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BRIEF NOTE ON DISTRIBUTIVITY
OF TRIANGULAR FUZZY NUMBERS1

Milan Mareš

The general results summarized in [1] and [3] show that fuzzy quantities and more
especially fuzzy numbers do not fully preserve some of the classical algebraic properties of
addition. The most significant ones are the group property of the opposite elements and one
of the distributivity laws. It is shown in [3] that the concept and properties of the opposite
element can be easily formulated if we substitute the crisp equality between fuzzy quantities
by a weaker type of relation. It is also shown in [3] that this methods does not influence
the problem of distributivity, except a very special sort of fuzzy quantities, as shown in [4].
Here we prove that for the triangular fuzzy numbers and for trapezoidal fuzzy intervals the
procedure based on the weaker relation leads to the validity of the distributivity.

1. GENERALITIES

Due to [3] and [4] we define fuzzy quantity a as a fuzzy subset of the real line R with
membership function µa : R → [0, 1] fulfilling

∃x0 ∈ R, µa(x0) = 1, (1)
∃x1, x2 ∈ R, x /∈ [x1, x2] ⇒ µa(x) = 0. (2)

The set of all fuzzy quantities is denoted by R. In the whole paper the equality
a = b for a, b ∈ R means the strict equality of membership functions, µa(x) = µb(x)
for all x ∈ R.

Applying the extension principle (cf. [1]) we define the addition operation over
R by

µa⊕b(x) = sup
y∈R

(min(µa(y), µb(x− y))) , (3)

for any x ∈ R, a, b ∈ R.
If r ∈ R is a real number then we denote by 〈r〉 the degenerated fuzzy quantity

µ〈r〉(x) = 1 for x = r, (4)
= 0 for x 6= r.

1This research was supported by the Grant Agency of the Czech Academy of Sciences under
Grant No. A 10 75503.
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It is easy to verify (cf. [1], [3]) that operation defined by (3) fulfills some of the
group properties, namely

a⊕ b = b⊕ a, (a⊕ b)⊕ c = a⊕ (b⊕ c), a + 〈0〉 = a. (5)

If r ∈ R and a ∈ R then we define the crisp product r · a by

µr·a = µa(x/r) for r 6= 0, (6)
= µ〈0〉(x) for r = 0,

for any x ∈ R. It is not difficult to prove that for a, b ∈ R, r ∈ R

r · (a⊕ b) = (r · a)⊕ (r · b). (7)

In this sense some of the linearity properties of the set R are fulfilled but the
remaining two of them are missing. Namely, if a ∈ R and −a ∈ R is defined by

µ−a(x) = µa(−x) for all x ∈ R, (8)

then generally
a⊕ (−a) 6= 〈0〉. (9)

Moreover, if r1, r2 ∈ R, a ∈ R then also generally

(r1 + r2) · a 6= (r1 · a)⊕ (r2 · a). (10)

These facts are mentioned in [1], [3], [4] and numerous other works.

The discrepancy expressed by (9) can be avoided if we substitute the strict
equality between fuzzy quantities by a weaker relation based on the existence and
properties of “fuzzy zeros”, i. e. of fuzzy quantities symmetric around 0. This pro-
cedure is described e. g. in [3].

If y ∈ R then we say that a ∈ R is y-symmetric iff

µa(y + x) = µa(y − x) for all x ∈ R. (11)

By S0 ⊂ R we denote the set of all 0-symmetric fuzzy quantities, and by S ⊂ R the
set of all fuzzy quantities which are y-symmetric for some y ∈ R.

