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FUZZY CLUSTERING OF SPATIAL BINARY DATA

Mô Dang and Gérard Govaert

An iterative fuzzy clustering method is proposed to partition a set of multivariate binary
observation vectors located at neighboring geographic sites. The method described here
applies in a binary setup a recently proposed algorithm, called Neighborhood EM, which
seeks a a partition that is both well clustered in the feature space and spatially regular [2].
This approach is derived from the EM algorithm applied to mixture models [9], viewed as
an alternate optimization method [12]. The criterion optimized by EM is penalized by a
spatial smoothing term that favors classes having many neighbors. The resulting algorithm
has a structure similar to EM, with an unchanged M-step and an iterative E-step. The
criterion optimized by Neighborhood EM is closely related to a posterior distribution with
a multilevel logistic Markov random field as prior [5, 10]. The application of this approach
to binary data relies on a mixture of multivariate Bernoulli distributions [11]. Experiments
on simulated spatial binary data yield encouraging results.

1. INTRODUCTION

A fuzzy clustering method is proposed to partition a set of n binary observations
vectors x1, . . . , xn (xi ∈ {0, 1}d, 1 ≤ i ≤ n) located at neighboring geographic sites.
For instance, it may be applied in biogeography to cluster n contiguous quadrats
over which the occurrences of d animal species have been recorded. The aim is
twofold: produce clusters that are homogeneous in the feature space, and account
for some a priori hypothesis of spatial smoothness.

Numerous clustering methods have been proposed to take into account the spatial
information of the data. Using the geographic coordinates as an additional pair of
variates [4] or hierarchical clustering with contiguity constraints [13] tend to enforce
the clusters to be spatially connected. Thus, for applications where the same class
may appear in separate geographic regions, it seems more suitable to use methods
like those of unsupervised image segmentation based on Markov Random Fields
modeling [10, 8]; most of these techniques require however computationally intensive
Monte-Carlo simulations.

In this work, the approach introduced in Ambroise et al [2] is adapted to the case
of binary data. This approach is derived from the EM algorithm applied to mixture
models [9]. It mainly consists in adding a spatial regularizing term to the criterion
optimized by EM, and optimizing the new criterion by an iterative algorithm similar
to EM.
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2. CLUSTERING OF BINARY DATA USING MIXTURE MODELS

In clustering based on mixture models, the observations x1, . . . , xn are assumed to be
independently drawn from a mixture of k subpopulations in proportions (p1, . . . , pk),
each subpopulation having probability distribution function fh(·, θh) with unknown
parameters θh (1 ≤ h ≤ k).

In the case of binary data, a mixture of k multivariate Bernoulli laws comes as a
natural assumption. Following [11, 7], distribution fh is characterized by its center
ah ∈ {0, 1}d and its dispersion εh ∈]0; 1

2 [d — i. e. θh = (ah, εh) — so that any
observation y ∈ {0, 1}d belonging to group h occurs with probability

fh(y ; ah, εh) =
d∏

j=1

ε
|yj−ahj |
hj (1− εhj)1−|yj−ahj |. (1)

Expression (1) means that given class h, observation y arises from independent
drawings of d univariate Bernoulli laws with parameters 1 − εhj if ahj = 1, or εhj

if ahj = 0 (1 ≤ j ≤ d). Thus, given class h, for each variable j (1 ≤ j ≤ d), ahj

represents the value that occurs with highest probability, while εhj represents the
probability that observation yj differs from ahj , thence the terminology of center for
ah and dispersion for εh.

In clustering applications, the parameters of the mixture

Φ = (p1, . . . , pk−1, θ1, . . . , θk)

are usually unknown. The EM algorithm has become a standard method to esti-
mate these parameters from unlabeled data [9]. This iterative algorithm produces
parameters estimate Φ̂ that locally optimize the log-likelihood function

L(Φ) =
n∑

i=1

log f(xi ; Φ) =
n∑

i=1

log

(
k∑

h=1

phfh(xi ; θh)

)
.

