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Editorial Office:
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SECOND ORDER ASYMPTOTIC DISTRIBUTION OF
THE Rφ–DIVERGENCE GOODNESS–OF–FIT STATISTICS1

Maŕıa Carmen Pardo

The distribution of each member of the family of statistics based on the Rφ-divergence
for testing goodness-of-fit is a chi-squared to o(1) (Pardo [12]). In this paper a closer
approximation to the exact distribution is obtained by extracting the φ-dependent second
order component from the o(1) term.

1. INTRODUCTION

For a sequence of n observations on a multinomial random vector X = (X1, . . . , XM )t

with probability vector π = (π1, . . . , πM )t,
∑M

i=1 πi = 1. Let π0 = (π01, . . . , π0M )t

a prespecified probability vector with π0i > 0 for each i and
∑M

i=1 π0i = 1. Then to
test the simple hypothesis H0 : π = π0 against H1 : π 6= π0, the most commonly
used statistic is Pearson’s X2 (Pearson [14]);

X2 =
M∑

i=1

(Xi − nπ0i)2

nπ0i

which is asymptotically distributed as a chi-squared with M − 1 degrees of freedom.
Cressie and Read [7] and Read and Cressie [20] introduced the power divergence

family of statistics

2nIλ(X/n, π0) =
2

λ(λ + 1)

M∑

i=1

Xi

((
Xi

nπ0i

)λ

− 1

)
, −∞ < λ < ∞

where the index parameter λ ∈ R, λ 6= −1, 0. It can be easily seen that Pearson’s
X2 (λ = 1), the loglikelihood ratio statistic (λ → 0) , the Freeman–Tukey statistic
(λ = −1/2) , the modified loglikelihood ratio statistic (λ → −1) and the Neyman
modified X2 (λ = −2) , are all special cases of this family. These authors proved
that under the same regularity conditions each member of the power divergence
family follows the same asymptotic distribution (a chi-squared with M − 1 degrees
of freedom).

1This work was supported by Grant DGICYT PB96–0635.
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The classical chi-square approximation of the distribution of Pearson’s statistic
X2 is suspected to be poor unless each expected cell frequency is reasonably large.
A common rule of thumb used by statisticians for many years is that for the chi-
square approximation to be meaningful, each expected cell frequency must be more
than 5 (Rao [16], p. 396). To circumvent this difficulty various approximations to the
distribution of the statistics 2nIλ(X/n, π0) have been given by Read and Cressie [20]
and a comprehensive review of the most important results in this area can be found
in their book as well as the references therein. One of these approximations is
given using local Edgeworth expansions. This approximation was firstly given by
Yarnold [25] for the Pearson chi-square statistic under the null hypothesis, by Siotani
and Fujikoshi [22] for the log-likelihood ratio and Freeman–Tukey statistics and for
the power divergence family of statistics by Read and Cressie [20]. We therefore
omit motivation or justification of this method of asymptotic expansion for the
distribution function of a quadratic form.

We consider the family of statistics based on the Rφ-divergence measure between
the observed proportions x/n and the hypothesized proportions π0 introduced by
Pardo [12]

Sφ(X/n, π0) = − M

φ′′(1/M)
8nRφ(X/n, π0),

where

Rφ(X/n, π0) =
M∑

i=1

{
φ

(
Xi/n + π0i

2

)
− 1

2
[φ (Xi/n) + φ (π0i)]

}

for a given continuous concave function φ : (0,∞) → R with φ(0) = limt↓0 φ(t) ∈
(−∞,∞]. The Rφ-divergence was introduced and studied by Rao [17], Burbea and
Rao ([4, 5]), Burbea [3] in many statistical problems. Some properties of this family
of divergences can be seen in Pardo and Vajda [13]. If the Rφ-divergence is “too
large” the null hypothesis is rejected. An approximation to the exact distribution
of the statistic Sφ(X/n, π0) under uniform hypothesis was obtained from

TE(c) = P (Sφ(X/n, π0) < c) = TχM−1(c) + o(1) (1)

where Tχν is the chi-square distribution function on ν degrees of freedom. This
result holds for every member of the family, as n →∞.

Several reasons justify the choice of uniform hypothesis. Sturges [23] initiated the
study of the choice of cells and recommended that the cell would be chosen to have
equal probabilities with M = 1+2.303 log10 n. Mann and Wald [11] for a sample size

n (large) and a significance level γ, recommended M = 4
(

2n2

z2
γ

)1/5

where zγ is the
upper γ−point of the standard normal distribution. Schorr [21], confirmed that the
‘optimum’ M is smaller than the value given by Mann and Wald and suggested to use
M = 2n2/5. In Greenwood and Nikolin [9] it is suggested to use M ≤ min

(
1
γ , log n

)
.

