
by smoothing the computed discrete distribution).

Fig. 2. Estimated probability densities of PD for R = U , n = 8 and LA = 50 (a),

LA = 1000 (b).

Since the distance between a discrete and continuous distribution is measured
in Figure 2, we observe that the distribution of PD is not concentrated near zero.
Among the discrete distributions Rn on [0, π) with support τ cardinality at most n
the uniform discrete distribution Un (with exactly n equidistant atoms) is nearest
to U in the sense of Prokhorov distance. It holds r(Un,U) = π

2n+π since the worst
case in (10) is

1 = Un(τ) ≤ U(τε) + ε =
2nε

π
+ ε.

For n < 6 we obtain a larger lower bound under a supplementary condition.

Proposition 2. For the test system T , an isotropic fibre process and the Steiner
compact estimator Rn of R = U it holds that the Prokhorov distance

r(Rn,R) ≥ 4αn

π + 2

under the condition A = [hi = 0 for some i].

P r o o f . Let i be the index which satisfies A, assume that r(Rn,U) < 4αn

π+2 . Then
there is a δ > 0 such that r(Rn,U) = 4αn

π+2 − δ. We use the opposite equivalent
definition of Prokhorov distance

r(Rn,U) = inf{ε > 0; U(C) ≤ Rn(Cε) + ε, C closed}.
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Put
C =

[
βi − 2παn

π + 2
, βi +

2παn

π + 2

]
,

then U(C) = 4αn

π+2 and for ε = 4αn

π+2 − δ we have Cε = [βi − 2αn + δ, βi + 2αn − δ]
and Rn(Cε) = 0. Altogether Rn(Cε) + ε = 4αn

π+2 − δ < U(C), which leads to a
contradiction. 2

A lower bound for Pr(A) is
∑

i Pr(Bi) −
∑

i<j Pr(Bi ∩ Bj), where Bi = [pi−1 +
pi+1 − 2pi cos π

n < 0].

4. CURVED TEST SYSTEMS

In stereology the curved test systems became popular, e. g. the cycloidal arcs for the
estimation of surface area (Baddeley [1]). We shall investigate the role of curved test
systems in the estimation of the rose of directions of a planar fibre process. Consider
a test system t of arcs with finite total length h and t(B), B ∈ B2, the corresponding
length measure of t in B. Assume that almost surely (w.r.t. the length measure) the
tangent orientation w(x) of t at x is defined. Then the orientation distribution Q of
t on Z is given by ∫

f(α)Q(dα) =
1
h

∫

t

f(w(x)) t (dx)

valid for any f ≥ 0 measurable on Z. Denote by t(z) the rotation of t = t(0) by an
angle z ∈ Z.

Mecke [8] points out that if the test system is formed by curved lines with tangent
orientation distribution Q ∈ P, then

PQ
L (z) = LAGR∗Q (z), (19)

where PQ
L (z) is the rose of intersections Φ ∩ t(z). Further Q is the reflection of

Q, i. e.
∫

f(z) Q (dz) =
∫

f(π − z) Q (dz) for any nonnegative measurable function
f on Z, and R ∗ Q is convolution of measures defined by

∫
f(x)R ∗ Q (dx) =∫ ∫

f(x + y)R (dx) Q (dy). In particular for Q = U uniform it follows from (19)
that PUL (z) = 2

π LA, z ∈ Z, is a constant denoted PUL (z) = PL.
Generally, comparing (1) and (19) we see that if there is a statistical method for

estimating R from (1), the same method estimates R ∗ Q from (19) when using a
curved test system. Unfortunately, the system P with convolution operation does
not posses natural inverse element to solve equation R∗Q = Q1 for an unknown R,
cf. Heyer [3]. For the Dirac measure δ0 concentrated in 0 ∈ Z it holds Q ∗ δ0 = Q

for any Q ∈ P. Using the complex Fourier transform Q̂(k), cf. (3), we get from
Q ∗ Q−1 = δ0 that Q̂(k)Q̂−1(k) = 1 for all k = . . . − 1, 0, 1, . . . Thus a necessary
condition for the existence of Q−1 would be that there does not exist an integer k
such that

∫ π

0
cos 2kzQ (dz) = 0 and

∫ π

0
sin 2kzQ (dz) = 0, which is obviously not

fulfilled by many elements of P, e. g. by uniform U and discrete symmetric measures
Q = 1

n

∑n
k=1 δ kπ

n +z, n ∈ N, z ∈ Z. Moreover, for an absolutely continuous measure
Q ∈ P with density q with finite expectation, the Fourier coefficients tend to zero
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with k →∞ (Kufner and Kadlec [6]) so that the Fourier coefficients of Q−1 should
tend to infinity.