We say that a, b ∈ R are additively equivalent, and write a ∼⊕ b, iff there exist
s1, s2 ∈ S0 such that

a⊕ s1 = b⊕ s2. (12)

Elements from S0 can be considered for fuzzy zeros, i. e. for elements not in-
fluencing the results of the addition (they possess even other useful properties of
the zero), and the equivalence defined by (12) means that we ignore the fuzzy zero
differences between fuzzy quantities. Then it is easy to verify (cf. [3]) that for any
s ∈ S0, a, b, c ∈ R,

a⊕ b ∼⊕ b⊕ a, (a⊕ b)⊕ c ∼⊕ a⊕ (b⊕ c), a⊕ s ∼⊕ a, a⊕ (−a) ∼⊕ s. (13)
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Of course, r · (a⊕ b) ∼⊕ (r · a)⊕ (r · b) for r ∈ R, a, b ∈ R, but the complementary
distributivity relation

(r1 + r2) · a ∼⊕ (r1 · a)⊕ (r2 · a)

is guaranteed only for some special types of a, e. g., for a ∈ S.
The goal of this paper is to show that for the triangular and trapezoidal fuzzy

numbers the method remembered above contributed even to the solution of the
distributivity problem.

2. TRIANGULAR FUZZY NUMBERS

In accordance with [1], [2] and [4] a fuzzy quantity a ∈ R is called a triangular fuzzy
number iff its membership function µa is determined by a triple of real numbers
(a1, a0, a2), a1 ≤ a0 ≤ a2. For a1 < a0 < a2

µa(x) = λ for x ∈ [a1, a0], x = λa0 + (1− λ) a1, (14)
µa(x) = λ for x ∈ [a0, a2], x = λa0 + (1− λ) a2,

µa(x) = 0 for x /∈ [a1, a2].

This is equivalent to

µa(x) = (x− a1) / (a0 − a1) for x ∈ [a1, a0], (15)
= (x− a2) / (a0 − a2) for x ∈ [a0, a2],
= 0 for x /∈ [a1, a2].

If a1 = a0 or a2 = a0 then we accept the convence µa(a0) = 1, µa(x) = 0 for
x < a0 or x > a0, respectively. The set of all triangular fuzzy numbers will be
denoted by L ⊂ R. It can be easily verified that for r ∈ R, a, b ∈ L, where a, b are
determined by (a1, a0, a2), (b1, b0, b2), respectively, also a⊕ b ∈ L and r ·a ∈ L. Here
a ⊕ b is determined by the triple (a1 + b1, a0 + b0, a2 + b2), r · a is determined by
(r · a1, r · a0, r · a2) for r > 0, by (r · a2, r · a0, r · a1) for r < 0, and by (0, 0, 0) for
r = 0.

As L ⊂ R, the triangular fuzzy numbers fulfill (5) and (7).
If a ∈ L then obviously also −a ∈ L, −a is determined by (−a2,−a0,−a1) if a

was determined by (a1, a0, a2), it means that

a⊕ (−a) ∈ L ∩ S0,

and consequently a⊕ (−a) ∼⊕ 〈0〉 ∈ L.

More attractive is the fact that for the triangular fuzzy numbers the distributivity
in the equivalence form is fulfilled. The distributivity r · (a ⊕ b) ∼⊕ (r · a) ⊕ (r · b)
for r ∈ R, a, b ∈ L, follows from (7) immediately. The complementary one is proved
by the following statement.



454 M. MAREŠ

Theorem 1. If a ∈ L, r1, r2 ∈ R, then

(r1 + r2) · a ∼⊕ (r1 · a)⊕ (r2 · a). (16)

P r o o f . Let r2 = 0 Then

(r1 + r2) · a = r1 · a = r1 · a⊕ 〈0〉 = r1 · a⊕ r2 · a.