Cohen and Sackrowitz [6] proved that for the above hypothesis a critical region
of the form

∑M
i=1 hi(xi) > c, where c is a positive constant, hi, i = 1, . . . , M ,
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are convex functions and xi ≥ 0, i = 1, . . . , M , is unbiased. In our case if we
choose φ so that Sφ was convex, the proposed tests are unbiased for equal cell
probabilities. Bednarski and Ledwina [2] established that for every fixed number of
observations, every continuous and reflexive function h : ∆M × ∆M → R+ where
∆M = {(p1, . . . , pM )t/

∑M
i=1 pi = 1, pi ≥ 0, i = 1, . . . , M} and every 0 < c <

sup{c/P (h(p, x) ≥ c) < 1, p ∈ ∆M}, exists q ∈ ∆M such that the test with critical
region h(q, x) > c is biased for testing H0 : p = q. In the book of Read and Cressie
[20] (pp. 148–150) an important historical perspective illustrating the importance
of choosing equiprobable cells can be seen. All this justifies that in the rest of the
paper we consider equiprobable cells. The statistic, Sφ(X/n, π0) that we study in
this paper is a continuous function in ∆M×∆M−{(0, 0)} and then, it is not unbiased
in general for unequal cell probabilities case.

In this paper following Read [19] we extract the φ dependent second order compo-
nent from the o(1) term in (1) to obtain an asymptotic expansion for the distribution
function of the quadratic form given by the statistic Sφ(X/n, π0) closer to the exact
distribution function than (1).

The power divergence family of statistics is a particular case of the family of
goodness-of-fit statistics studied by Zografos et al [26] based on the measure of
divergence called ϕ-divergence, introduced by Csiszár [8] and Ali and Silvey [1] is
given by

Cϕ(X/n, π0) =
2n

ϕ′′(1)

M∑

i=1

Xi

n
ϕ

(
Xi

nπ0i

)

for any continuous convex function ϕ : [0,∞) → R ∪ {∞}, where 0ϕ(0/0) = 0 and
0ϕ(p/0) = limu→∞

ϕ(u)
u (for a systematic theory of these divergences see Liese and

Vajda [10] and Vajda [24]). We can observe that for π0i = 1/M, i = 1, . . . , M,

Sφ(X/n, π0) = Cϕφ
(X/n, π0)

for

ϕφ(t) = φ

( t
M + 1

M

2

)
− 1

2
φ

(
t

M

)
− 1

2
φ

(
1
M

)

when ϕφ is convex.
So the results obtained in this paper are valid for some of the families of statistics

Cϕφ
.

For example an important family of statistics Sφ is obtained if we consider the
family of functions,

φ(x) = φα(x) =

{
(1− α)−1(xα − x) α 6= 1

−x log x α = 1.

In this case the Sφα is convex if and only if α ∈ [1, 2], for M > 2, and if only if
α ∈ [1, 2] or α ∈ [3, 11/3], for M = 2. Moreover,

Cϕα(X/n, π0) = Sφα(X/n, π0)
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for

ϕα(x) =





−2( 1
2 x+ 1

2 )α+xα+1

2Mαα(α−1) α > 0, α 6= 1

1
2M

(
x log 2x

x+1 + log 2
x+1

)
α = 1.

Note that

Sφ2(X/n, π0) =
M∑

i=1

(Xi − n/M)2

n/M
.

Then the result obtained by Yarnold [25] appears as special case of our main theorem.

2. NOTATION AND PRELIMINARY RESULTS

Define Wj =
√

n(Xj/n − π0j), with π0j = 1/M, j = 1, . . . , M and let W =
(W1, . . . ,Wr)t where r = M − 1. Therefore, W is a lattice random vector taking
values in the lattice

L =
{
w = (w1, . . . , wr)t : w =

√
n(x/n− π∗0) and x ∈ K

}
, (2)

where
π∗0 = (π01, . . . , π0r)t

and

K =



x = (x1, . . . , xr)t : xj ≥ 0 integer, j = 1, . . . , r;

r∑

j=1

xj ≤ n



 .