In order to take into account the assumption of spatial smoothness on the classi-
fication, we take advantage of a relationship exhibited by Hathaway [12], where the
EM algorithm applied to mixture models is proved to be equivalent to a grouped co-
ordinate ascent on a function D(c,Φ) of the parameters Φ and a fuzzy classification
matrix c = (cih)1≤i≤n

1≤h≤k [12] :

D(c, Φ) ∆=
k∑

h=1

n∑

i=1

cih log(phfh(xi; θh))−
k∑

h=1

n∑

i=1

cih log(cih).

Notice that in the case of a hard classification matrix and for Bernoulli mixtures
having equal proportions and dispersions, the criterion −D(c,Φ) is akin to a sum of
intraclass inertia with a L1 norm, so that its alternate optimization yields a k-means
like algorithm using L1 distances and binary kernels.
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3. SPATIAL REGULARIZATION

The criterion D(c, Φ) optimized by EM favors the homogeneity of the clusters in the
variables space, but does not take into account the spatial information of the data.
This second point can be addressed by adding the following spatial regularizing term
to D(c, Φ) [1, 2]:

G(c) =
1
2

k∑

h=1

n∑

i=1

n∑

j=1

cihcjhvij ,

where vij are the weights of the geographic neighborhood system (vij > 0 if observa-
tion i is neighbor of observation j, vij = 0 otherwise). G(c) is an increasing function
of the number of neighbor pairs having same class. The degree of spatial smoothing
is controlled via a weighting coefficient β, so that the new criterion to be optimized
is defined as

U(c,Φ) = D(c, Φ) + β G(c).

Optimizing alternatively criterion U(c, Φ) over c and Φ yields an iterative algo-
rithm having the same structure as EM, called Neighborhood EM. A neighborhood
matrix V = (vij)

1≤j≤n
1≤i≤n must first be computed according to the spatial relation-

ships. The calculation is then initialized by choosing arbitrary initial values for the
parameters of the mixtures, Φ0, and the classification matrix, c0. The two following
steps are then iteratively repeated until convergence is reached (m + 1 denotes the
current iteration):

1. E-step:
cm+1 = arg max

c
U(c,Φm).

The following equations are obtained, for 1 ≤ i ≤ n and 1 ≤ h ≤ k:

cm+1
ih = gih(cm+1) =

pm
h fh(xi|θm

h ) · exp{β ∑n
j=1 cm+1

jh vij}
∑k

`=1 pm
` f`(xi|θm

` ) · exp
{

β
∑n

j=1 cm+1
j` vij

} (2)

suggesting an iterative computing algorithm of the form c = g(c̃), where c̃ is
the old classification matrix. The convergence of this fixed point procedure
can be proved under a bounding condition on β; the convergence conditions
and its proof will be published in a forthcoming paper [3]. From a practical
point of view, satisfying results are obtained using only one iteration of this
procedure to compute the new classification matrix cm+1.

2. M-step:

Φm+1 = arg max
Φ

U(cm+1, Φ) = arg max
Φ

D(cm+1,Φ).

Thus, to compute the parameters of the mixture, one can use the same formulae
as in the M-step of the EM algorithm. More specifically, for a Bernoulli mixture



396 M. DANG AND G. GOVAERT

model, the following re-estimation formulae are obtained, for 1 ≤ h ≤ k and
1 ≤ j ≤ d:

nh =
n∑

i=1

cm+1
ih (3)

pm+1
h =

nh

n
(4)

am+1
hj = rounded value of

1
nh

n∑

i=1

cm+1
ih xij (5)

εm+1
hj =

1
nh

n∑

i=1

cm+1
ih |xij − am+1

hj |. (6)

am+1
hj can be interpreted as the most frequently occuring value within class h

for variable j, and and εm+1
hj as the proportion of observations that differ from

this value.

A hard classification can be obtained at the convergence of NEM by assigning
to observation i the class in which it has the highest grade of membership (` =
arg max1≤h≤k cih).

