
KY BERNET I K A — V OL UME 3 1 ( 1 9 9 5 ) , N UM B ER 5 , PAGE S 4 6 5 – 4 8 0

INTEGRATION OF EXPERT KNOWLEDGE
INTO A PROBABILISTIC EXPERT SYSTEM

Jana Vejvalková

The paper deals with the problem of integration of additional expert information in
the form of univariate marginal distributions into a probabilistic knowledge base defined
by a discrete distribution mixture. The suggested solution consists in constructing the
I-projection of the original knowledge base on the class of distributions satisfying the
additional conditions formulated by experts. The computation of the I-projection is based
on the iterative proportional fitting procedure (IPFP) originally designed for contingency
tables. The procedure is modified for distribution mixtures with product components and
the convergence of the resulting algorithm is proved. Practical application of the method
is illustrated by a numerical example.

1. INTRODUCTION

The purpose of expert systems is to enable us the efficient use of knowledge and
experience accumulated in different fields of human activities [4]. In practice a great
deal of information obtained from experts as well as from the data provided by users
is not known with certainty. An important feature of expert systems is therefore the
processing of uncertain information which can be well formalized in the framework
of probability theory.

Considering the probabilistic approach to expert systems we assume that the
input and output information is expressed in terms of discrete random variables

v1, v2, . . . , vN (1)

taking values from finite sets X1, X2, . . . , XN , respectively. The uncertainty of the
variable vn, n ∈ {1, . . . , N} is characterized by a univariate probability distribution
on Xn:

Prob {vn = x} = pn(x) ≥ 0, x ∈ Xn,
∑

x∈Xn

pn(x) = 1. (2)

The knowledge base of a common probabilistic expert system is usually closely re-
lated to the joint distribution of the involved variables. The knowledge base of the
probabilistic expert system PES [3] has the form of a finite distribution mixture
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(weighted sum) with M product components:

P (x) =
M∑

m=1

wmF (x|m), F (x|m) =
N∏

n=1

pn(xn|m),

x = (x1, x2, . . . , xN ), x ∈ X; X = X1 ×X2 × · · · ×XN , (3)

wm ≥ 0,

M∑
m=1

wm = 1,
∑

x∈Xn

pn(x|m) = 1, n ∈ {1, . . . , N}, m ∈ {1, . . . , M}.

Here wm ≥ 0 denotes the apriori weight of the mth component F (x|m) and pn(x|m)
is the discrete distribution of the variable vn corresponding to the mth component.

An important advantage of mixture (3) is a simple computation of any marginal
distribution by omitting superfluous terms in the products F (x|m). In addition, the
required form of the mixture is not restrictive since any multivariate discrete distri-
bution can be expressed in this form if the number of components M is sufficiently
large.

The output information of the probabilistic expert system PES is expressed either
by conditional probability distributions which can be obtained according to Bayes
formula in case of definite input or by the formula of complete probability if the
input information is uncertain.

One way to obtain the knowledge base is to compute the maximum likelihood
estimates of finite mixtures from data using the iterative EM algorithm [2].

Another possibility is to design the knowledge base in cooperation with experts.
In practice the components of the mixture defined as products of univariate distri-
butions may correspond to different mutually exclusive situations, diagnoses, hy-
potheses, etc. and can be directly designed by experts. Unfortunately, the underly-
ing assumption of conditional independence of variables for each diagnosis or situa-
tion is rather restrictive.

In the following the problem of the integration of expert information into the
probabilistic knowledge base is formulated for a general type of finite distribution
mixtures.

2. PROBLEM OF INTEGRATION OF EXPERT INFORMATION INTO THE
KNOWLEDGE BASE

Let P be the set of all discrete probability distributions Q on the product space X:

Q : X → 〈0, 1〉,
∑

x∈X
Q(x) = 1; X = X1 ×X2 × · · · ×XN , (4)

where Xn, n ∈ {1, . . . , N} are finite sets. On the set P we introduce the metric:

ρ(P, Q) = ‖P −Q‖ =
∑

x∈X
|P (x)−Q(x)|; P, Q ∈ P . (5)
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Theorem 1. Metric space (P , ρ) with the metric (5) is compact.

P r o o f . It is a well known fact. 2

We denote as SM ⊂ P the set of discrete distributions on X having the form of
a finite mixture (3) with M product components.