The asymptotic expansion of the random vector W (Siotani and Fujikoshi [22]) is
given by

P (W = w) = n−r/2ϕ(w)
{

1 + n−1/2h1(w) + n−1h2(w) + O(n−3/2)
}

(3)

where

ϕ(w) = (2π)−r/2 |Ω|−1/2 exp
(
−1

2
wtΩ−1w

)

is the multivariate Normal density function, and

h1(w) = −1
2

M∑

j=1

wj

π0j
+

1
6

M∑

j=1

w3
j

π2
0j

,

h2(w) =
1
2

(h1(w))2 +
1
12


1−

M∑

j=1

1
π0j


 +

1
4

M∑

j=1

w2
j

π2
0j

− 1
12

M∑

j=1

w4
j

π3
0j

(4)

with

wM = −
r∑

j=1

wj , Ω = diag(π∗0)− π∗0π∗t0 .
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This result gives us a local Edgeworth approximation for the probability of W at
each point w ∈ L. In the case where W has a continuous probability distribution
function, we have that

P (W ∈ B) =
∫

B

. . .

∫
ϕ(w){1 + n−1/2h1(w) + n−1h2(w)}dw + O(n−3/2).

However, when W has a lattice distribution, as occurs here, then Yarnold [25] in-
dicated that the above expansion is not valid. Rao [15] expressed this lattice sum
as a Stieltjes integral when B is a Borel set. However Rao’s expansion is difficult
to apply and Yarnold has obtained a useful evaluation for the case when B is an
extended convex set, i. e., when B is a set which can be represented as

B =
{
w = (w1, . . . , wr)t : γs(w∗) < ws < θs(w∗),

w∗ = (w1, . . . , ws−1, ws+1, . . . , wr)t ∈ Bs

}
(5)

where Bs ⊂ Rr−1 and γs, θs are continuous functions on Rr−1, s = 1, . . . , r, which
is given by

P (W ∈ B) = J1 + J2 + J3 + O(n−3/2)

where

J1 =
∫

B

. . .

∫
ϕ(w){1 + n−1/2h1(w) + n−1h2(w)}dw,

J2 = −n−1/2
r∑

s=1

n−(r−s)/2
∑

ws+1∈Ls+1

. . .
∑

wr∈Lr

∫

Bs

. . .

∫

(
S1

(√
nws + nπ0s

)
ϕ(w)

)θs(w∗)
γs(w∗) dw1 . . . dws−1,

J3 = O(n−1),

with h1 and h2 defined in (4),

Lj = {wj : wj =
√

n(xj/n− π0j) and xj is integer} ,

S1(t) = t− [t]− 1/2,

θs(w∗) and γs(w∗) are as in (5), and

h(w)θs(w∗)
γs(w∗) = h(w1, . . . , ws−1, θs(w∗), ws+1, . . . , wr)

−h(w1, . . . , ws−1, γs(w∗), ws+1, . . . , wr).

3. THE EXPANSION FOR Sφ

The general distribution function of the family Sφ(X/n, π0) under the uniform hy-
pothesis, can be described as follows

P (Sφ(X/n, π0) < c) = P (W ∈ Bφ(c))
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where
Bφ(c) =

{
w = (w1, . . . , wr)t : Sφ((x/n, xM/n), π0) < c

}

being

wM = −
r∑

j=1

wj , x =
√

nw + nπ∗0 and xM =
√

nwM + n/M.

Bφ(c) can readily be seen to be an extended convex set where γs(w∗) and θs(w∗)
are chosen such that if ws = γs(w∗) or ws = θs(w∗), s = 1, . . . , r, then it holds
Sφ((x/n, xM/n), π0) = c. Therefore using the result of Yarnold [25] with B = Bφ(c),
the second order expansion for the distribution function of the general family Sφ is
obtained in the following theorem.

Theorem 1. Let φ : (0,∞) → R a concave and twice continuously differentiable
function with φ′′(1/M) negative. The asymptotic expansion for the distribution
function of the statistic Sφ(X/n, π0) can be expressed as

P (Sφ(X/n, π0) < c) = Jφ
1 + Jφ

2 + Jφ
3 + O(n−3/2)

where Jφ
1 , Jφ

2 and Jφ
3 are defined by J1, J2 and J3 respectively from Yarnold’s re-

sult [25] by setting B = Bφ(c). Furthermore

Jφ
1 = P (χ2

r < c) +
(M − 1)

96n



P (χ2

r < c) (−8(M + 1)) + P (χ2
r+2 < c)

(
− 21

M2

×φIV (1/M)
φ′′(1/M)

(M − 1) +
18
M2

(
φ
′′′

(1/M)
φ′′(1/M)

)2

(M − 2) + 24M


 + P (χ2

r+4 < c)

×

−24φ

′′′
(1/M)

Mφ′′(1/M)
(M − 2) +

21φIV (1/M)
M2φ′′(1/M)

(M − 1)− 36
M2

(
φ
′′′

(1/M)
φ′′(1/M)

)2

(M − 2)

−24(M−1))+P (χ2
r+6 <c)


2(M−2)


12φ

′′′
(1/M)

Mφ′′(1/M)
+

9
M2

(
φ
′′′

(1/M)
φ′′(1/M)