Elements δz ∈ P, z ∈ Z provide rotation Q(z) = Q ∗ δz of a given measure
Q ∈ P. The effect of the convolution operation of measures on Steiner compact sets
(corresponding by Proposition 1) may be observed most easily when both measures
are discrete: R =

∑n
i=1 aiδui

, Q =
∑m

j=1 bjδvj
,

∑
ai =

∑
bj = 1, ai, bj > 0

ui, vj ∈ Z. Then the convolution R ∗ Q is again a discrete measure with support
{z = ui + vj ; i = 1, . . . , n, j = 1, . . . ,m}. The atom in ui + vj has size aibj . Now the
Steiner compact associated with a discrete measure is Minkowski sum of centrally
symmetric segments in R2 corresponding to atoms. These segments are [−cij , cij ],
where cij are vectors in R2 with orientations ui + vj and lengths aibj .

The following result comes from Mecke [8].

Proposition 3. For the Fourier images R̂(k), Q̂(k) defined by (3) and for P̂Q
L (k) =∫ π

0
PQ

L (z)e2kizdz it holds

R̂(k)Q̂(−k) =
1

2LA
(1− 4k2)P̂Q

L (k), k = . . . ,−1, 0, 1, . . . (20)

P r o o f . Let f be a π-periodic twice continuously differentiable function then∫ π

0
f(z)R (dz) = 1

2

∫ π

0
GR(z)[f(z) + f ′′(z)] dz using two-fold integration by parts.

Then putting f(z) = e2kzi we get formula (4). Using the same idea to R ∗ Q
and using the fact that the Fourier transform of convolution is a product of Fourier
transforms we get (20). 2

Alternatively we may use the real Fourier series on Z = [0, π) in the form

PQ
L (z) =

aP
0

2
+

∞∑

k=1

(
aP

k cos 2kz + bP
k sin 2kz

)
, (21)

where

aP
k =

2
π

∫ π

0

PQ
L (z) cos 2kz dz, bP

k =
2
π

∫ π

0

PQ
L (z) sin 2kz dz, k = 0, 1, . . .

Lemma 4. It holds aP
0 = 2PL for any Q ∈ P.

P r o o f . Using (19) we have a0 = 2
π

∫ π

0
PQ

L (z) dz = 2
π

∫ π

0
LAFR∗Q (z) dz =

4
π LA = 2PL. 2

For any (signed) measure X on Z denote

aX
k =

2
π

∫ π

0

cos 2kzX (dz), bX
k =

2
π

∫ π

0

sin 2kzX (dz).

Then analogously to (20) we have two equations for real coefficients

aP
k =

πLA

1− 4k2
(aRk aQ

k + bRk bQ
k ) and bP

k =
πLA

1− 4k2
(aRk bQ

k − aQ
k bRk ). (22)
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5. FOURIER ANALYSIS OF THE ROSE OF DIRECTIONS

Curved test systems appeared first in Philofsky and Hilliard [9], who aimed to esti-
mate Fourier coefficients aRk , bRk in (22). They tried to find for each fixed n ∈ N a
test system with orientation distribution Qn such that aQn

k = 0 for all k not equal
to n, and bQn

k = 0 for all k. Then the density (with respect to uniform distribution
U) qn of Qn is qn(z) = aQn

n cos 2nz, and each Qn is a signed measure. Finally for
n = 0 it holds PQn

L (0) = aR0 and for nonzero n it is

PQn

L (0) =
πaRn

2(1− 4n2)
. (23)

It is observed that the number of intersections yields directly the n−th Fourier
coefficient of the rose of directions. Here the test system is not rotated but we have
for each coefficient a different test curve, analogously for bRn . The test system is
constructed by means of parametric equations in the plane

x(z) =
∫ z

0

qn(u) cos udu, y(z) =
∫ z

0

qn(u) sin udu.