We shall assume that the original knowledge base is defined by a joint probability
distribution R ∈ SM – designed by experts or estimated from data – and that
the experts cooperating in designing the knowledge base supply some additional
information in the form of true univariate distributions for all variables vn,
n ∈ {1, . . . , N}:

Prob {vn = x} = qn(x) ≥ 0, x ∈ Xn,
∑

x∈Xn

qn(x) = 1. (6)

If some distributions qn are not given explicitly, we could reduce the problem to the
corresponding subspace. Another possibility is to complete the expert information
with the respective marginal distributions of the original distribution R. In that case
we would prefer to keep the unspecified marginal structure of the original knowledge
base unchanged.

In order to integrate the given additional information into the original knowledge
base R ∈ SM we seek a new knowledge base R? ∈ SM satisfying prescribed marginal
constraints (6) and differing from the original mixture R as little as possible.

To simplify notation we denote as En, n ∈ {1, . . . , N} the set of all discrete
distributions on X which satisfy the nth marginal constraint from (6):

En = {P ∈ P : Pn(x) = qn(x) for all x ∈ Xn} , (7)

where

Pn(x) =
∑

x1∈X1

· · ·
∑

xn−1∈Xn−1

∑

xn+1∈Xn+1

· · ·
∑

xN∈XN

P (x1, . . . , xn−1, x, xn+1, . . . , xN )

(8)
and as E the set of discrete distributions on X which satisfy all N marginal con-
straints:

E = {P ∈ P : Pn(x) = qn(x) for all x ∈ Xn, n = 1, . . . , N} =
N⋂

n=1

En. (9)

Remark 1. The sets E, E1, . . . , EN ⊂ P are nonempty, convex and closed in (P , ρ).

As the measure of difference between two distributions we choose the I-divergence
used by Csiszár in [1].
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Definition 1. The I-divergence I(P, Q) of the distributions P, Q ∈ P (also called
the discrimination information or the relative entropy of P with respect to Q) is
defined by the formula:

I(P, Q) =
∑

x∈X
P (x) log

P (x)
Q(x)

. (10)

Here and in the following we understand

0 log
0
a

= 0 for a ≥ 0, a log
a

0
= +∞ for a > 0. (11)

Remark 2. Let us recall that the I-divergence of two probability distributions is
always nonnegative and vanishes iff the distributions are identical. It is not sym-
metrical and does not satisfy the triangular inequality, therefore it is not a metric.
Nevertheless, owing to suitable properties, it is often used as a measure of difference
of two distributions.

Definition 2. Let A ⊂ P be a nonempty closed convex set and Q ∈ P be such
that I(P̃ , Q) < ∞ holds for some P̃ ∈ A. Then the distribution Q? ∈ A satisfying
the condition:

I(Q?, Q) = min
P∈A

I(P, Q) (12)

is called the I-projection of the distribution Q on the set A.

Remark 3. Since X is finite the following equivalence is true:

I(P, Q) < ∞⇔ (Q(x) = 0 ⇒ P (x) = 0 for all x ∈ X),

i. e. the finiteness of I(P, Q) is equivalent to the absolute continuity of P with respect
to Q, P ¿ Q.

Remark 4. It can be shown that the I-projection Q? is determined uniquely since
A is a convex set and I(P, Q) is strictly convex function of the variable P .

A necessary and sufficient condition for the existence of the I-projection is for-
mulated in the following theorem.

Theorem 2. Let R ∈ P be a distribution such that I(Q̃, R) < ∞ (i. e. Q̃ ¿ R)
holds for some Q̃ ∈ E. Then R has a unique I-projection R? ∈ E on the set E.

P r o o f . The proof is analogous to that of Theorem 2.1 in [1]. The uniqueness of
the I-projection follows from Remark 4. 2

Now we can briefly summarize the problem under consideration and the idea of
its solution:
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The original knowledge base R ∈ SM and some additional expert information in
the form of a set of univariate distributions qn, n ∈ {1, . . . , N} are given. In order
to integrate this expert knowledge into our expert system we shall construct a new
knowledge base R? ∈ SM as the I-projection of the distribution R on the set E.
If R? exists it evidently satisfies marginal constraints (6); it is determined uniquely
(see Theorem 2) and minimizes the distance from R in the sense of Definition 2.

The main idea of the present approach is to compute the I-projection R? by
means of the so-called iterative proportional fitting procedure (IPFP). This pro-
cedure had been originally designed for contingency tables but it can be modified
for the considered special class of mixtures.