)2

+4











+ O(n−3/2)

Also Jφ
2 can be approximated to first order by

Ĵφ
2 = (Nφ(c)− nr/2Vφ(c))e−c/2

/(
(2πn)r/2

M−M/2
)

,

where
Nφ(c) = the number of lattice points in Bφ(c)
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and

Vφ(c) = the volume of Bφ(c)

=
(πc)r/2

Γ(1 + r/2)

(
1
M

)M/2


1 +

c(M − 1)
32M2(M + 1)n




(
φ
′′′

(1/M)
φ′′(1/M)

)2

(6(M − 2))

−7φIV (1/M)
φ′′(1/M)

(M − 1)
) 


 + O(n−3/2).

P r o o f . The proof is completed in two parts and the results are derived in a
similar fashion to that for the power divergence statistic by Read [19].

Firstly Jφ
1 is evaluated for which we consider the transformation

zt = wtH = wt(Ir,−1) diag(π0)−1/2A (6)

where

Ir is the identity matrix of order r = M − 1,

1 = (1, . . . , 1)t is a 1× r vector,

At = (a1, . . . , aM ) is an r ×M matrix such that (A,
√

π0) is orthogonal

and

√
π0 =

(√
1/M, . . . ,

√
1/M

)t

.

On one hand, on being (A,
√

π0) an orthogonal matrix we have that AtA = Ir and
At√π0 = 0. Therefore, as zt = wt(Ir,−1) diag(π0)−1/2A, it follows that

Az = diag(π0)−1/2(Ir,−1)tw =
(
w1

√
M, . . . , wM

√
M

)t

.

Consequently wj =
√

1/Mat
jz. On the other hand,

HtΩH = AtA−At√π0

√
πt

0A

and applying that (A,
√

π0) is orthogonal we have that HtΩH = Ir. So (3) can be
expressed as

P (W = w) = n−r/2|Ω|−1/2
{

f(z) + O(n−3/2)
}

where

f(z) = (2π)−r/2 exp
(
−1

2
ztz

) (
1 + n−1/2g1(z) + n−1g2(z)

)
(7)

with

g1(z) = −T1/2 + T3/6,

g2(z) = g2
1(z)/2 + (1−M2)/12 + T2/4− T4/12

and
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T1 =
M∑

j=1

(at
jz)

√
M, T2 = M

M∑
j=1

(at
jz)2,

T3 =
M∑

j=1

(at
jz)3

√
M, T4 = M

M∑
j=1

(at
jz)4.

From Yarnold’s result [25] and (7) it follows that Jφ
1 can be rewritten as

Jφ
1 =

∫

B∗φ(c)

. . .

∫
f(z) dz

where
B∗

φ(c) =
{
z : zt = wtH and w ∈ Bφ(c)

}
. (8)

By interpreting f(z) as the continuous density function of a random variable Z, it
is possible to interpret Jφ

1 as the distribution function of Sφ((ztH−1/
√

n)t + π0, π0)
which will be abbreviated Sφ(ztH−1) and its characteristic function is given by

c(t) =
∫

Rr

. . .

∫
exp

(
itSφ(ztH−1)

)
f(z) dz.

The function Sφ(ztH−1) can be expanded in a Taylor series as

Sφ(ztH−1) = ztz + n−1/2 φ
′′′

(1/M)
2Mφ′′(1/M)

T3 + n−1 7φIV (1/M)
48M2φ′′(1/M)

T4 + O(n−3/2). (9)

Furthermore, on being

exp
(
α + n−1/2β + n−1γ

)
= eα

(
1 + n−1/2β + n−1(γ + β2/2)) + O(n−3/2

)
,

it follows that

exp
(
itSφ(ztH−1)

)
f(z) = (2π)−r/2 exp

(
itztz − 1

2
ztz + n−1/2 φ

′′′
(1/M)

2Mφ′′(1/M)
T3it

+ n−1 7φIV (1/M)
48M2φ′′(1/M)

T4it + O(n−3/2) it

)
(1 + n−1/2g1(z)

+ n−1g2(z)) = (2π)−r/2 exp((2it− 1)ztz/2)
(
1 + n−1/2v1(z)

+ n−1v2(z)
)
(1 + n−1/2g1(z) + n−1g2(z)) + O(n−3/2)

where

v1(z) =
φ
′′′

(1/M)
2Mφ′′(1/M)

T3it

and

v2(z) =
7φIV (1/M)

48M2φ′′(1/M)
T4it− 1

8M2

(
φ
′′′

(1/M)
φ′′(1/M)

)2

T 2
3 t2.
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So it follows that
c(t) = σrE[b(Z)] + O(n−3/2)

where
Z ' N(0, σ2Ir),

σ2 = (−2it + 1)−1

and

b(z) = 1 + n−1/2

(
−T1/2 + T3/6 + it

φ
′′′

(1/M)
2Mφ′′(1/M)

T3

)

+ n−1

(
it

φ
′′′

(1/M)
12Mφ′′(1/M)

(T 2
3 − 3T1T3) +

7φIV (1/M)
48M2φ′′(1/M)

T4it

− 1
8M2

(
φ
′′′

(1/M)
φ′′(1/M)

)2

T 2
3 t2+(−T1/2+T3/6)2/2+(1−M2)/12+T2/4−T4/12


 .

