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SOME INVARIANT TEST PROCEDURES
FOR DETECTION OF STRUCTURAL CHANGES1

Marie Hušková

Regression and scale invariant M -test procedures are developed for detection of struc-
tural changes in linear regression model. Their limit properties are studied under the null
hypothesis.

1. INTRODUCTION

In applications one meets quite often the problem to detect structural changes.
Typically, one observes a sequence of variables and might be interested to known
whether the possible statistical model remains the same during the whole obser-
vational period or whether the model changes at some unknown time point. Such
problems occur in various situations, e. g. changes in hydrological or meteorological
or econometric time series.

Statisticians have developed a number of test procedures for various models. For
recent references, see, e. g. Csörgő and Horváth [3].

Here we focus on a class of M -type test statistics that are regression- and scale-
invariant. It is well known the M -test procedures are generally developed to be
insensitive to a certain violation of the normality.

We consider here the regression model with a possible change after an unknown
time point mn:

Yi = xxxT
i βββ + xxxT

i δδδnI{i > mn}+ ei, i = 1, . . . , n, (1)

where mn(≤ n), βββ = (β1, . . . , βp)T , δδδn = (δn1, . . . , δnp)T 6= 000 are unknown param-
eters, xxxi = (xi1, . . . , xip)T , xi1 = 1, i = 1, . . . , n, are known design points, and
e1, . . . , en are iid random variables with common distribution F that fulfills regular-
ity conditions specified below. Here I{A} denotes the indicator of the set A.

The model under consideration corresponds to the so called two phase regression,
where the first mn observations follow the linear model with the parameter βββ and
the remaining n − mn ones follow the linear regression model with the parameter
βββ + δδδn. This means that the difference between these two regression parameters is

1Partially supported by Grant 161/1999/BMAT/MFF from the Grant Agency of Charles Uni-
versity and by Grant MSM 113200008.
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δδδn. We write the index n with the parameters mn and δδδn because we study the limit
properties as n → ∞ and we assume that both mn and δδδn are changing together
with n. The parameter mn is usually called the change point.

The problem of our interest is to construct a M -type test for

H0 : m = n against H1 : m < n. (2)

The null hypothesis is saying that ”no change has occurred” and the alternative
states ”a change has occurred”.

This testing problem is both regression- and scale-invariant, which means that our
testing problem does not change if we transform the observations YYY n = (Y1, .., Yn)T

into ZZZn = (Z1, .., Zn)T = (YYY n +XXXnbbb)T s, where XXXn = (xxx1, . . . ,xxxn)T , bbb 6= 000 and
s > 0 otherwise arbitrary. Therefore it is desirable to construct tests that are both
regression- and scale-invariant.

It is known that the L2 and L1 procedures are regression- and scale-invariant,
however we focus here on a class of M -test procedures that have the desired prop-
erties. We remind that the L2 test procedures are related to the likelihood ratio
tests when the random errors ei’s have normal distribution N(0, σ2) while the L1

test procedures are related to the likelihood ratio tests when the random errors ei’s
have double exponential distribution.

The L2 procedures for testing H0 against H1 are based on either of the following
test statistics:

Tn,L2 = max
p<k<n−p

{
SSST

k,L2
(CCC−1

k CCCn(CCC0
k)−1)SSSk,L2

}
/σ̂2

n (3)

Tn,L2(q) = sup
0<t<1

{
SSST

[nt],L2
CCC−1

n SSS[nt],L2

q2(t) σ̂2
n

}
(4)

where [a] denotes the integer part of a,

CCCk =
k∑

i=1

xxxixxx
T
i , CCC0

k = CCCn −CCCk, k = 1, . . . , n, (5)

SSSk,L2 =
k∑

i=1

xxxi(Yi − xxxT
i βββn,L2), k = 1, . . . , n, (6)

βββn,L2 = CCC−1
n

n∑

i=1

xxxiYi (7)

and σ̂2
n is a scale-equivariant and regression-invariant estimator of σ2 with the prop-

erty
σ̂2

n − σ2 = op((log log n)−1/2), n→∞,

and q is a positive weight function.
Notice that βββn,L2 is the least squares estimator of the vector parameter βββ in the

model (1.1) with m = n and the differences Yi − xxxT
i βββn,L2 , i = 1, . . . , n, are residu-

als. Since under the null hypothesis H0 the random vector SSSk,L2 has distribution
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Np(000, σ2CCCkCCC
−1
n CCC0

k), k = 1, . . . , n, we realize that under H0 the random variable
Tn,L2 σ̂

2
n/σ

2 has the distribution as maximum of n − 2p (dependent) random vari-
ables with χ2-distribution with p degrees of freedom.