As it will be shown later the constructed iterative sequence of distributions con-
verges to the desired solution R? ∈ E in the sense of I-divergence and pointwisely,
too.

3. IPFP PROCEDURE

The iterative proportional fitting procedure (IPFP) was originally designed to ad-
just the relative frequencies in a contingency table to some apriori known marginal
probabilities. The procedure is based on cyclic norming of the rows and columns
of a contingency table until the convergence of the entries. In this paper the IPFP
procedure is applied to distribution mixtures of product components (3).

At first we shall describe the construction of the iterative sequence in general case
when the starting term R ∈ P has not necessarily the form of distribution mixture
(3). The modification for distribution mixtures will be mentioned in Section 6.

Let R ∈ P . The iterative sequence produced by the IPFP procedure we denote
as

P (k,`), k = 0, 1, . . . ; ` = 0, 1, . . . , N, (13)

where we set P (0,0) = R and P (k,N) ≡ P (k+1,0) for all k.
If P (k,`−1) is the term in the step (k, ` − 1) then, analogously to [5], the next

iteration will be obtained by the recurrent formula:

P (k,`)(x) = C(k,`)(x`) P (k,`−1)(x), x ∈ X, (14)

where

C(k,`)(x`) =
q`(x`)

P
(k,`−1)
` (x`)

if P
(k,`−1)
` (x`) 6= 0,

C(k,`)(x`) = 1 if P
(k,`−1)
` (x`) = 0.

(15)

Here q` is the given univariate distribution and P
(k,`−1)
` is the `th marginal of

P (k,`−1). The iterative sequence defined by formulae (13), (14), (15) we denote

briefly as
{{

P (k,`)
}N

`=0

}∞
k=0

and prove its important properties.

In the following we suppose that the assumptions of Theorem 2 are satisfied so
that R ∈ P has the unique I-projection R? ∈ E on the set E.
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Lemma 1. Let Q ∈ E, I(Q,R) < ∞. Then for each iteration P (k,`) the following
implication holds:

P (k,`)(x) = 0 ⇒ Q(x) = 0, x ∈ X. (16)

P r o o f . For the first iteration R = P (0,0) this assertion is true because
Q ¿ R. Let us take x ∈ X. If P (k,`)(x) = 0 then, according to formula (14), either
P (k,`−1)(x) = 0 or P (k,`−1)(x) 6= 0 and C(k,`)(x`) = 0.

In the case of P (k,`−1)(x) = 0 the induction hypothesis implies that Q(x) = 0
immediately. In the opposite case, P (k,`−1)(x) 6= 0 and C(k,`)(x`) = 0 imply that
q`(x`) = 0 (see (15)). Since Q ∈ E it holds:

0 = q`(x`) = Q`(x`) ≥ Q(x) ≥ 0. (17)

2

Proposition 1. P (k,`) ∈ P for all k, `.

P r o o f . Let us suppose by induction that P (k,`−1) ∈ P . Then the next iteration
P (k,`) (see (14)) is evidently nonnegative and

∑

x∈X
P (k,`)(x) =

∑

x∈X`

C(k,`)(x) P
(k,`−1)
` (x) =

∑

x∈X`

q`(x) = 1 (18)

because according to Lemma 1

P
(k,`−1)
` (x) = 0 ⇒ q`(x) = 0, x ∈ X`. (19)

2

Proposition 2. If Q ∈ E then

1. I(Q,R) < ∞ ⇒ I(Q,P (k,`)) < ∞ for all k, `

2. I(Q,R) = ∞ ⇒ I(Q,P (k,`)) = ∞ for all k, `.

P r o o f . The first assertion follows from Lemma 1 and Proposition 1. To prove
the second one we shall show that the following implication holds:

I(Q,P (k,`−1)) = ∞ ⇒ I(Q,P (k,`)) = ∞. (20)

I(Q,P (k,`−1)) = ∞ implies that Q(x̃) > 0 along with P (k,`−1)(x̃) = 0 for some
x̃ ∈ X. However, according to recurrent formula (14)

P (k,`)(x̃) = C(k,`)(x̃`) P (k,`−1)(x̃) = 0 (21)

so that I(Q,P (k,`)) = ∞, too. 2
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Proposition 3. P (k,`) ∈ E` for all k and ` ∈ {1, . . . , N}.
P r o o f . According to iterative formula (14), (15) and implication (19) the fol-

lowing relation can be proved easily:

P
(k,`)
` (x) = C(k,`)(x) P

(k,`−1)
` (x) = q`(x) for all x ∈ X`. (22)

2

Proposition 4. If Q ∈ E then

I(Q,P (k,`−1)) = I(Q,P (k,`)) + I(P (k,`), P (k,`−1)) for all k ∈ {0, 1, . . . }. (23)

P r o o f . First we consider such distributions Q ∈ E for which I(Q,R) < ∞,
i. e. Q ¿ R. Then I(Q,P (k,`−1)) < ∞ and I(Q,P (k,`)) < ∞ (see Proposition 2)
and according to iterative formula (14) we can write

I(Q, P (k,`)) = I(Q,P (k,`−1))−
∑

x∈X`

Q`(x) log C(k,`)(x). (24)

Distribution Q satisfies the `th marginal constraint so that using formula (15),
Proposition 3 and formerly proved implication (19) it can be easily shown that

∑

x∈X`

Q`(x) log C(k,`)(x) =
∑

x∈X`

q`(x) log C(k,`)(x) = I(P (k,`), P (k,`−1)) < ∞. (25)

In the case of Q ∈ E, I(Q,R) = ∞, both I(Q,P (k,`−1)) and I(Q,P (k,`)) are infinite
(see Proposition 2) while I(P (k,`), P (k,`−1)) is finite. Therefore relation (23) is true,
too. 2

4. TRANSITIVITY OF THE I–PROJECTION

Now we can prove the transitive property of the I-projection.

Theorem 3. Let R? ∈ E be the I-projection of the distribution R = P (0,0) ∈ P
on the set E.

Then R? is the I-projection of each iteration P (k,`) on the set E, i. e. for all
k = 0, 1, . . . and ` = 0, 1, . . . , N

∞ > I(R?, P (k,`)) = min
Q∈E

I(Q,P (k,`)). (26)

P r o o f . Let us suppose by induction that

∞ > I(R?, P (k,`−1)) = min
Q∈E

I(Q,P (k,`−1)). (27)
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For each Q ∈ E we can write equation (23) (see Proposition 4) and after minimizing:

min
Q∈E

I(Q, P (k,`−1)) = min
Q∈E

I(Q,P (k,`)) + I(P (k,`), P (k,`−1)). (28)

Using the induction hypothesis we have

∞ > I(R?, P (k,`−1)) = min
Q∈E

I(Q,P (k,`)) + I(P (k,`), P (k,`−1)) (29)

which, according to Proposition 4 again, implies that

∞ > I(R?, P (k,`)) = min
Q∈E

I(Q,P (k,`)). (30)

2

5. CONVERGENCE PROPERTIES

In this section it will be proved that the iterative sequence
{{

P (k,`)
}N

`=0

}∞
k=0

con-
verges in the sense of the I-divergence to the I-projection of the original knowledge
base R = P (0,0) ∈ P on the set E. Since the product space X is finite the conver-
gence is pointwise, too.

Theorem 4. The iterative sequence
{{

P (k,`)
}N

`=0

}∞

k=0

; (k, `) = (0, 0), (0, 1), . . . , (0, N) ≡ (1, 0), . . . , (1, N), . . . (31)

converges pointwisely to the I-projection R? of the distribution R on the set E.

P r o o f . According to Proposition 4 we can write for the I-projection R? equation
(23)

I(R?, P (k,`−1)) = I(R?, P (k,`)) + I(P (k,`), P (k,`−1)). (32)

Hence
∞ > I(R?, P (k,`−1)) ≥ I(R?, P (k,`)) ≥ 0. (33)

Because
{{

I(R?, P (k,`))
}N

`=0

}∞
k=0

is a bounded monotone real sequence, it has a fi-

nite limiting value. Approaching the limit in equation (32) we can write

I(P (k,`), P (k,`−1)) → 0, k →∞ in the sense of (31), (34)

which implies that

I(P (k,`), P (k,`−1)) → 0, k →∞ for each fixed ` ∈ {1, . . . , N}. (35)

According to the inequality ‖P −Q‖ ≤
√

2I(P, Q) mentioned in [1] it holds

‖P (k,`) − P (k,`−1)‖ → 0, k →∞ for each fixed ` ∈ {1, . . . , N}. (36)
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Let us take an arbitrary subsequence of iterative sequence (31). From this sub-
sequence we can choose a sequence which converges to an element Q? ∈ P (see
Theorem 1). As the number of variables N is finite, this convergent sequence must
contain an infinite number of terms with the same (some) index ˜̀∈ {1, . . . , N}; thus,

it must contain a subsequence
{

P (kn,˜̀)
}∞

n=1
which converges to Q?, too.