Let r1 > 0, r2 > 0. Then (r1 + r2) · a is characterized by ((r1 + r2) · a1, (r1 + r2) ·
a0, (r1 + r2) · a2) = (r1 · a1 + r2 · a1, r1 · a0 + r2 · a0, r1 · a2 + r2 · a2) which triple
characterizes r1 · a ⊕ r2 · a, and consequently (r1 + r2) · a = r1 · a ⊕ r2 · a. Quite
analogously we prove this equality for r1 < 0, r2 < 0. Let r1 > 0, r2 < 0 and
|r1| > |r2|. Then r1 + r2 > 0, and (r1 + r2) · a is characterized by

((r1 + r2) · a1, (r1 + r2) · a0, (r1 + r2) · a2) . (17)

On the other side, r1 · a⊕ r2 · a is characterized by the triple

(r1 a1 + r2 a2, r1 a0 + r2 a0, r1 a2 + r2 a1) , (18)

as follows from the negativity of r2. Then (18) is equal to

(r1 a1 + r2 a1 − r2 a1 + r2 a2, r1 a0 + r2 a0, r1 a2 + r2 a2 − r2 a2 + r2 a1)

which is equal to

((r1 + r2) · a1 + r2(a2 − a1), r1 a0 + r2 a0, (r1 + r2) · a2 + r2(a1 − a2)) .

Using (17) we can easily see that this triple characterizes the sum

(r1 + r2) · a⊕ s′ = (r1 + r2) · a⊕ r2 s (19)

where s′ is characterized by

(r2(a2 − a1), 0, r2(a1 − a2)) , (20)

and s is characterized by
(a1 − a2, 0, a2 − a1) (21)

and, consequently, s ∈ S0 ∩ L. Analogously, for r1 > 0, r2 < 0, |r1| < |r2|

(r1 · a)⊕ (r2 · a) = (r1 + r2) · a⊕ s′′ = (r1 + r2) · a⊕ r1 s (22)

where s′′, s ∈ S0 ∩ L s′′ is characterized by the triple

(r1(a1 − a2), 0, r1(a2 − a1)) (23)

and s is given by (21). Finally, if r1 = −r2, r1 > 0, then (r1 + r2) · a = 〈0〉 and
r1 · a⊕ r2 · a = r1 · a⊕ (−r1) · a ∈ S0 ∩ L. In all cases equivalence (16) is proved. 2
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If a ∈ L ∩ S is y-symmetric for some y ∈ R then a is characterized by the triple
(y − e, y, y + e) for some e ∈ R, e > 0. Expressions (20) and (23) imply that for
such a ∈ L ∩ S and for r1, r2 ∈ R, r1 > 0, r2 < 0 the fuzzy quantity s ∈ S0 in (19)
and (21) is characterized by

(2r2e, 0, −2r2e) if |r1| > |r2|,

and by
(−2r1e, 0, 2r1e) if |r1| < |r2|.

3. TRAPEZOIDAL FUZZY NUMBER

Another specific type of fuzzy quantity (cf. [1]) is the trapezoidal fuzzy number (or
interval) a ∈ R with membership function µa characterized by a quadruple

(a1, a0, a′0, a2), (24)

where

µa(x) = (x− a1) / (a0 − a1) for x ∈ [a1, a0], (25)
= 1 for x ∈ [a0, a

′
0],

= (x− a2) / (a′0 − a2) for x ∈ [a′0, a2].
= 0 for x /∈ [a1, a2].

The set of all trapezoidal fuzzy numbers is denoted by I. Evidently a⊕b ∈ I, r ·a ∈ I,
for a, b ∈ I, r ∈ R, and they are characterized by quadruples

(a1 + b1, a0 + b0, a′0 + b′0, a2 + b2) ,

and
(r · a1, r · a0, r · a′0, r · a2) for r > 0,

(r · a2, r · a′0, r · a0, r · a1) for r < 0,

(0, 0, 0, 0) for r = 0,

respectively.
If a1 = a0 or a′0 = a2 then we accept the convence that µa(a0) = 1, µa(x) = 0

for x < a0 or µa(a′0) = 1, µa(x) = 0 for x > a0, respectively. If a0 = a′0 then a ∈ L
and µa(x) = 1 iff x = a0 = a′0.