Some authors, mostly working in the area of detection structural changes in
econometrics, suggest to apply the procedures based on the properly standardized
maximum of the first components of SSSk,L2 , k = 1, . . . , n, which leads to computa-
tionally simpler procedures, however the resulting test is not sensitive with respect
to some particular changes. The test procedures are based either on

T 0
n,L2

= max
1≤k<n

{ |S1k,L2 |√
nσ̂n

}
(8)

or on

T 0
n,L2

(q) = sup
0<t<1

{ |S1,[nt],L2 |√
nq(t)σ̂n

}
, (9)

where

S1k,L2 =
k∑

i=1

(Yi − xxxT
i βββn,L2), k = 1, . . . , n.

These procedures has been studied for example by Jandhyala and MacNeill [9] and
by Ploberger, Krämer and Kontrus [12].

The null hypothesis is rejected for large values of the above test statistics. The
L1 procedures can be obtained by replacing the L2-estimators of βββ, the L2-residuals
and the L2-estimator of σ2 by their L1-counterparts. It appears that under the null
hypothesis the limit distributions of L2- and the corresponding L1-test statistics
coincide, see Hušková [8].

Various approximations to the critical values have been developed. The test
statistics (1.3), (1.5) were widely studied in the literature, e. g. Quandt [13], Worlsey
[15]. More information about recent development can be found, e. g. in Horváth [4]
and Csörgő and Horváth [3]. The L1-procedures were developed along the line of
L2-procedures and studied by Hušková [8] and Vı́̌sek [14].

In the present paper we construct M -test procedures for the problem (1.2) that
are regression- and scale-invariant.

Generally, the M -type test procedures generated by a score function ψ can be
proposed along the line of L2-procedures. We can formally replace the least squares
estimators βββn,L2 , residuals Yi−xxxT

i βββn,L2 and variance estimators σ̂2
n by their M -type

counterparts. Then the resulting M -test procedures generated by a score function
ψ are

Tn(ψ) = max
p<k<n−p

{
SSSk(ψ)T (CCC−1

k CCCn(CCC0
k)−1)SSSk(ψ)

}
/σ̂2

n(ψ) (10)

Tn(ψ, q) = sup
0<t<1

{
SSS[nt](ψ)TCCC−1

n SSS[nt](ψ)
q2(t) σ̂2

n(ψ)

}
(11)

T 0
n(ψ) = max

1≤k<n

{ |S1k(ψ)|√
nσ̂n(ψ)

}
(12)
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or on

T 0
n(ψ; q) = sup

0<t<1

{ |S1,[nt](ψ)|√
nq(t)σ̂n(ψ)

}
, (13)

where

Sk(ψ) =
k∑

i=1

xxxiψ
(
Yi − xxxT

i β̂ββn(ψ)
)
, k = 1, . . . , n, (14)

S1k(ψ) =
k∑

i=1

ψ
(
Yi − xxxT

i β̂ββn(ψ)
)
, k = 1, . . . , n (15)

with β̂ββn(ψ) being the M -estimator with the score function ψ based on X1, . . . , Yn,
with σ̂2

n(ψ) being an scale-equivariant and regression-invariant estimator of σ2(ψ) =∫
ψ(x)2 dF (x) with the property

σ̂2
n(ψ)− σ2(ψ) = op((log log n)−1/2), n→∞, (16)

and q is a positive weight function. It is known that

σ̂2
n(ψ) =

1
n

n∑

i=1

ψ2(Yi − xxxT
i β̂ββn(ψ)) (17)

has the desired property (1.16) for a quite broad spectrum of ψ. However, since this
estimator can behave quite poorly under alternatives (usually, it becomes too large
and negatively influences the resulting test statistics) it is recommended to use a
modified estimator, namely, make it dependent on k, e. g. the kth term should be
standardized by

σ̂2
k,n(ψ) = σ̂2

n(ψ)− 1
k(n− k)

(
k∑

i=1

ψ(Yi − xxxT
i β̂ββn(ψ))

)2

,

that has the desired property (1.16) even under alternatives and works well even for
finite sample sizes.