Without any loss of generality let us consider ˜̀= 1. The limiting element Q? of

the sequence
{
P (kn,1)

}∞
n=1

lies in the set E1 since E1 is closed in (P , ρ):

P (kn,1) → Q? ∈ E1, n →∞. (37)

The sequence
{
P (kn,2)

}∞
n=1

converges to the element Q?, too, because of (36) and

‖P (kn,2) −Q?‖ ≤ ‖P (kn,2) − P (kn,1)‖+ ‖P (kn,1) −Q?‖ (38)

and Q? lies also in the set E2 since E2 is closed in (P , ρ). It can be analogously
shown that P (kn,3) → Q? and Q? ∈ E3, . . . , P (kn,N) → Q? and Q? ∈ EN , thus on
the whole

lim
n→∞

P (kn,`) = Q? for each fixed ` ∈ {1, . . . , N}; Q? ∈
N⋂

`=1

E` = E. (39)

We shall show that Q? = R?.
We know that R? is the I-projection of each iteration P (kn,`) on the set E (see

Theorem 3). Therefore, for an arbitrarily chosen but fixed ˜̀∈ {1, . . . , N}, we can
write

I(R?, P (kn,˜̀)) ≤ I(Q?, P (kn,˜̀)) (40)

and letting n approach infinity in the above relation (it is possible since X is finite)
we get

I(R?, Q?) ≤ I(Q?, Q?) = 0. (41)

Hence Q? = R?.
Since the I-projection R? is unique we have proved that each convergent sub-

sequence of
{
P (k,`)

}∞
k=0

converges to R? in (P , ρ). That is why the limiting element
in (P , ρ) of the whole iterative sequence is the I-projection R?.

The pointwise convergence of the sequence follows from the convergence in (P , ρ).
2

6. MODIFICATION OF IPFP FOR DISTRIBUTION MIXTURE

Let us suppose now that the first term of the iterative sequence is a distribution
mixture R ∈ SM . We shall prove that in such case each term of the sequence pro-
duced by the IPFP algorithm has the form of finite distribution mixture of product
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components:

P (k,`)(x) =
M∑

m=1

w(k,`)
m

N∏
n=1

p(k,`)
n (xn|m), x ∈ X,

w(k,`)
m ≥ 0,

M∑
m=1

w(k,`)
m = 1,

∑

x∈Xn

p(k,`)
n (x|m) = 1, k = 0, 1, . . . ; ` = 0, 1, . . . , N (42)

where w
(k,`)
m is the weight of the mth component and p

(k,`)
n (x|m) is the univariate

distribution of the variable vn corresponding to the mth component in the step (k, `).

Proposition 5. Let R ∈ SM . Then P (k,`) ∈ SM for all k, `, i. e. there exist
weights w

(k,`)
m and probability distributions p

(k,`)
n (x|m) so that the iteration P (k,`)

computed according to formula (14), (15) can be written in the form (42).

P r o o f . Let us suppose by induction that P (k,`−1) ∈ SM , i. e.

P (k,`−1)(x) =
M∑

m=1

w(k,`−1)
m

N∏
n=1

p(k,`−1)
n (xn|m), (43)

where

w(k,`−1)
m ≥ 0,

M∑
m=1

w(k,`−1)
m = 1,

p(k,`−1)
n (x|m) ≥ 0 for x ∈ Xn,

∑

x∈Xn

p(k,`−1)
n (x|m) = 1. (44)

Let us set

w(k,`)
m = σ(k,`)

m w(k,`−1)
m , σ(k,`)

m =
∑

x∈X`

C(k,`)(x) p
(k,`−1)
` (x|m), (45)

p(k,`)
n (x|m) = p(k,`−1)

n (x|m) for n 6= `, x ∈ Xn, (46)

p
(k,`)
` (x|m) =

1

σ
(k,`)
m

C(k,`)(x) p
(k,`−1)
` (x|m), x ∈ X`, (47)

where C(k,`) is defined in (15) and the `th marginal of the mixture P (k,`−1) has the
form:

P
(k,`−1)
` (x`) =

M∑
m=1

w(k,`−1)
m p

(k,`−1)
` (x`|m). (48)
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We shall show that σ
(k,`)
m > 0 for all m. Let m ∈ {1, . . . ,M} be fixed. All terms of

the sum σ
(k,`)
m are nonnegative. We shall prove by contradiction that at least one of

them is positive. Let us suppose that

C(k,`)(x) p
(k,`−1)
` (x|m) = 0 for all x ∈ X`. (49)

Let us denote as X̃` ⊂ X` the set of points in which the distribution p
(k,`−1)
` (x|m)

takes positive values:

p
(k,`−1)
` (x|m) > 0 for x ∈ X̃` ; p

(k,`−1)
` (x|m) = 0 for x ∈ X`, x 6∈ X̃`. (50)

The assumption (49) implies that C(k,`)(x) = 0 for all x ∈ X̃`, which, according to
formula (15), is equivalent to P

(k,`−1)
` (x) 6= 0 and q`(x) = 0 for all x ∈ X̃`. On the

whole we can write:

P
(k,`−1)
` (x) 6= 0 and q`(x) = 0 for x ∈ X̃`,

P
(k,`−1)
` (x) = 0 for x ∈ X`, x 6∈ X̃`. (51)

Because P
(k,`)
` ¿ P

(k,`−1)
` (see (25)) and P

(k,`)
` ∈ E` (see Proposition 3) the relations

(51) imply that

P
(k,`)
` (x) = 0 for all x ∈ X` (52)

which is impossible. We have proved that the dividing by σ
(k,`)
m in expression (47)

is correct.

The next iteration, according to formulae (14), (15) and (45) – (47), can be then
written as:

P (k,`)(x) = C(k,`)(x`) P (k,`−1)(x)

=
M∑

m=1

w(k,`−1)
m σ(k,`)

m

1

σ
(k,`)
m

C(k,`)(x`) p
(k,`−1)
` (x`|m)

N∏

n=1,n 6=`

p(k,`−1)
n (xn|m)

=
M∑

m=1

w(k,`)
m

N∏
n=1

p(k,`)
n (xn|m). (53)

As it follows from (14), (15), (45) – (47) p
(k,`)
n (x|m) are probability distributions and
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w
(k,`)
m ≥ 0. It remains to be proved that w

(k,`)
m sum to one:

1 =
∑

x∈X
P (k,`)(x) =

M∑
m=1

w(k,`)
m

∑

x∈X

N∏
n=1

p(k,`)
n (xn|m)

=
M∑

m=1

w(k,`)
m

∑

x1∈X1

· · ·
∑

xN−1∈XN−1

N−1∏
n=1

p(k,`)
n (xn|m)

∑

xN∈XN

p
(k,`)
N (xN |m)

=
M∑

m=1

w(k,`)
m

∑

x1∈X1

· · ·
∑

xN−2∈XN−2

N−2∏
n=1

p(k,`)
n (xn|m)

∑

xN−1∈XN−1

p
(k,`)
N−1(xN−1|m)

=
M∑

m=1

w(k,`)
m . (54)

2

Now we summarize the properties of IPFP algorithm modified for distribution
mixtures.

Theorem 5. Let R ∈ SM be a distribution mixture such that I(Q̃, R) < ∞ holds
for some Q̃ ∈ E. Then the following three assertions are true:

1. R has a unique I-projection R? ∈ E on the set E.

2. The iterative sequence
{{

P (k,`)
}N

`=0

}∞
k=0

defined by formulae (42), (45) – (47)
converges pointwisely to R?.

3. R? ∈ SM .

P r o o f . Assertions 1 and 2 follow immediately from Theorem 2, Theorem 4 and
Proposition 5. It remains to prove that the I-projection R? has the form of finite
distribution mixture with M product components (3). The sequences

{{
w(k,`)

m

}N

`=0

}∞

k=0

,

{{
p(k,`)

n (x|m)
}N

`=0

}∞

k=0

(55)

are bounded for each m ∈ {1, . . . , M}, n ∈ {1, . . . , N}, x ∈ Xn; the numbers M , N
and the set X are finite.

