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ANTICIPATION IN DISCRETE–TIME LQ CONTROL II:
Closed–Loop Control

Václav Soukup

Following the first part of the work, this second one deals with anticipating LQ discrete-
time control realized in the feedback SISO structure. Again the investigation is based on
the polynomial technique the necessary survey of which can be found in the first part.

II.1. INTRODUCTION

Closed-loop structures are usually applied to stabilize and control dynamic systems
and processes. A control signal U is generated by a controller (control algorithm)
which operates on so far available values of the measurable process magnitudes. As
a rule, the only error signal E = Wr−Y enters the controller C in the usual feedback
structure shown in Fig. II.1.
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Fig. II.1.

A controlled process P is subjected to possible load disturbances as well as initial
nonzero conditions affecting the output Y as V and Y0, respectively.

The control algorithm C minimizing the performance index (I.3.1) should be
determined in discrete-time, closed-loop LQ control. The external signals Wr, V
and Y0 are supposed to be deterministic; possible random components of them are
reduced by feedback and their characteristics are not taken into account for the
design.

Many works have dealt with the algebraic input-output approch to LQ and LQG
feedback control during recent years. Basic and general results for MIMO systems
can be found in [3], various types of SISO problems have been treated in [1].
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This contribution is based on the known results which are for deterministic feed-
back control of reachable as well as observable, strictly proper SISO processes sum-
marized in the next section. The own anticipation problem is then solved in Section
3 and the illustrating example is solved at the end.

II.2. STANDARD LQ FEEDBACK CONTROL

Returning to Fig. II.1 we assume that

P =
b

a
; a, b coprime, a = ac but b = dβbc, β > 0, (II.2.1)

and
W = Wr − Y0 − V =

f

h
; h, f coprime, h = hc, (II.2.2)

i.e., P is realized as strictly causal, reachable and observable, discrete-time system
and a (generalized) reference is a causal sequence.

A controller
C =

m

n
; (n,m)− ∼ 1, n = nc, (II.2.3)

is assumed and sought.
Generally, the minimum deg z solution m,n, z, deg z < ρ, of the coupled equations

dρs∗m+ ahaz = dρb∗ψp (II.2.4)

and
dρs∗n− bhaz = dρa∗ϕp (II.2.5)

solves the LQ problem, where ρ = max (deg a,deg b), s = s+ follows from (I.4.7)

s s∗ = aϕa∗ + bψb∗ (II.2.6)

and (as in I.4.5)

ha =
h

(a, h)
and ah =

a

(a, h)
. (II.2.7)

Moreover the stable polynomial

p = a+
h ã

=
h f

+f̃= (II.2.8)

occurs in the equations (II.2.4,5). The resulting errror and control signals are

E =
ahfn

hasp
and U =

ahfm

hasp
, (II.2.9)

respectively.
Since the possible factor p0 = +a0

hf
0 ∼/ 1 has been excluded from p the problem

become solvable always if and only if ha ∼ h+
a . The optimal controller (II.2.3) is

unique.
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Combining the equation (2.4) and (2.5) the so-called “implied” equation for the
closed-loop pseudocharacteristic polynomial

c = an+ bm = sp (II.2.10)

is obtained.
If (dρs∗, a) ∼ 1, the only equation (2.4) instead of the couple may be solved for

min degz, degz < ρ, to obtain the optimal m. The remaining n then follows from
(2.10) (cf. [2]).

II.3. ANTICIPATION IN LQ CLOSED-LOOP CONTROL

Let us assume that the external signals in Fig. II.1 may be determined and gener-
ated before they really occur, say ν steps in advance. Then feedback control can be
improved through the additional feedforward paths according to Fig. II.2. Feedfor-
ward controllers CW and CV operate on signals which are constructed starting at
time −νT.

-◦ - C -◦ - P -◦
6

Wr Ed−ν Ud−ν Y d−ν

V + Y0

−

- d−ν - CW
-◦−¾ CV

¾ d−ν ¾

?

•

••

Fig. II.2.

The equivalent block diagram in Fig. II.3 may be considered if the problem is
restricted to the case CV = CW and time steps are numbered by zero at time −νT.
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Fig. II.3.

The entire control algorithm realized in one-system fashion is described in the
form

nU = mE + qW (II.3.1)

where W stands in (2.2). The using (2.1), (2.2) and (3.1) yields

E = Wdν − bMW (II.3.2)
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and
U = aMW (II.3.3)

where
M =

mdν + q

c
(II.3.4)

with c given by (2.10).
Then the optimal solution of LQ feedback discrete-time control with anticipation

is given by the following theorem.