However, these resulting test procedures are regression-invariant but generally
not scale-invariant. To develop a scale invariant M -test procedure one can proceed
similarly as in the construction of scale invariant M -estimators. A number of pos-
sibilities is discussed in detail in Jurečková and Sen [11]. For our testing problem
either studentization or application of the adaptive version of the Huber ψ function,
proposed by Jurečková and Sen [10] seems to be reasonable.

In principle, studentization means that instead of working with the original score
function ψ we apply its so called studentized version ψ(./sn), where sn is a regression-
and scale-invariant estimator of the scale, e. g. sn can be based on a suitably chosen
functional of the regression quantiles.

We will concentrate here on the procedures based on the adaptive Huber score
function proposed by Jurečková and Sen [10].
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In the following F−1(α) denotes the α-quantile of the distribution function F and
for every K > 0 and α ∈ (0, 1) we set

ψ(x;K) =

{
x |x| ≤ K

K sign x |x| ≥ K,
(18)

φα(x) = α− I{x ≤ 0}, x ∈ R1, (19)
ρα(x) = xφα(x), x ∈ R1. (20)

We remind that the α-regression quantile β̃ββn(α) is defined as a solution vvv of the
following minimization problem:

min
ttt∈Rp

n∑

i=1

ρα(Yi − tttTxxxi).

If the solution is not unique we may set a rule how to choose it.
Jurečková and Sen [10] proposed an adaptive estimator ψ(.;Kn(α)), α ∈ (0, 1/2),

where

Kn(α) = Kn(α,YYY n) =
1
2
(β̃n1(1− α)− β̃n1(α)), (21)

with β̃n1(α) and β̃n1(1 − α) being the first components of the αth and (1 − α)th
regression quantiles based on Y1, . . . , Yn. This score function is called adaptive Huber
score function and it is related to the score function ψ(x; F−1(1 − α)). Jurečková
and Sen [10] showed that the M -estimator of the parameter θθθ generated by the
score function ψ(.; Kn(α)) with a proper choice of α leads to the estimator that is
regression- and scale-invariant and also minimax in the contaminated normal model

F = {F ; F = (1− ε)Φ + εH; H ∈ H}

where Φ is the distribution of N(0, 1), ε ∈ (0, 1) represents level of contamination
and H is the family of symmetric distributions on R1. In this case for the considered
contamination level ε, our α fulfills

α = (1− ε)(1− Φ(K)) + ε/2

with K satisfying
2φ(K)/K − 2Φ(−K) = ε/(1− ε),

where φ denotes the density of N(0, 1).

The resulting regression- and scale-invariant M -tests are based on the test statis-
tics defined in (1.10) – (1.13) with ψ(.) = ψ(.; Kn(α)). We should note that these
procedures are regression- and scale-invariant for each α ∈ (0, 1/2). In the following
we write shortly

ψ̂n(.) = ψ(.; Kn(α)). (22)
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2. MAIN RESULTS

First, we formulate the assumptions. The assumptions on the distribution function
F of the error terms are identical with those considered by Jurečková and Sen [10]
while the assumptions on the design points coincide with those on design points for
L2 procedures for detection of a change.

We assume that the design points xxxi = (xi1, . . . , xip)T , i = 1, . . . , n, satisfy:

(A.1) xi1 = 1, i = 1, . . . , n.

(A.2) There exists a positive definite p× p matrix CCC such that

lim
n→∞

1
n
CCC [nt] = tCCC, t ∈ (0, 1), where CCCk is defined in (1.5).