Since qn correspond to signed measures the number of intersections on arcs where
qn are negative has to be subtracted from the number of intersections on arcs where
the qn are positive to obtain the desired PQn

L (0).
We can formulate a variant of this idea in which the Fourier coefficients of the rose

of intersections PL(z) are obtained from intersection counts on curved test systems.
The use of signed measures is avoided, instead of subtraction of intersection counts
on test lines we subtract after counting, see (24).

Proposition 4. Let specially Q = δ0 in (21), i. e. PQ
L (z) = PL(z). Then it holds

aP
m = 2(PQma

L − PL) and bP
m = 2(PQmb

L − PL), m = 1, 2, . . . (24)

where PQma

L = 1
π

∫ π

0
(1 + cos 2mz)PL(z) dz and PQmb

L = 1
π

∫ π

0
(1 + sin 2mz)PL(z) dz.

Here Qma, Qmb are orientation distributions of test lines given parametrically as

xm(z) = x0 +
hm

π

∫ z

0

cos θ(1 + cos(2mθ)) dθ (25)

ym(z) = y0 +
hm

π

∫ z

0

sin θ(1 + cos(2mθ)) dθ

for Qma and

xm(z) = x0 +
hm

π

∫ z

0

cos θ(1 + sin(2mθ)) dθ,

ym(z) = y0 +
hm

π

∫ z

0

sin θ(1 + sin(2mθ)) dθ

for Qmb, 0 < z ≤ π, where (x0, y0) is an arbitrary point in R2, hm is the total
length of the test line.
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Remark. Here we write PQ
L instead of PQ

L (0) for Q = Qma, Qmb. The test systems
are not rotated, there is a different test curve shape for estimation of each coefficient
am, bm, m = 1, 2 . . .

P r o o f . It holds PL = 1
π

∫ π

0
PL(z) dz, therefore we can write the coefficients

(21) as

aP
m = 2[

1
π

∫ π

0

(1 + cos 2mz)PL(z) dz − PL], (26)

bP
m = 2[

1
π

∫ π

0

(1 + sin 2mz)PL(z) dz − PL]

to get (24) if the integrals in (26) are interpreted in terms of intersection counts
pertaining to the test lines of specific shapes given by equations (25). 2

Once the Fourier coefficients aP
k , bP

k are estimated, the Fourier coefficients for the
rose of directions are obtained from (22) as

aRk = Dk(aP
k aQ

k + bP
k bQ

k ), bRk = Dk(aP
k bQ

k − aQ
k bP

k ), (27)

where

Dk =
1− 4k2

πLA[(aQ
k )2 + (bQ

k )2]
.

In the case of Proposition 4 it is Q = δ0 so that aQ
k = 2

π , bQ
k = 0 for all k, so we

have specialy

aRk =
1− 4k2

2LA
aP

k , bRk = −1− 4k2

2LA
bP
k . (28)

The structure of the coefficients is similar to (4) and to that of Philofski and
Hilliard [9] obtained by an alternative method. If the density ρ of R exists its
Fourier series is

ρ(z) =
aR0
2

+
∞∑

k=1

aRk cos 2kz + bRk sin 2kz (29)

=
1
π

+
1

2LA

∞∑

k=1

(1− 4k2)[aP
k cos 2kz − bP

k sin 2kz], z ∈ [0, π).

We observe a phenomenon typical for some stereological problems, namely the sum
(29) with random coefficients aP

k , bP
k may have infinite variance caused by 1 − 4k2

term. By using only first few coefficients of the series we can have a finite variance
of the estimator but this may lead to an unsatisfactorily biased estimator in the case
of bimodal or other complex anistropies.
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6. THE ARC TEST SYSTEM CURVES

In this section we consider rotating arc test systems, where arc is a differentiable
curve in the plane. Since the fibre processes studied are stationary we may shift a
given arc arbitrarily. Assume that x ∈ R2, x = (r cos β, r sinβ), r > 0. Let Sr,β be
the system of arcs s in R2 with endpoints x, −x such that the union s∪ [−x, x] is a
boundary of a convex body Ks. Since Ks is not centrally symmetric, we consider its
support function pKs

on [0, 2π] modulo 2π. The intersections s∩ l will be studied of
s ∈ Sr,β and lines l in R2. Typically there are at most two intersections s∩ l for any
given line. Any line is again represented by the point (z, y) in the parametric space
C1 = (0, π]× (−∞,∞). The set L ⊂ C1 of all lines in R2 which hit s is expressed as

L =
{

(z, d);−pKs

(
z − π

2

)
≤ y ≤ pKs

(
z +

π

2

)}
.