Now we utilize repeatedly the fact that from every bounded sequence a conver-
gent subsequence can be chosen. Thus there exists some subsequence of indices
{(ki, `i)}∞i=1 and exist values w?

m, p?
n(x|m) such that it holds:

lim
i→∞

w(ki,`i)
m = w?

m ≥ 0, m = 1, . . . ,M,

lim
i→∞

p(ki,`i)
n (x|m) = p?

n(x|m) ≥ 0, m = 1, . . . , M, n = 1, . . . , N, x ∈ Xn, (56)

M∑
m=1

w?
m = 1,

∑

x∈Xn

p?
n(x|m) = 1. (57)
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The corresponding subsequence
{
P (ki,`i)

}∞
i=1

of the iterative sequence{{
P (k,`)

}N

`=0

}∞
k=0

converges, of course, to R? and in addition it holds:

lim
i→∞

P (ki,`i)(x) = lim
i→∞

M∑
m=1

w(ki,`i)
m

N∏
n=1

p(ki,`i)
n (xn|m)

=
M∑

m=1

w?
m

N∏
n=1

p?
n(xn|m) for all x = (x1, . . . , xN ) ∈ X. (58)

Uniqueness of the limit implies that

R?(x) =
M∑

m=1

w?
m

N∏
n=1

p?
n(xn|m) for all x = (x1, . . . , xN ) ∈ X (59)

so that R? ∈ SM . 2

7. EXAMPLE: PROBABILISTIC SOLUTION OF A LOGICAL PUZZLE

To demonstrate the interesting properties of the probabilistic approach the IPFP
algorithm will be aplied to a purely logical problem.

Formulation of the problem

Eight students from different classes of a school – Anthony, Eve, Francis, Charles,
John, Mary, Tanya and Peter – represented their classes – I. A, I. B, II. A, II. B,
II. C, III. A, III. B and III. C – during a chess championship. We have to find out the
classes represented by individual students. All information needed for the correct
solution is contained in the following sentences:

1. In the first round Charles played with the student from II. C.
2. The student from I. B came after the first round.
3. In the second round the student from I. A played with Mary.
4. In the second round John played with Eve.
5. After the second round Anthony did not continue.
6. Because of Anthony’s absence Francis did not play in the third round.
7. Because of Anthony’s absence the student from II. A had no adversary

in the fourth round.
8. Because of Anthony’s absence John did not play in the fifth round.
9. In the third round Tanya won against the student from I.A.

10. In the third round Charles drew the game with the student from II. B.
11. In the fourth round the student from III. B played with Tanya.
12. In the fourth round Eve played with Charles.
13. After the sixth round the interrupted encounter of students from II. C and

III. A was continued.

Let us recall that, as usual, each couple contested during the championship at most
once and that each student played one game in one round at most.
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Solution

To simplify notation we denote the eight names (Anthony, Eve, Francis, Charles,
John, Mary, Tanya, Peter) by the symbols n1, n2, . . . , n8, respectively and the eight
classes (I. A, I. B, II. A, II. B, II. C, III. A, III. B, III. C.) by c1, c2, . . . , c8. We intro-
duce two discrete random variables – v1 (student’s name) and v2 (class) taking the
values:

v1 : x1 ∈ X1 = {n1, n2, . . . , n8} ,

v2 : x2 ∈ X2 = {c1, c2, . . . , c8} . (60)

The joint distribution of the variables v1, v2 is assumed to be in the form of the
finite mixture

P (x1, x2) =
M∑

m=1

wm p1(x1|m) p2(x2|m), (x1, x2) ∈ X1 ×X2. (61)

The mixture components correspond to the mutually exclusive hypotheses of the
type m = (ni, cj) (the student ni represents the class cj). If we introduce two
indices then the knowledge base can be rewritten as

P (x1, x2) =
8∑

i=1

8∑

j=1

w(i, j) p1(x1|ni) p2(x2|cj) (62)

where

p1(x1|ni) = δ(x1, ni) = 1, x1 = ni,
= 0, x1 6= ni,

p2(x2|cj) = δ(x2, cj) = 1, x2 = cj ,
= 0, x2 6= cj ,

w(i, j) = P (ni, cj) = P{v1 = ni, v2 = cj}.

(63)

In this way each component corresponds to one possible combination of name and
class and the mixture is actually defined by the component weights w(i, j).