(A.2) There exist ε ∈ (0, 1/2) and γ > 0 such, as n→∞,
∥∥∥∥

1
k
CCCk −CCC

∥∥∥∥ = O(k−γ)

and ∥∥∥∥
1

n− k
CCC0

k −CCC
∥∥∥∥ = O((n− k)−γ)

uniformly for 1 ≤ k ≤ nε, where CCC is the same as in (A.2).

(A.4) As, n→∞,

max
1≤k≤n

{
1
k

k∑

i=1

||xxxi||3 +
1

n− k

n∑

i=k+1

||xxxi||3
}

= O(1).

The distribution function F of the error terms ei’s satisfies the following set of
assumptions:

(B.1) F has absolutely continuous density f and finite nonzero Fisher’s information

0 < I(f) =
∫ ∞

−∞

(
f ′(x)/f(x)

)2 dF (x) <∞, f ′(x) = df(x)/dx.

(B.2) f(−x) = f(x), x ∈ R1.

(B.3) 0 < f(x) < ∞ and f ′(x) is bounded in a neighborhood of K > 0 (which will
be specified later).

Assumptions on the weight function q are the following:

(C.1) q is positive on (0, 1), nondecreasing in a neighborhood of 0, nonincreasing in
a neighborhood of 1, inf{q(t); t ∈ (η, 1− η)} > 0 for all η ∈ (0, 1/2) and

∫ 1

0

1
s(1− s)

exp
{
− cq2(s)
s(1− s)

}
ds <∞

for some c > 0.
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Now, we formulate the main results. They are confirming what can be anticipated
that under the null hypothesis the limit behavior of the developed M - test statistics
is the same as that of the corresponding L2 statistics.

Theorem 2.1. Let Y1, . . . , Yn follow the model (1.1) with m = n and let assump-
tions (A.1) – (A.4), (B.1) – (B.2) and (B.3) with K = F−1(1− α) for α ∈ (0, 1/2) be
satisfied, then

lim
n→∞

P (a(log n)(Tn(ψ̂n))1/2 ≤ t+ bp(log n)) = exp{−2 exp{−t}}, t ∈ R1, (23)

and

lim
n→∞

P (a(log n)T 0
n(ψ̂n) ≤ t+ b1(logn)) = exp{−2 exp{−t}}, t ∈ R1, (24)

where ψ̂n is defined by (1.22),

a(y) = (2 log y)1/2, bp(y) = 2 log y +
p

2
log log y − log(2Γ(p/2)), y > 1, (25)

and
Γ(p) =

∫ ∞

0

tp−1 exp{−t}dt.

Theorem 2.2. Let Y1, . . . , Yn follow the model (1.1) with m = n and let assump-
tions (A.1), (A.2), (A.4) and (B.1) – (B.3) with K = F−1(1− α) be satisfied, then,
as n→∞,

(Tn(ψ̂n, q))1/2 →D sup
0<t<1

{(∑p
i=1B

2
i (t)

)1/2

q(t)

}
(26)

and

T 0
n(ψ̂n, q) →D sup

0<t<1

{ |B1(t)|
q(t)

}
, (27)

where {Bj(t); t ∈ (0, 1)}, j = 1, . . . , p, are independent Brownian bridges and q is a
weight function fulfilling (C.1).

The proofs are postponed to the next section.

Remark 2.1. The assertions of both theorems remain valid if ψ̂n is replaced by
a score function ψ(.;K) with arbitrary K > 0. The assertions hold true even for
unbounded score function ψ satisfying some smoothness assumptions, however the
proofs become still more cumbersome.

Remark 2.2. Notice that under the null hypothesis the limit behavior of the con-
sidered test statistics does not depend on the particular choice of the score function
and, moreover, it coincides with the limit behavior of the corresponding L2 and L1

test statistics.
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Remark 2.3. The limit distributions in Theorem 2.1 belong to the extreme value
family. The distributions of the limiting random variables in Theorem 2.2 are known
only for particular choices of the weight function q. For more information, consult,
e. g. Csörgő and Horváth [3].

Limit behavior of the proposed test statistics will be studied elsewhere.