If a ∈ I is characterized by the quadruple (a1, a0, a
′
0, a2) then there exist b ∈ L

and s ∈ I∩S0 characterized by (b1, b0, b2), (s1, s0, s
′
0, s2) such that s1 = s0, s′0 = s2,

b1 = a1 + (a′0 − a0)/2, b2 = a2 − (a′0 − a0)/2,

b0 =
a0 + a′0

2
,

s1 = s0 =
a0 − a′0

2
, s2 = s′0 =

a′0 − a0

2
,
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and
a = b⊕ s, i. e. a ∼⊕ b,

(the sum can be easily realized if we consider b being element of I characterized by
(b1, b0, b0, b2)).

Analogously to Theorem 1 it is possible to prove the following

Theorem 2. If a ∈ I, r1, r2 ∈ R, then

(r1 + r2) · a ∼⊕ r1 a⊕ r2 a. (26)

P r o o f . The proof is very similar to that one of Theorem 1. If r1 · r2 > 0 then
(26) turns into equality

(r1 + r2) · a = r1 a⊕ r2 a. (27)

If r1 · r2 < 0 then
r1 a⊕ r2 a = (r1 + r2) · a⊕ r · s

where r = r1 if r1 + r2 < 0, r = r2 if r1 + r2 > 0, and s ∈ S0 ∩ I is characterized by
the quadruple

(a1 − a2, a0 − a′0, a′0 − a0, a2 − a1) .

Other steps of the proof are fully analogous to the previous one. 2

4. LINEARITY OF IL AND II

The previous two theorems easily imply the following conclusion

Theorem 3. Sets L and I are linear spaces with the addition operation ⊕, with
the crisp product defined by (6) as the multiplication by real number, and with the
additive equivalence relation ∼⊕ instead of the strict equality. Linear space L is a
subspace of the space I.

P r o o f . The statement follows from (13), (7), and from Theorems 1 and 2,
immediately. 2

5. CONCLUSIVE REMARKS

The set of triangular fuzzy numbers L is a subset of the set of trapezoidal fuzzy
intervals I. Being closed regarding the addition and crisp product operations they
represent autonomous subspaces whose autonomy is supported by the following fact

If we consider the equivalence relation (12) over L and I only, it means if we admit
the 0-symmetric fuzzy quantities s1, s2 in (12) from L ∩ S0 and I ∩ S0, exclusively,
then a fuzzy quantity from L cannot be additively equivalent to any other fuzzy
quantity from R− L, and analogously for I.

This consideration can be inverted in the following sense. If some general fuzzy
quantity b ∈ R is additively equivalent to some trapezoidal fuzzy interval a ∈ I,
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i. e. if a ∼⊕ b, then the properties derived for a by means of linear operations can
be eventually used for the characterization of b which characterization is adequate
proportionally to the adequacy of the applied equivalence. From this point of view
the formal analytical properties of the membership functions (like their part-wise
linearity, triangularity, etc.) seem to be less essential than the similarity of their
fuzziness which similarity means that they differ in “fuzzy zeros” from S0, only.

The possibility to substitute some fuzzy quantities by additively equivalent tri-
angular fuzzy numbers can be useful in various situations, e. g. in solving fuzzy
equivalentions described in [4]. They represent a fuzzy analogy to equations using
the additive equivalence instead of equality. Generally, it is possible to solve simple
equivalentions like

r · x⊕ a ∼⊕ b, r ∈ R, r 6= 0, a, b ∈ R,

but more general systems of equivalentions with more variables cannot be generally
solved without the validity of both distributivity rules. The results presented above
mean that systems of equivalentions can be managed by means of classical alge-
braic procedures for triangular and trapezoidal fuzzy numbers, and the equivalence
between some general fuzzy quantities and their triangular counterparts allows to
extend these solutions to wider class of variables.

(Received March 14, 1994.)
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[3] M. Mareš: Algebra of fuzzy quantities. Internat. J. Gen. Systems 20 (1991), 1, 59–65.
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