First we choose the number of components M as large as possible (M = 64). Some
of the corresponding hypotheses may be excluded using the information contained
in the sentences 1− 13 so that the number of components may be reduced.
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Table 1. Zero weights.

sentences ⇒ conclusion zero sentences ⇒ conclusion zero

1 Charles 6∈ II. C w(4, 5) 1, 2 Charles 6∈ I. B w(4, 2)
1, 12 Eve 6∈ II. C w(2, 5) 1, 13 Charles 6∈ III. A w(4, 6)
3 Mary 6∈ I. A w(6, 1) 3, 4 Eve 6∈ I. A w(2, 1)
3, 4 John 6∈ I. A w(5, 1) 5, 7 Anthony 6∈ II. A w(1, 3)
5, 9 Anthony 6∈ I. A w(1, 1) 5, 10 Anthony 6∈ II. B w(1, 4)
5, 11 Anthony 6∈ III. B w(1, 7) 5, 13 Anthony 6∈ III. A w(1, 6)
5, 13 Anthony 6∈ II. C w(1, 5) 6, 7 Francis 6∈ II. A w(3, 3)
6, 9 Francis 6∈ I. A w(3, 1) 6, 10 Francis 6∈ II. B w(3, 4)
7, 8 John 6∈ II. A w(5, 3) 7, 11 Tanya 6∈ II. A w(7, 3)
7, 12 Eve 6∈ II. A w(2, 3) 7, 12 Charles 6∈ II. A w(4, 3)
9 Tanya 6∈ I. A w(7, 1) 9, 10 Tanya 6∈ II. B w(7, 4)
9, 10 Charles 6∈ I. A w(4, 1) 10 Charles 6∈ II. B w(4, 4)
10, 12 Eve 6∈ II. B w(2, 4) 11 Tanya 6∈ III. B w(7, 7)
11, 12 Eve 6∈ III. B w(2, 7) 11, 12 Charles 6∈ III. B w(4, 7)

As it follows from the above thirteen sentences, 28 weights are zero (see Tab. 1).
The remaining 36 nonzero weights are equally set: w(i, j) = 1/36. At this point
the problem represents the classical logical puzzle of “zebra” type: we know that
the solution is unique and we have to determine the corresponding eight nonzero
weights.

Distribution (62) with the weights defined as above represents the original multi-
dimensional distribution P (the first iteration of the described algorithm). The role
of the additional expert knowledge (univariate marginal constraints) is played now
by the natural assumption that the marginal probability distributions of names and
classes are uniform:

q1(ni) =
8∑

j=1

P (ni, cj) =
1
8
, i = 1, . . . , 8,

q2(cj) =
8∑

i=1

P (ni, cj) =
1
8
, j = 1, . . . , 8. (64)

During the computation eight weights appeared to be significantly nonzero. Their
convergence is shown in Fig. 1. After 1000 iterations their values were following:

w(1, 2) = 0.1243 w(2, 6) = 0.1241 w(3, 7) = 0.1241 w(4, 8) = 0.1246
w(5, 4) = 0.1243 w(6, 3) = 0.1246 w(7, 5) = 0.1240 w(8, 1) = 0.125 (65)

These nonzero weights correspond to the following correct logical solution of the
puzzle:

Anthony ∈ I. B Eve ∈ III. A Francis ∈ III. B Charles ∈ III. C
John ∈ II. B Mary ∈ II. A Tanya ∈ II. C Peter ∈ I. A.
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This was the computation in case of complete input information when the solution of
the problem was unique in the sense that the eight corresponding weights converged
to the value 1/8 (see Fig. 1) whereas the remaining weights approached 0.

Fig. 1. The convergence of the 8 largest weights.

The properties of the algorithm were tested also for missing input knowledge.
If some information of the type w(i, j) = 0 is supressed then the solution of the
puzzle is not more unique. The algorithm determines “exactly” only some pairs
(i, j) (at best 6 pairs of 8 pairs wanted) in the sense that their weights converge
to 1/8. The weights corresponding to the admissible alternatives converge to some
nonzero values and the remaining weights converge to zero. Usually the result has
a reasonable interpretation: if some couples (i, j) are equally probable then the
corresponding weights are equal, too.

8. CONCLUSION

The iterative proportional fitting procedure was originally designed to adjust relative
frequencies in contingency tables to some known marginal probabilities. In the
present paper it is modified for a special class of distribution mixtures and univariate
marginal constraints.

It should be emphasized that the assumed product form of mixture components
is essential to enable us the separate norming of any marginal. A generalization for
multi-dimensional marginal constraints seems to be a difficult task.

A logical puzzle to illustrate the method was chosen intentionally because the
convergence in the case of typically probabilistic problems follows from the proved
theorems. The numerical example (see Section 7) shows that even a rather compli-
cated logical puzzle can be solved in the framework of the probabilistic approach.

(Received November 4, 1993.)
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