3. PROOFS

To prove Theorems 2.1 – 2.2 we have to use a number of results proved elsewhere
and also to derive a number of refinements of results connected mostly with so the
called asymptotic linearity. These results are interesting of its own.

First we formulate auxiliary lemmas mostly proved elsewhere.

Lemma 3.1. Let Y1, . . . , Yn follow the model (1.1) withm = n and let assumptions
(A.1) – (A.4), (B.1) – (B.2) and (B.3(K))) for a K > 0 be satisfied. Then for any
η > 0 there exist Aη > 0 and nη such that for all n ≥ nη

P
(
|(β̃k1(1− α)− β̃k1(α))− (F−1(1− α)− F−1(α)) +

1
f(F−1(α))

(CCC−1
k )1

k∑

i=1

xxxi(φ1−α(ei − F−1(1− α))− φα(ei − F−1(α)))| ≥ Aηk
−v

)
< k−η, k ≤ n,

and

P
(∣∣∣(β̃0

k1(1− α)− β̃0
k1(α))− (F−1(1− α)− F−1(α))

+
1

f(F−1(α))
((CCCn−CCCk)−1)1

n∑

i=k+1

xxxi(φ1−α(ei−F−1(1−α))−φα(ei−F−1(α)))
∣∣∣

≥ Aη(n− k)−v
)
< (n− k)−η, k < n,

with some v > 0 and arbitrary D > 0, where β̃k1(α) and β̃0
k1(α) are the first

components of the α-regression quantiles β̃ββk(α), based on Y1, . . . , Yk, and of the α-
regression quantiles β̃ββ

0

k(α), based on Yk+1, . . . , Yn and (AAA)1 denotes the first row of
the matrix AAA.

P r o o f . The first assertion is a consequence of Theorem 4 in Hušková [6]. The sec-
ond assertion follows in the same way if we realize that the distribution of (e1, . . . en)T

is the same as that of (en, . . . e1)T . 2

We should note that this assertion is slightly stronger than is needed. However,
it enables to improve the estimator of the score function ψ̂n.
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Lemma 3.2. Let the assumptions of Lemma 3.1 be satisfied. Then, as n→∞,

||β̂ββn(ψ(.;K))− βββ|| = Op(n−1/2)

and

CCC1/2
n (β̂ββn(ψ(.;K))− βββ) = − 1∫

ψ′(x) dF (x)
CCC−1/2

n

k∑

i=1

xxxiψ(ei;K) +Op(n−v))

and
σ̂2

n(ψ(.;K))− σ2(ψ(.;K)) = Op(n−v)

for some v > 0, where σ̂2
n(ψ) is defined in (1.17) and

σ2(ψ) =
∫
ψ2(x) dF (x). (28)

P r o o f . These results belong to standard results on the M -estimators. The proof
is omitted. 2

Lemma 3.3. Let the assumptions of Lemma 3.1 be satisfied. Then as n→∞

P

(
a(log n)

(
max

p<k<n−p

(
LLLT

kCCC
−1
k CCCn(CCCn −CCCk)−1LLLk

)1/2 1
σ(ψ(.;K))

)
(29)

≤ t+ bp(log n)
)
→ exp{−2 exp{−t}}, t ∈ R1

and

sup
0<t<1

(
LLLT

[nt]CCC
−1
n LLL[nt]

)1/2

q(t)σ(ψ(.;K))
→D sup

0<t<1

{( ∑p
i=1B

2
i (t)

)1/2

q(t)

}
(30)

where

LLLk =
k∑

i=1

xxxiψ(ei;K)−CCCkCCC
−1
n

n∑

i=1

xxxiψ(ei;K)

and where K > 0 arbitrary, ψ(.;K) and σ(ψ(.;K)) are defined by (1.18) and by
(3.1), respectively, and {B1(t); t ∈ (0, 1)}, . . . , {Bp(t); t ∈ (0, 1)} are independent
Brownian bridges.