Theorem 2. Given a process (2.1) subjected to the equivalent input (2.2), LQ
closed-loop control minimizing the performance index (I.3.1) and using ν-steps an-
ticipation results in the control algorithm (3.1), where polynomials n, m and q = aq0
along with z satisfy the equations

dρ+νs∗n− dρs∗bq0 − bhaz = dρ+νa∗ϕp (II.3.5)

and
dρ+νs∗m+ dρs∗aq0 + ahaz = dρ+νb∗ψp (II.3.6)

with the minimum deg z.
In (3.5) and (3.6) there is s the stable polynomial following from (2.6), ah and

ha stand in (2.7), ρ = max (deg a, deg b) and p stands in (2.8).
The resulting error signal

E =
ahf(ndν − bq0)

hasp
(II.3.7)

and the control signal

U =
ahf(mdν + aq0)

hasp
(II.3.8)

are unique while the optimal controller (3.1) is not. The problem is solvable if and
only if ha ∼ h+

a .

P r o o f .
1. It has been shown in the first part that s = s+.

2. To investigate solvability of the equations (3.5) and (3.6) we write them in the
form

C[n;m; q0; z]T = D

where

C =
[
dρ+νs∗ 0 −dρs∗b −bha

0 dρ+νs∗ dρs∗a aha

]
and D =

[
dρ+νa∗ϕp
dρ+νb∗ψp

]
.

The equations are solvable if and only if the greatest common divisors (GCD) of
all nonzero minors of C and [C;D] are identical. Finding the respective GCD of
nonzero first and second order minors of C to be

g1 = (dρs∗, ha) and g2 = dρ+νs∗g1
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and the respective GCD of nonzero first and second order minors of [C;D]

g3 = (g1, dρ+νp) and g4 = dρ+νs∗g3

we obtain g3 = g1 ∼ 1 and g4 = g2 = dρ+νs∗ if ha ∼ h+
a since dρs∗ is unstable

polynomial. Therefore (3.5) and (3.6) are solvable if ha ∼ h+
a .

3. Considering the expression (I.3.1) and using gradually (3.2), (3.3) and (2.2) we
get

J = ψE∗E + ψU∗U =

=
f∗f
h∗h

(ψ − b∗M∗dνψ − bMd−νψ + s∗sM∗M) =
f∗f
h∗h

J0. (II.3.9)

Multiplying (3.9) by
ah∗ah

ah∗ah
= 1 and applying (2.8) yields

J =
f∗fah∗ah

h∗hah∗ah
J0 = p0

∗p
0 p∗p
h∗hah∗ah

J0 =

= p0
∗p

0

[
ψ

p∗p
h∗hah∗ah

− ψ2 b∗bp∗p
s∗sh∗hah∗ah

+

+
(
b∗pψ
s∗hah

− sp

hah
Md−ν

)

∗

(
b∗pψ
s∗hah

− sp

hah
Md−ν

)]
= JA + JB

where p0 = +a0
hf

0 and pp0 = a∗hf
∗.

Obviously

JA = ψp0
∗p

0 p∗p(s∗s− ψb∗b)
s∗sh∗hah∗ah

=
p0
∗p

0ϕψp∗p
s∗sha∗ha

does not depend on M and is stable and

JB = p0
∗p

0

(
b∗pψ
s∗hah

− sp

hah
Md−ν

)

∗

(
b∗pψ
s∗hah

− sp

hah
Md−ν

)
=

= p0
∗p

0

(
b∗pψdν

s∗hah
− sp

hah
M

)

∗

(
b∗pψdν

s∗hah
− sp

hah
M

)
. (II.3.10)

Using the decomposition

b∗pψdν

s∗hah
=
dρ+νb∗pψ
dρs∗hah

=
dρs∗y + hahz

dρs∗hah
=

y

hah
+

z

dρs∗
(II.3.11)

in (3.10) we get

JB = p0
∗p

0

(
X +

z

dρs∗

)

∗

(
X +

z

dρs∗

)
= p0

∗p
0 J̄B

where
X =

y

hah
− sp

hah
M. (II.3.12)
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Let us assume p0 = 1 at first, i.e., ah(d) and f(d) having no zeros on the unit
circle in d plane. It has been proved in [3] and applied in the proof of Theorem 1 in
the first part that 〈J̄B〉 obtains its minimum for X = 0 provided deg z < ρ. Hence
X = 0 being optimal for all zeros of ah and f inside as well outside the unit circle
must be also optimal for p0 6= 1, i.e., if there are zeros just on the unit circle, seeing
that both X and 〈J̄B(X)〉 are continuous regarding the zeroes.