On being
AZ ' N(0, σ2AAt)

with

AAt =




1− 1
M . . . − 1

M
. . . . . . . . .
− 1

M . . . 1− 1
M


 ,

(akZt, ajZ
t) is a bidimensional normal with mean vector (0, 0)t and variance-covariance

matrix σ2

(
1− 1/M −1/M
−1/M 1− 1/M

)
. So the random variable akZt conditioned by

ajZ
t = t is a Normal with mean −t/(M−1) and variance (1−1/M)(1−(1/(M−1)2).

Noting that if X is a Normal with mean µ and standard deviation σ, then

E[(X − µ)r] =

{
0 r odd

r!σr

(r/2)!2r/2 r even

it follows that
E[(at

jZ)] = E[(at
jZ)3] = 0,

E[(at
kZ)(at

jZ)] =

{
−σ2

M k 6= j

σ2
(
1− 1

M

)
k = j

since for k 6= j

E[(at
kZ)(at

jZ)] = E
[
E[(at

kZ)(at
jZ)|at

kZ = t]
]

= E
[
(at

kZ)E[at
jZ|at

kZ = t]
]

= E[(at
kZ)(−1)(at

kZ)/(M − 1)] = −E[(at
kZ)2]/(M − 1) = − σ

M

2
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and for k = j, it is clear that the expectation is given by

E[(at
jZ)2] = σ2(1− 1

M
).

Analogously,

E[(at
kZ)3(at

jZ)] =




− 3σ4

M

(
1− 1

M

)
k 6= j

3σ4
(
1− 1

M

)2
k = j

E[(at
kZ)2(at

jZ)2] =

{
σ4

(
1− 2

M + 3
M2

)
k 6= j

3σ4
(
1− 1

M

)2
k = j

E[(at
kZ)3(at

jZ)3] =




−σ6

(
9

(
1− 1

M

)2 1
M + 6

M3

)
k 6= j

15σ6
(
1− 1

M

)3
k = j

.

Then,

E[T1] = E[T3] = 0,

E[T 2
1 ] = M

M∑

k=1j

M∑
=1

E[(at
kZ)(at

jZ)] = M

(
− σ

M

2
(M−1)+σ2M

(
1− 1

M

))
= 0,

E[T2] = σ2M(M − 1),
E[T1T3] = 0,

E[T4] = 3σ4(M − 1)2,
E[T 2

3 ] = 3σ6(2M2 − 6M + 4)
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and hence,

c(t) = σrE[b(Z)] + O(n−3/2)

= σr +
σ2

n

{(
1− σ−2

2

)
φ
′′′

(1/M)
12Mφ′′(1/M)

(
3σ6(2M2 − 6M + 4)

)

+
7φIV (1/M)

48M2φ′′(1/M)

(
1− σ−2

2

)
3σ4(M − 1)2

+
1

8M2

(
φ
′′′

(1/M)
φ′′(1/M)

)2 (
1 + σ−4 − 2σ−2

4

)
3σ6(2M2 − 6M + 4)

+
1
12

σ6(M2−3M+2)+
(1−M2)

12
+

σ2M(M − 1)
4

− σ4(M − 1)2

4

}
+O(n−3/2)

= σr+
σr

96n

{
8(1−M2)+σ2

(
−21φIV (1/M)

M2φ′′(1/M)
(M−1)2+(2M2−6M + 4)

9
M2

×
(

φ
′′′

(1/M)
φ′′(1/M)

)2

+ 24M(M − 1)


 + σ4

(
−12φ

′′′
(1/M)

Mφ′′(1/M)
(2M2 − 6M + 4)

+
21φIV (1/M)
M2φ′′(1/M)

(M − 1)2 − 36
M2

(
φ
′′′

(1/M)
φ′′(1/M)

)2

(M2 − 3M + 2)− 24(M − 1)2




+σ6


(2M2 − 6M + 4)


12φ

′′′
(1/M)

Mφ′′(1/M)
+

9
M2

(
φ
′′′

(1/M)
φ′′(1/M)

)2

+ 4









 + O(n−3/2).