P r o o f . Since ψ(e1;K), . . . , ψ(en;K) are iid bounded random variables the as-
sertion (3.2) is a consequence of Theorem 3.1.5 in Csörgő and Horváth [3]. The
assertion (3.3) is a consequence of Lemma 3.1.6 in Csörgő and Horváth [3] and
results in Chapter 4 in Csörgő and Horváth [2]. 2
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Lemma 3.4. Let the assumptions of Theorem 2.1 be satisfied. Then as n→∞
∥∥∥β̂ββn(ψ(.;Kn(α)))− β̂ββn(ψ(.;F−1(α)))

∥∥∥ = Op(n−3/4), α ∈ (0, 1/2).

P r o o f . The assertion is a consequence of Theorem 4.1 in Jurečková and Sen [10].
2

Lemma 3.5. Let the assumptions of Lemma 3.1 be satisfied. Then for any η > 0
and D > 0 there exist Aη > 0 and nη such that for all n ≥ nη

P

(
sup
‖ttt‖≤D

∥∥∥∥∥
k∑

i=1

xxxi(ψ(ei − n−1/2xxxT
i ttt;K)− ψ(ei;K)) + n−1/2CCCkttt (31)

∫
ψ′(x;K) dF (x)

∥∥∥∥ ≥ Aη(k/n)1/2
√

log n
)
< n−η, α ∈ (0, 1/2)

P

(
sup
‖ttt‖≤D

∥∥∥∥∥
n∑

i=k+1

xxxi(ψ(ei − n−1/2xxxT
i ttt;K)− ψ(ei;K)) + n−1/2(CCCn −CCCk)ttt (32)

∫
ψ′(x;K) dF (x)

∥∥∥∥ ≥ Aη((n− k)/n)1/2
√

logn
)
< n−η, α ∈ (0, 1/2)

for 1 ≤ k ≤ n, where ψ(.;K) is defined by (1.18).

P r o o f . It is a modification of the proof of Theorem 2.1 in Hušková [6], therefore
we give only a sketch of the proof. For fix ttt denote

Zi(ttt) = ψ(ei − n−1/2xxxT
i ttt;K)− ψ(ei;K)− Eψ(ei − n−1/2xxxT

i ttt;K), i = 1, . . . n

Then by the Markov inequality for each ttt, z > 0 and A > 0

P

(∥∥∥∥∥
k∑

i=1

xxxijZi(ttt)

∣∣∣∣∣ ≥ A

)

≤ exp{−zA}
(
E exp

{
−z

k∑

i=1

xxxijZi(ttt)

}
+ E exp

{
z

k∑

i=1

xxxijZi(ttt)

})
.

Since Zi(ttt), i = 1, . . . , n, are independent with zero mean and

EZ2
i (ttt) ≤ n−1(xxxT

i ttt)
2D1

with some D1 > 0 we obtain after few standard steps for 0 < z ≤
√
n/k

P

(∣∣∣∣∣
k∑

i=1

xxxijZi(ttt)

∣∣∣∣∣ ≥ A

)
≤ 2 exp

{− zA+ z2D2k/n
}
.
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We want the right hand side smaller than n−η for an arbitrary but fixed η > 0. This
will be obtained for z =

√
n/k and any A > η

√
k/n log n. Moreover,

k∑

i=1

xxxiEψ(ei − n−1/2xxxT
i ttt;K) = −

∫
ψ′(x;K) dF (x)n−1/2CCCkttt+OP (||ttt||2k/n),

uniformly for 1 ≤ k ≤ n. Hence for any η > 0 and D > 0 there exists Aη > 0 and
nη such that for all n ≥ nη

P

(∥∥∥∥∥
k∑

i=1

xxxi(ψ(ei − n−1/2xxxT
i ttt;K)− ψ(ei;K)) + n−1/2CCCkttt (33)

∫
ψ′(x;K) dF (x)

∥∥∥∥ ≥ Aη(k/n)1/2
√

logn
)
< n−η, α ∈ (0, 1/2)

for 1 ≤ k ≤ n and fixed ttt. Similarly we get

P

(∣∣∣∣∣
k∑

i=1

xxxij(Zi(ttt1)− Zi(ttt2))

∣∣∣∣∣ ≥ A

)

≤ 2 exp
{− zA+ z2||ttt1 − ttt2||2D3k/n

}

with some D3 > 0 and

k∑

i=1

xxxiE(ψ(ei − n−1/2xxxT
i ttt1;K)− ψ(ei − n−1/2xxxT

i ttt2;K))