Then
M =

y

sp
(II.3.13)

follows from (3.12) and

c = sp and y = mdν + q (II.3.14)

from the comparison (3.13) and (3.4).
If M given by (3.13) and the relation

dρ+νb∗pψ − ahaz = dρs∗y (II.3.15)

following from the decomposition (3.11) are substituted into (3.2) we have

E =
fdν

h
− bfy

sph
=
dρf(s∗spdν − s∗by)

hdρs∗sp
=
af(dρ+νa∗ϕp+ bhaz)

hdρs∗sp
=
ahfx

hasp

where the denotation
dρ+νa∗ϕp+ bhaz = dρs∗x (II.3.16)

has been introduced.
Now adding (3.15) multiplied by b and (3.16) by a yields

dρs∗(ax+ by) = dρ+νs∗sp or ax+ by = spdν = (an+ bm)dν .

Hence using (3.14) and seeing that x must be a polynomial the relations

y = mdν + aq0 and x = ndν − bq0 (II.3.17)

have been found.
The unique minimum deg z solution x, y, z of the equations (3.15) and (3.16)

results in the unique optimal signals E and U. Using the obtained x and y in the
equations (3.17) and solving them generally by

m = mp − at, n = np + bt and q0 = q0p + dνt

where mp, np and q0p is a particular solution and t an arbitrary polynomial, yields
the optimal control algorithm (3.1) which therefore is not unique.

Combining (3.15) to (3.17) we obtain the equations (3.5) and (3.6). Seeing that
the sequences (3.7) and (3.8) must be stable the problem is solvable for ha ∼ h+

a

only.
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II.4. EXAMPLE

One small example is given to illustrate the described approach.
Given

P =
b

a
=

d

1− d
, Wr =

1
1− d

and V = Y0 = 0.

Let us determine the optimal LQ control algorithm for ψ = ϕ = 1 assuming Wr is
known ν steps in advance, alternatively ν = 0; 1; 2.

At first we find that the problem is solvable and

W =
f

h
= Wr, ah = ha = 1, s = 1.618− 0.618d, ρ = 1 and p = 1.

The equations (3.5) and (3.6) are

(−0.618 + 1.618d) dνn− (−0.618 + 1.618d) dq0 − dz = (−1 + d)dν

and

(−0.618 + 1.618d) dνm+ (−0.618 + 1.618d) (1− d) q0 + (1− d) z = dν

The way solving the equations (3.15) and (3.16) at first and then (3.17) separately
will be shown.
1. For ν = 0 (control without anticipation) (3.15) and (3.16) are

(−0.618 + 1.618d) y + (1− d) z = 1

and
(−0.618 + 1.618d)x− dz = −1 + d

which solved for the minimum degz by x = 1.618, y = 1 and z = 1.618.
Hence

E =
1.618

1.618− 0.618d
, U =

1
1.618− 0.618d

and ϑ = 1.618.

The equations (3.17)

m+ (1− d) q0 = 1 and n− dq0 = 1.618

are solved bym = 1−(1−d) t, n = 1.618+dt and q0 = t.Obviously the feedforward
path can be ignored here using t = 0 and consequently q = aq0 = 0.
3. For ν = 1 we solve the equations

(−0.618 + 1.618d) y + (1− d) z = d

and
(−0.618 + 1.618d)x− dz = (−1 + d) d

for the minimum deg z with the resulting x = 1.618d, y = 1 and z = 0.618.
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Hence

E =
0.618d

1.618− 0.618d
, U =

1
1.618− 0.618d

and ϑ = 0.618.

Then the equations

md+ (1− d) q0 = 1 and nd− dq0 = 0.618d

are solved to reach m = 1− (1−d) t, n = 1.618+dt and q0 = 1+dt and m = 1, n =
1.618 and q0 = 1 for the simplest controller.
3. Finally for ν = 2 the equations (3.15) and (3.16)

(−0.618 + 1.618d) y + (1− d) z = d2

and
(−0.618 + 1.618d)x− dz = (−1 + d) d2

have the minimum deg z solution x = −0.382d + 0.618d2, y = 0.382 + 0.618d and
z = 0.236. Then

E =
−0.382d+ 0.618d2

1.618− 0.618d
, U =

0.382 + 0.618d
1.618− 0.618d

and ϑ = 0.472.

Writing (3.17)

md2 + (1− d) q0 = 0.382 + 0.618d and nd2 − dq0 = −0.382d+ 0.618d2

and solving then generally yields m = 1 − (1 − d) t, n = 1.618 + dt and q0 =
0.382 + d+ d2t with the simplest (t = 0) m = 1, n = 1.618, q0 = 0.382 + d.

(Received December 3, 1992.)
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