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Radim Jiroušek, Ivan Kramosil,
Rudolf Kulhavý, Milan Mareš,
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Czech Republic, e-mail: myris@myris.cz. — Sole agent for all “western” countries: Kubon
& Sagner, P.O. Box 34 01 08, D-8 000 München 34, F.R.G.

Published in September 1998.

c© Institute of Information Theory and Automation of the Academy of Sciences of the
Czech Republic, Prague 1998.

http://www.utia.cas.cz
http://www.utia.cas.cz
http://www.utia.cas.cz
http://www.kybernetika.cz/board.html
http://www.kybernetika.cz/contact.html
http://www.kybernetika.cz
http://www.kybernetika.cz/content/344.html


KY BERNET I K A — V OL UME 3 4 ( 1 9 9 8 ) , N UM B ER 4 , PAGE S 4 7 9 – 4 8 4

PIECEWISE LINEAR CLASSIFIERS
PRESERVING HIGH LOCAL RECOGNITION RATES

Hiroshi Tenmoto, Mineichi Kudo and Masaru Shimbo

We propose a new method to construct piecewise linear classifiers. This method con-
structs hyperplanes of a piecewise linear classifier so as to keep the correct recognition
rate over a threshold for a training set. The threshold is determined automatically by the
MDL (Minimum Description Length) criterion so as to avoid overfitting of the classifier to
the training set. The proposed method showed better results in some experiments than a
previous method.

1. INTRODUCTION

In pattern recognition, nonparametric classifiers are effective when the assumption
of a statistical model cannot be made on the basis of the underlying distribution of
samples. A piecewise linear classifier is a typical nonparametric classifier and ap-
proximates the true discrimination boundary by a combination of some hyperplanes.

Many methods have been proposed for construction of piecewise linear classifiers
[4–7, 9–11]. Park and Sklansky’s method [7] is the most effective and least restric-
tive one. It aims to separate prototypes belonging to different classes, where the
prototypes are the cluster centers of the training samples of each class. Therefore,
unless the prototypes properly represent the samples around them, the method does
not work well. It is especially difficult for prototypes to represent training samples
located at class boundaries. Their method, therefore, depends strongly on the result
of clustering and often fails to discriminate even the training samples.

In our method, prototypes and training samples are evenly used, and hyperplanes
are constructed incrementally so as to keep the local recognition rate over a thresh-
old. However, in general, a high recognition rate for the training samples does not
imply the same performance for many unknown samples. Overfitting to the train-
ing samples causes the degradation of performance. Therefore, we determine an
appropriate value of the threshold on the basis of the MDL criterion [8].

2. CONSTRUCTION OF PIECEWISE LINEAR CLASSIFIERS

2.1. Basic algorithm

Our method is based on Park and Sklansky’s method [7]. Both methods are sum-
marized by the following basic algorithm.
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Step 1: Using a clustering method (e. g., Forgy’s algorithm [2]), find some clusters
over the training samples in each class, and let the cluster centers be prototypes.

Step 2: Among all links connecting pairs of different-class prototypes, find Tomek
links [12], where a link is said to be a Tomek link when the hypersphere with
the link as the diameter does not include other prototypes. For simplicity, we
refer to a Tomek link as a link.

Step 3: Find some hyperplanes so as to cut all the (Tomek) links.

Step 4: Assign a class label to each region surrounded by the hyperplanes by apply-
ing the majority rule to the number of training samples that fall in the region.
Classify an unknown sample according to the label of the region where the
sample falls in. For a region without the label, reject the sample (with-reject
mode) or adopt the nearest region to the sample (without-reject mode).

The primary part of the algorithm is Step 3. In Step 3, the previous method
finds the nearly minimum number of hyperplanes that is enough for separating all
the prototypes. However, there is no guarantee that the hyperplanes can separate
all training samples as well. This problem may be solved by increasing the number
of prototypes, although it increases the computational cost.

In our method, a hyperplane is first found on the basis of the prototypes, and
then the location is corrected on the basis of the training samples. An addition of
a link to the same hyperplane is carried out only when the addition keeps the local
recognition rate high. The previous method also has a similar correction mechanism,
but the cutting of many links has priority over such a correction.