Taking into account that σr is the characteristic function of a χ2
r and recalling

that c(t) is the characteristic function of the distribution Jφ
1 , we have that

Jφ
1 = P (χ2

r < c) +
1

96n



P (χ2

r < c)8(1−M2) + P (χ2
r+2 <c)

(
−21φIV (1/M)

M2φ′′(1/M)
(M−1)2

+
9

M2

(
φ
′′′

(1/M)
φ′′(1/M)

)2

(2M2 − 6M + 4) + 24M(M − 1)




+P (χ2
r+4 < c)

(
−24φ

′′′
(1/M)

Mφ′′(1/M)
(M2 − 3M + 2) +

21φIV (1/M)
M2φ′′(1/M)

(M − 1)2

− 36
M2

(
φ
′′′

(1/M)
φ′′(1/M)

)2

(M2 − 3M + 2)− 24(M − 1)2


 + P (χ2

r+6 < c)

×

(2M2−6M+4)


12φ

′′′
(1/M)

Mφ′′(1/M)
+

9
M2

(
φ
′′′

(1/M)
φ′′(1/M)

)2

+4









 + O(n−3/2).
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Secondly, the approximations for Jφ
2 and Vφ(c) are evaluated. On one hand we

know that if ws = γs(w∗) or ws = θs(w∗), s = 1, . . . , r, then Sφ((x/n, xM/n), π0) = c
and on the other hand

Sφ ((x/n, xM/n), π0) = wtΩ−1w + o(1),

then
ϕ(w) = (2π)−r/2 |Ω|−1/2 exp(−c/2) + o(1)

when ws = γs(w∗) or ws = θs(w∗), s = 1, . . . , r.
From these facts it follows that

(S1(ws + nπ0s)ϕ(w))θs(w∗)
γs(w∗)

can be written as

(2π)−r/2|Ω|−1/2 exp(−c/2)
(
S1(

√
nws + nπ0s)

)θs(w∗)
γs(w∗) + o(1).

Therefore by applying Theorem 4 of Yarnold [25] it follows that

Jφ
2 = (Nφ(c)− nr/2Vφ(c))e−c/2

/
((2πn)r |Ω|)1/2 + o(1)

being Nφ(c) the number of points in the lattice L which are also in Bφ(c) and Vφ(c)
the volume of Bφ(c). So

Vφ(c) =
∫

Bφ(c)

. . .

∫
dw = |Ω|

1/2∫
B∗φ(c) . . .

∫
dz

where z is defined by (6) and B∗
φ(c) is defined by (8).

Consider the transformation z → u such that

utu = Sφ(ztH−1),

i. e., from (9)

utu = ztz + n−1/2 φ
′′′

(1/M)
2Mφ′′(1/M)

T3 + n−1 7φIV (1/M)
48M2φ′′(1/M)

T4 + O(n−3/2). (10)

By writing

z = d1(u) + n−1/2d2(u) + n−1d3(u) + O(n−3/2),

(10) can be written as

utu = dt
1(u)d1(u) + n−1/2


2dt

1(u)d2(u) +
φ
′′′

(1/M)
2M1/2φ′′(1/M)

M∑

j=1

(at
jd1(u))3




+n−1


2dt

1(u)d3(u)+dt
2(u)d2(u)+

3φ
′′′

(1/M)
2M1/2φ′′(1/M)

M∑

j=1

(at
jd1(u))2(at

jd2(u))

+
7φIV (1/M)

48Mφ′′(1/M)

M∑

j=1

(at
jd1(u))4


 + O(n−3/2)
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where d1(u), d2(u) and d3(u) are such that verify dt
1(u)d1(u) = utu

2dt
1(u)d2(u) +

φ
′′′

(1/M)
2M1/2φ′′(1/M)

M∑

j=1

(at
jd1(u))3 = 0

2dt
1(u)d3(u) + dt

2(u)d2(u) +
3φ

′′′
(1/M)

2M1/2φ′′(1/M)

M∑

j=1

(at
jd1(u))2(at

jd2(u))

+
7φIV (1/M)

48Mφ′′(1/M)

M∑

j=1

(at
jd1(u))4 = 0

obtaining after some algebraic operations

d1(u) = u,

d2(u) = − φ
′′′

(1/M)
4M1/2φ′′(1/M)

M∑

j=1

(at
ju)2aj ,

d3(u) =
1

96M





(
φ
′′′

(1/M)
φ′′(1/M)

)2
15
M




M∑

j=1

M(at
ju)3aj − (utu)u




−7φIV (1/M)
φ′′(1/M)

M∑

j=1

(at
ju)3aj



 .