= −
∫
ψ′(x;K) dF (x)n−1/2CCCk(ttt1 − ttt2) +O(||ttt1 − ttt2||2k/n),

uniformly for 1 ≤ k ≤ n. To finish the proof we apply Theorem 12.1 of Billingsley [1].
2

Lemma 3.6. Let the assumptions of Lemma 3.1 be satisfied. Then for any η > 0
and D > 0 there exist Aη > 0 and nη such that for all n ≥ nη

P

(
sup

||ttt||≤D; |u|≤D

1√
k

∥∥∥∥∥
k∑

i=1

xxxi(ψ(ei − n−1/2xxxT
i ttt;K + un−1/2)

− ψ(ei − n−1/2xxxT
i ttt;K))

∥∥∥∥∥

≥ Aηn
−1/4 logn

)
< n−η
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P

(
sup

||ttt||≤D; |u|≤D

1√
n− k

∥∥∥∥∥
n∑

i=k+1

xxxi(ψ(ei − n−1/2xxxT
i ttt;K + un−1/2)

− ψ(ei − n−1/2xxxT
i ttt;K))

∥∥∥∥∥

≥ Aηn
−1/4 logn

)
< n−η

for any K > 0 and for 1 ≤ k ≤ n.

P r o o f . It is a modification of the proof of Theorem 4.1 in Jurečková and Sen
[10] and Lemma 3.5 of the present paper, therefore it is omitted. 2

P r o o f o f T h e o r e m 2.1. We show only (2.1) for the proof of (2.2) follows the
same line.

We first notice that under the assumptions of Lemma 3.1 by Lemma 3.2 and
Lemma 3.5 we have, as n→∞,

max
p<k<n−p

√
n√

(n− k)k

∥∥∥∥∥
k∑

i=1

xxxi(ψ(Yi − xxxT
i βββn(ψ(.;K)))− ψ(ei;K)) (34)

−CCCkCCC
−1
n

n∑

j=1

xxxjψ(ej ;K))

∥∥∥∥∥∥
= op((log log n)−1/2)

which in combination with (3.2) implies that (2.1) holds true for ψ̂n replaced by
ψ(.;K).

To finish the proof we notice that by Lemma 3.4, 3.5 and 3.6

max
p<k<n−p

1√
k

∥∥∥∥∥
k∑

i=1

xxxi(ψ(Yi − xxxT
i βββn(ψ(.;F−1(1− α)) (35)

− ψ̂n(Yi − xxxT
i βββn(ψ̂n)))

∥∥∥∥∥
= op((log log n)−1/2).

and

max
p<k<n−p

1√
n− k

∥∥∥∥∥
k∑

i=k+1

xxxi(ψ(Yi − xxxT
i βββn(ψ(.;F−1(1− α)) (36)

− ψ̂n(Yi − xxxT
i βββn(ψ̂n)))

∥∥∥∥∥
= op((log log n)−1/2).
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This together with (3.2) – (3.3) and Lemma 3.3 implies that the assertion (2.1)
holds true. 2

P r o o f o f T h e o r e m 2.2. By (3.8) – (3.10) we have

max
p<k<n−p

(
n

(n− k)k

)1/2
∥∥∥∥∥CCC

−1/2
n

(
LLLk −

k∑

i=1

xxxi(ψ(Yi− (37)

xxxT
i βββn(ψ(.;F−1(1− α))

)∥∥∥∥∥
= op((log log n)−1/2).

Moreover, for the weight function q fulfilling (C.1) there exists a constant D > 0
such that q(s) ≥ D for s ∈ (η, 1− η) and

lim
s→0+

q(s)√
s(1− s)

= ∞, lim
s→1−

q(s)√
s(1− s)

= ∞.

The assertion (2.4) follows from this property, (3.10) and (3.3). The proof of the
assertion (2.5) is the same and hence it is omitted. 2
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[3] M. Csörgő and L. Horváth: Limit Theorems in Change–point Analysis. Wiley, New

York 1997.
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