2.2. Incremental construction of hyperplanes

Next, we show our concrete procedure for the construction of hyperplanes.

Step 0: Let the set of links be L. The value of the upper bound εmax of the local
error rate is determined.

Step 1: Repeat the following steps until L becomes empty.

Step 2: Select the longest link l ∈ L as an initial link, and let the perpendicular
bisector be an initial hyperplane h. Let Lh = {l} and L = L − {l}. Let p
and n be the prototypes of l located on the positive side and the negative side
with respect to h, respectively. Let a positive prototype set P = {p} and a
negative prototype set N = {n}. Make a local positive set SP of the training
samples belonging to the same cluster with p ∈ P . In a similar way, make a
local negative set, SN (Figure 1(a)). Next, train h locally so as to classify SP

and SN more correctly by Window Training Procedure [10]. Copy L to L′.

Step 3: Find the link l′ ∈ L′ nearest to Lh, where the nearness is measured by the
distance D(l′, Lh) = minl∈Lh

d(l′, l), here d(·, ·) is the distance between two
link centers. Next, let L′ ← L′ − {l′} and Lh ← Lh ∪ {l′}. If h also cuts
l′ simultaneously, try to add both prototypes of l′ to P and N according to
the signs with respect to h. If both prototypes are located on the negative
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side, the prototype nearer to h is added to P , and the other is added to N .
If both prototypes are located on the positive side, add them to N and P ,
conversely. Then, reconstruct SP and SN by collecting the training samples
belonging to the same cluster as at least one prototype of P and N , respectively
(Figure 1(b)).

Step 4: Train h locally for SP and SN (Figure 1(c)). Calculate the local error rate ε.

Step 5: If ε ≤ εmax, update L and Lh as L = L − {l′} and L′ ← L. Furthermore,
we limit the addition of the links only when at least one side of h is always of
one class. If both the limitations are satisfied, return to Step 3. Otherwise,
cancel the addition as Lh ← Lh −{l′} (P and N are returned to the situation
they were in before the addition of l′), and return to Step 3 in order to find a
second nearest link to Lh. If there is no link to satisfy the limitations, or if the
number of canceled links is beyond a given number K, terminate the addition
to Lh, and return to Step 2 for finding another hyperplane, h′.

(a) (b) (c)
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Fig. 1. Construction of hyperplanes by the proposed method. The small and large

symbols denote the training samples and the prototypes, respectively.

2.3. Determination of threshold by MDL criterion

In the proposed method, the recognition rate for the training samples is control-
lable by a threshold εmax. With a small εmax, we can obtain a classifier which can
discriminate the training samples well. However, fitting a classifier too close to the
samples does not necessarily improve the performance for many unknown samples.
There is an appropriate value of εmax for every given problem.

To estimate the appropriate value, we use the MDL criterion [8], which is one of
the probabilistic model selection criteria. The MDL criterion selects a certain model
M from a model classM such that M minimizes the description length of the data
and M simultaneously. That is, we require the classifier to be as simple as possible
and to classify correctly as many training samples as possible at the same time.

The MDL value is denoted by LMDL = L(XN |θ) + L(θ|M) + L(M), where XN

denotes given N training samples and θ is a real-valued parametric vector of the
model M . The first term is the description length of XN under a particular θ of M .
It is calculated as the log-likelihood of θ with respect to XN , i. e., − log2 P (XN |θ).
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The second term is the description length of θ, and the third term is the description
length of M . By summing up these lengths, we obtain the value of LMDL.

The practical calculation is as follows. We consider a finite partitioning model (for
example, see reference [13]). The universal region is assumed to be partitioned into
R regions {R1,R2, . . . ,RR} by the hyperplanes. In region Rr, let Nr, N+

r and N−
r

be the number of samples, the number of samples of the most dominant class and the
number of samples of the other classes, respectively. Then, a maximum likelihood
estimator of a binomial distribution for Rr is given by θ̂r = N+

r /Nr. Thus, the first

term is calculated by
∑R

r=1− log2 θ̂r
N+

r (1 − θ̂r)N−
r =

∑R
r=1 Nr{−θ̂r log2 θ̂r − (1 −

θ̂r) log2(1− θ̂r)}. For the second term, we use 1
2 (D + 1)H(log2 N + log2 e), where D

and H are the number of features and the number of hyperplanes, respectively. In
the last term of LMDL, we identify model M by encoding the number of hyperplanes
as log∗2 H, where log∗2 H = 1.519 + log2 H + log2 log2 H + · · · , and the summation is
taken only for positive terms [8]. We choose an appropriate number of hyperplanes
where LMDL takes the minimum.