The Jacobian of the transformation is given by

(∂z/∂u) = Ir + n−1/2

(
− φ

′′′
(1/M)

2M1/2φ′′(1/M)

)
P1 + n−1 1

96M





(
φ
′′′

(1/M)
φ′′(1/M)

)2
15
M

× (
3MP2 − 2utu− uutIr

)− 21
φIV (1/M)
φ′′(1/M)

P2

}
+ O(n−3/2)

where

P1 =
M∑

j=1

(at
ju)aja

t
j and P2 =

M∑

j=1

(at
ju)2aja

t
j .

In order to calculate the determinant of this matrix, the following general result
is required where B and C are square r × r matrices and Ir is the r × r identity

|Ir + n−1/2B + n−1C|

= 1 + n−1/2
r∑

i=1

bii + n−1




r∑

i=1

cii +
1
2

r∑

i,j

(biibjj − bijbji)


 + O(n−3/2).
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Hence it follows that

|∂z/∂u| = 1 + n−1/2

(
− φ

′′′
(1/M)

2M1/2φ′′(1/M)

)
Q1 +

n−1

32M

(
(15MQ2 − 5(2 + r)utu

+4MQ2
1 − 4MQ12)

1
M

(
φ
′′′

(1/M)
φ′′(1/M)

)2

− 7
φIV (1/M)
φ′′(1/M)

Q2


 + O(n−3/2)

where

Q1 =
M∑

j=1

(at
ju)at

jaj , Q2 =
M∑

j=1

(at
ju)2at

jaj and Q12 =
M∑

k,j

(at
ku)(at

ju)(at
kaj)2.

Using the identities

Q1 =
T1

M1/2
, Q2 =

T2 − utu

M
and Q12 =

T2 − 2utu

M

where z has been replaced by u on T1 and T2, we obtain that

|∂z/∂u| = 1+n−1/2

(
− φ

′′′
(1/M)

2Mφ′′(1/M)

)
T1+

n−1

32M2

(
(15T2−5(5+r)utu+4T 2

1 −4T2

+8utu)
1
M

(
φ
′′′

(1/M)
φ′′(1/M)

)2

− 7
φIV (1/M)
φ′′(1/M)

(T2 − utu)


 + O(n−3/2). (11)

Substituting u for z, it follows that

Vφ(c) = |Ω|1/2

∫

utu<c

. . .

∫
|∂z/∂u| du

i. e.

Vφ(c) = |Ω|1/2



Mr + n−1/2

(
− φ

′′′
(1/M)

2Mφ′′(1/M)

)
N1

+
n−1

32M2



 (−(15 + 5r)N2 + 11N3 + 4N4)

× 1
M

(
φ
′′′

(1/M)
φ′′(1/M)

)2

− 7
φIV (1/M)
φ′′(1/M)

(N3 −N2)







 + O(n−3/2)
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where

Mr =
∫

utu<c

. . .

∫
du = (πc)r/2/Γ(1 + r/2),

N1 =
M∑

j=1

√
M

(
r∑

k=1

ajkIk

)
, N2 =

r∑

k=1

Ikk,

N3 =
M∑

j=1

M




r∑

k,m

ajkajmIkm


 , N4 =

M∑

i,j

M




r∑

k,m

aikajmIkm


 ,

and
Ik =

∫

utu<c

. . .

∫
uk du, Ikm =

∫

utu<c

. . .

∫
ukum du.

Furthermore, from the proof of Theorem 2.1.8 of Read [18], we know that

Ik = 0, Ikm = 0 for k 6= m and Ikk =
Mrc

r + 2
, k = 1, . . . , r.

Hence

N1 = 0, N2 = (M − 1)
Mrc

M + 1
,

N3 = (M − 1)M
Mrc

M + 1
, N4 = N3 − (M − 1)M

Mrc

M + 1
= 0,

so

Vφ(c) =
(

1
M

)M/2

Mr



1 +

c(M − 1)
32M2(M + 1)n




(
φ
′′′

(1/M)
φ′′(1/M)

)2

(6(M − 2))

7
φIV (1/M)
φ′′(1/M)

(M − 1)
) }

+ O(n−3/2).

This is the result required and hence ends the proof. 2

Remark 1. If we consider φα(x) = (1−α)−1(xα−x) with α = 2 then φ′′(1/M) =
−2, φ′′′(1/M) = 0 and φIV (1/M) = 0, and we obtain

Jφ2
1 = P (χ2

r < c) +
(M − 1)

12n

{
P (χ2

r < c) (−(M + 1)) + 3MP (χ2
r+2 < c)

− 3(M − 1)P (χ2
r+4 < c) + (M − 2)P (χ2

r+6 < c) + O(n−3/2)

and

Vφ2(c) =
(πc)r/2

Γ(1 + r/2)

(
1
M

)M/2

+ O(n−3/2)

that it is to say the result obtained by Yarnold [25].
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The above approximation is closer to the exact distribution of the family Sφ(X/n, π0)
than the χ2 approximation. However the effort required to calculate the second order
approximation is substantial in comparison to calculating the χ2 approximation.