4. NUMERICAL EXPERIMENTS

The behavior of the Neighborhood EM algorithm will be illustrated on a simple
artificial data set. The n = 400 observations are spatially located on a regular grid of
20 lines by 20 columns. Their class was randomly generated using a Gibbs sampler
algorithm [10], according to a Markov random field with k = 4 levels, 4 nearest-
neighbors contexts and β = 1.2 (see Figure 4.1.a). Each observation, consisting of a
vector of d = 5 binary values, has been drawn according to the Bernoulli distribution
of its class. The centers of the 4 classes are respectively a1 = (01111), a2 = (11100),
a3 = (00011), and a4 = (10000). and the dispersion is the same for all classes and
variables, εhj = ε = 0.15 (1 ≤ h ≤ k, 1 ≤ j ≤ d).

(a) (b)

Fig. 4.1. Simulated spatial binary data. (a) Simulated partition with 4 classes using a

Gibbs sampler (20× 20 pixels image). (b) Simulated data with Bernoulli distribution in

dimension d = 5 (ones are represented by a dark pixel, zeros by a clear pixel).
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The NEM algorithm was initialized by drawing randomly the centers out of the
observations. The initial partition was then computed from the initial parameters
by a “blind” classification using no spatial context. The final result was obtained by
retaining the solution that provided the highest criterion U(c,Φ) out of 30 randomly
initialized trials.

(a) (b) (c) (d)

Fig. 4.2. Partitions obtained by NEM with different values of β. (a) β = 0, error =

23.2 % ; (b) β = 0.5, error = 10.2 % ; (c) β = 1.4, error = 5.2 % ; (d) β = 4, error =

11.5 % .

The partitions obtained using four representative values of β are displayed in
Figure 4.2. When β = 0, the NEM algorithm is identical to EM, i. e. the spatial
information is not used at all; due to the dispersion of the classes in the feature space,
the misclassification error is quite high (23.2 % ) (Figure 4.2.a). When β = 0.5, the
classification is more accurate because the spatial context reduces ambiguities during
the clustering process (Figure 4.2.b). One of the best classifications is obtained with
β = 1.4, yielding only 5.8 % of misclassified pixels (compare Figure 4.2.c and the
simulated partition Figure 4.1.a). When β = 4, the error is higher, because of a
slight over-smoothing effect (Figure 4.2.d).

5. CONCLUSION

This study has shown that the clustering of a set of multivariate binary observations,
taking into account their spatial relationships, may be achieved by combining the
Neighborhood EM algorithm with Bernoulli mixture models. The formulation of the
algorithm for Bernoulli mixtures has been given, and its practical relevance has been
illustrated on a simulated data set. Compared to image segmentation techniques
based on Markov random fields, to which it is closely related, Ambroise [1] points
out that the NEM algorithm produces segmentations roughly equivalent to those
of the Gibbsian EM algorithm [8], its main advantage being its relative efficiency
due to its deterministic, iterative scheme. In comparison with other known fuzzy
clustering methods, such as Bezdek’s fuzzy C-means [6], this “binary” version of
the NEM algorithm provides two features of interest: a) it relies on a statistical
model of Bernoulli mixtures suited to binary data; b) the spatial information of the
data is taken into account without enforcing the clusters to be made of one unique
geographic region.

The work presented here suggests that the mixture-based approach of the NEM
algorithm should be able to cluster spatial observations containing both categorical
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and continuous data. This could be simply done by considering class distributions
mixing, for instance, multinomial probabilities and normal densities.

As is apparent from the simulated example above, the clustering result of the
Neighborhood EM algorithm depends largely on the choice of the spatial coefficient
β. The problem of determining automatically the spatial coefficient is currently being
investigated. A heuristic method based on the likelihood of the class parameters is
being tested, and displays encouraging results on simulated data sets. A real case
study is underway on an ecological dataset.

(Received December 18, 1997.)
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