Let L = L1 ∪L2, where L1, L2 are disjoint and correspond to lines which have one,
two intersections with s, respectively.

Consider again the stationary anisotropic Poisson line process Φ characterized
by the line density LA and the rose of directions R and represent Φ by means of a
Poisson point process Ψ on C1. Denote N(Li) the number of points of Ψ∩Li, i = 1, 2.

Lemma 5. Let s ∈ Sr,β has the length h and orientation distribution Q(β). The
number of intersections Φ∩ s is a random variable N(L) = N(L1) + 2N(L2), where
N(Li) are independent Poisson distributed with parameter λi = LA

∫
Li

dyR (dz), i =
1, 2. It holds

EN(L) = hPQ
L (β) = LA

(∫

L1

dyR (dx) + 2
∫

L2

dyR (dx)
)

, (30)

varN(L) = LA

(∫

L1

dyR (dx) + 4
∫

L2

dyR (dx)
)

.

P r o o f . Follows immediately from (12) and the fact that EN = varN = λ for a
Poisson distributed random variable N with parameter λ. 2

Rataj and Saxl [11] developed the Steiner compact estimators of R presented
in Section 2 by means of the following smoothing. For n ∈ N and orientations
0 < z1 < z2 < . . . < zn ≤ π, for r ∈ N and weights {cj : j = −r, . . . , 0, . . . , r}, c−j =
cj ≥ 0, j = 0, . . . , r,

∑
j cj = 1 they construct polygons

Kn = {x : 〈x, zi〉 ≤ pi, i = 1, . . . , n}, where pi =
r∑

j=−r

cjpi+j , i = 1, . . . , n (31)

and pi are estimates of 1
2PL(zi). Let hi be the lengths of edges of Kn, then the

estimator of R is Rn(B) =
∑n

i=1 hi1B(zi), B ∈ B.
In Figure 3 the distribution of the Prokhorov distance r(Rn,R) is presented for

exactly the same test system and Poisson line process as in Figure 2, with additional
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smoothing in (31). Comparing both figures we observe a smaller variance of PD
after smoothing but the effect described in Proposition 2 remains apparent.

Fig. 3. Estimated probability densities of PD for R = U , n = 8, LA = 50 (a),

LA = 1000 (b), smoothing with r = 2, cj = 1
2r+1

, j = −r, . . . , r.

Further we observe that the local smoothing in (31) can be expressed in terms of
convolution with a discrete measure Q representing the orientation distribution of a
test system.

Proposition 5. Let Q =
∑m

i=1 biδvi , bi > 0,
∑

bi = 1, vi ∈ Z, i = 1, . . . , n. Then

PQ
L (z) =

m∑

i=1

biPL(z − π + vi), z ∈ Z.

P r o o f . We have Q− =
∑

i biδπ−vi and GR∗Q−(z) =
∫ π

0
| sin(u− z)|R∗Q (du) =∑m

i=1 bi

∫ π

0
| sin(u + π − vi − z)|R (du) =

∑m
i=1 biGR(z − π + vi). Then PQ

L (z) =
LAGR∗Q (z) = LA

∑m
i=1 biGR(z − π + vi) =

∑m
i=1 biPL(z − π + vi). 2

Naturally it is not necessary to restrict to discrete measures Q for local smoothing.
Continuous measures correspond to curved test systems.