Note that the Jφ
1 term would be the Edgeworth expansion term if Sφ had a contin-

uous distribution function. The term Jφ
2 accounts for the error due to the discontinu-

ity. Finally, the term Jφ
3 = O(n−1) may be ignored as due to the asymptotic equiv-

alence of the family Sφ discussed by Pardo [12], it follows that n(Jφ1
3 − Jφ2

3 ) → 0 as
n →∞. Therefore any φ-dependent terms in Jφ

3 will be O(n−3/2). As in the expan-
sion of Sφ distribution of Theorem 1 only includes terms larger than O(n−3/2), Jφ

3

can be viewed as independent of φ. Apart from this term can only cause a constant
adjustment to the distribution function independent of φ, this evaluation is complex
(see e. g. Yarnold [25] for the Pearson statistic).

4. NUMERICAL COMPUTATIONS

We compare the performances of the second order and chi-square approximations
with the exact multinomial probabilities under equiprobable null hypothesis. We
calculate the maximum approximation error incurred by TχM−1 and TS = Jφ

1 + Ĵφ
2

to TE . The sign associated with the maximum difference is recorded to know if
there has been an over-estimate or under-estimate. The computations are carried
out using FORTRAN programs. The results are illustrated with the family Sφα for
α ∈ (0, 3]; M = 3, 4, 5, 6 and sample sizes n = 10, 20.

M = 3 n = 10 n = 20

α Tχ TS Tχ TS

.3

.5

.7
1

1.5
13/7

2
2.5

3

−.1879 −.0700
−.1823 −.0776
−.1679 −.0618
−.1542 −.0426
−.1406 −.0288
−.1280 −.0156
−.1162 −.0158
−.1397 .0170
−.1542 −.0419

−.1218 −.0289
−.1094 −.0218
−.0982 −.0195
−.0935 −.0144
−.0866 −.0059
−.0822 −.0039
−.0916 −.0044
−.1018 −.0138
−.1140 −.0208

M = 4 n = 10 n = 20

α Tχ TS Tχ TS

.3

.5

.7
1

1.5
13/7

2
2.5

3

−.2575 −.2193
−.2364 −.2153
−.2114 −.1926
−.1934 −.1217
−.1639 −.0265
−.1507 −.0207
−.1472 −.0313
−.1419 −.0357
−.1472 .0495

−.1285 −.0546
−.1165 −.0466
−.1055 −.0344
−.0900 −.0178
−.0739 −.0055
−.0817 −.0069
−.0851 −.0074
−.0692 −.0153
−.0718 −.0241
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M = 5 n = 10 n = 20

α Tχ TS Tχ TS

.3

.5

.7
1

1.5
13/7

2
2.5

3

−.4257 −.4247
−.4184 −.3947
−.3515 −.2843
−.2281 −.1357
−.0830 −.0294

.0752 .0283

.0762 .0378

.1013 .0697

.0885 .0990

−.1638 −.0705
−.1324 −.0570
−.1206 −.0530
−.0784 −.0339

.0373 −.0048

.0337 .0064
−.0701 −.0084

.0601 .0194

.0401 .0437

M = 6 n = 10 n = 20

α Tχ TS Tχ TS

.3

.5

.7
1

1.5
13/7

2
2.5

3

−.7269 −.7164
−.6855 −.6198
−.5467 −.4045
−.3247 −.1671
−.1742 −.0560
−.1036 .0349
−.1132 .0434
−.0993 .0919
−.1420 .1799

−.1914 −.1520
−.1713 −.1495
−.1431 −.1277
−.1014 −.0683
−.0538 −.0117
−.0444 .0103
−.0568 .0127
−.0293 .0322
−.0673 .0716

The approximation TS is the best since is the closest to the zero abscissa, i. e.,
the maximum approximation error resulting from using this approximation for the
true distribution function TE of Sφα is the closest to zero. There is more difference
between TS and TχM−1 for M = 3, 4 than M = 5, 6. Observe that we are comparing
the TS and TχM−1 asymptotic distributions of the chi-square statistic, Sφ2 . From
this criterion we see that if we want to use the standard χ2 approximation then we
should use a α value in the range [1.5, 2].

(Received April 12, 1999.)
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