Example 1. Let R = δ0 and Q has probability density q(z) = 1
a for z ∈ [0, a)

and q(z) = 0 elsewhere for some a, 0 < a < π
2 . Then GR(z) = sin z and GR∗Q (z) =

cos z−cos(z+a)
a , z ∈ [0, π−a), the smoothing effect can be observed on graphs of these

functions for a > 0 small.
We conclude that curved test systems may be useful to provide local smoothing

when estimating the Steiner compact. It should be kept in mind that using the rose
of intersections PQ

L (z) (i. e. using local smoothing) we get estimators of R∗Q which
is not exactly R.

In Rataj and Saxl [11] the properties of Steiner compact estimator (31) were
justified by the following result: For any ε > 0, α ∈ (0, 1) there exist n, {zi}, r, {cj}
such that probability

Pr{d(Kn,K) ≤ εLA} ≥ α,
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assuming that pi − 1
2PL(zi), i = 1, . . . , n are independent centred normally dis-

tributed random variables with uniformly bounded variances. We access an estima-
tor of Steiner compact based on curved test lines and try to get quantitative results
in a special case.

Consider rotations of the test arc s with orientation distribution Q around uniform
angles zj = πj

n , j = 0, . . . , n− 1. Principially one could generalize Lemma 5 to this
system of test arcs and use the exact approach from Section 3 to get the distribution
of PD = r(Rn,R). We restrict ourselves to an example of approximation of the
Hausdorff distance d(Kn,K), even if it seems to be from the statistical point of view
less convincing.

Let qj = 1
2PQ

L (zj) be the theoretical values at zj of the support function of
Steiner compact set K corresponding to R ∗Q and pj their empirical counterparts
estimated from numbers of intersections on test lines. We construct convex polygons
Kn = {x ∈ R2; 〈x, zj〉 ≤ pj , j = 1, . . . , n}. According to Rataj and Saxl [11] it
holds

d(Kn,Kn) ≤ Y

cos 42
, and d(Kn,K) ≤ 1

2
LA tan

4
2

, (32)

where Y = maxj |qj − pj |, Kn = {x ∈ R2; 〈x, zj〉 ≤ qj , j = 1, . . . , n} and 4 = π
n

is the discretization step. To evaluate the first bound in (32) we need to know the
dependence structure of pi, i = 1, . . . , n. It depends on many factors such that the
mutual location and shape of test lines. In practice it is usually not possible to get
pi’s from n independent realizations, very frequently we have just one observation
window of the structure. Then the pi’s become observations of positively dependent
random variables, cf. Lemma 3. The general sharp bounds for Y are

( ∑

j

Fj(t−)− (n− 1)
)

+
≤ Pr(Y ≤ t) ≤ min

j
Fj(t−), (33)

where Fj are distribution functions of |qj − pj |, j = 1, . . . , n. See Rychlik [12] for
further results on such bounds. While the lower bound in (33) is not much useful
here, in the situation with strong positive dependence Pr(Y ≤ t) is close to the
upper bound.

Example 2. Let s be a circular arc with radius r and length h = rα, where α is the
central angle of the arc. The minimum on the right hand side of (33) is realized by
the pj with largest variance. Consider the extremal case R = δ0, zj = π

2 , when Φ are
parallel lines. Then N(L) = N(L1), N(L1) is Poisson distributed with parameter
2LApKs(0) and varN(L) = 2LApKs(0) ≈ hLA, assuming that r is large. Then we
get that

var (pj − qj) =
1

4h2
varN(L) ≈ LA

4h
depends on length intensity of Φ and the length of test probes. We can fix say h =
2500L−1

A and estimate Pr(Y ≤ 0.02LA) ≈ 0.95 using the Gaussian approximation.
Put n = 18, zj = πj

18 , we obtain Pr(d(K18, K18) ≤ 0.021LA) ≈ 0.95. Together with
d(K18,K) ≤ 0.04LA according to the second inequality in (32) we obtain that the
distance d(K18,K) will not exceed 6.1% of LA with probability 0.95 in the case of
strongly positively dependent data.
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M.D. Taylor, eds.), IMS Lecture Notes – Monograph Series 28 (1996), pp. 297–306.

[13] R. Schneider: Convex Bodies: The Brunn–Minkowski Theory. Encyclopedia Math.
Appl. 44 (1993).

[14] S. Stoyan, W. S. Kendall and J. Mecke: Stochastic Geometry and Its Applications.
Second edition. Wiley, New York, Chichester 1995.
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