3. EXPERIMENTS

All experiments were performed on an Intel Pentium 200MHz machine with BSD/OS.
Throughout all the experiments, we determined the value of K for the terminal con-
dition by 2D, i. e., twice the number of features.

A. Artificial data

An experiment was performed using a two-class set of artificial data, in which two
distributions form double rings with the center at the origin in a 2-dimensional space.
The radius of Class 1 varies according to the normal distribution N(r1, 1), and that
of Class 2 varies according to N(r2, 1). There is a considerable overlap between
the two classes when |r1 − r2| is small. For each class, we used n (10 ≤ n ≤ 2511)
samples for training and 1000 samples for test.
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Fig. 2. Recognition rates of the proposed method and the previous method with changes

in (a) the value of r2 and (b) the value of n.
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We examined the robustness of the proposed method, changing (a) the separabil-
ity of the two distributions and (b) the number of training samples. In test (a), r1

is fixed at 10, r2 is varied from 10 to 17 and n is fixed at 250. In test (b), r1 is fixed
at 10, r2 is fixed at 12 and n is increased from 10 to 2511 with a log scale step such
as b10kc (k = 1, 1.1, . . . , 3.4). Figure 2 shows the results. The proposed method
outperformed the previous method in discrimination, except when the classes were
very close (r2 < 12) or the number of the training samples was very small (n < 100).

Under conditions of such a small amount of information, the number of hyper-
planes in the proposed method was too small. The MDL criterion generally tends
to underestimate in such a case. By the proposed method with an optimal number
of hyperplanes, we can expect a better result. As an alternative, we may adopt a
constant value (e. g., 0.1) for εmax without MDL estimation.

B. Real data

Experiments were performed on two practical problems: (a) 26-class, 10-feature
alphabetical character recognition (ETL–3 database [1]) and (b) 5-class, 6-feature
Japanese vowel recognition (ETL–WD–I database [3]). In experiment (a), the num-
ber of training samples per class is 100, and that of test samples is 100. In experiment
(b), the number of training samples per class is 100, and that of test samples is 500.
For all experiments, ten prototypes are used. The values of εmax estimated by the
MDL criterion were 0.12 in (a) and 0.08 in (b), respectively.

The results are shown in Table 1. Especially in with-reject mode, the proposed
method was better than the previous method in the recognition rate, while the
number of hyperplanes of the proposed method was smaller than that of the previous
method. This means that our MDL criterion works sufficiently to avoid overfitting
to the training samples. The results without MDL estimation (in this case, εmax =
0.1) were also good. These results indicate the usefulness of a constant value for
εmax when we want to economize the computational cost.

Table 1. Experimental results. Here, M , R1 and R2 correspond to the number of

hyperplanes, the recognition rate in with-reject mode, and the recognition rate in

without-reject mode, respectively.

Dataset Method M LMDL R1 R2

(a) ETL–3 Proposed with MDL (εmax = 0.12) 33 2519 75.04 93.27
Proposed (fixed εmax = 0.1) 35 2643 74.23 93.04
Previous 44 3157 51.65 92.23

(b) ETL–WD–I Proposed with MDL (εmax = 0.08) 10 470.7 77.88 82.44
Proposed (fixed εmax = 0.1) 11 505.4 77.12 81.52
Previous 19 721.3 57.08 82.20

4. DISCUSSION AND CONCLUSION

We proposed a new method for constructing piecewise linear classifiers, in which
each hyperplane is constructed so as to keep the local error rate under a threshold



484 H. TENMOTO

that is determined by the MDL criterion. The results of experiments showed the
effectiveness of the proposed method.

As in the case of the previous method, our method also depends on the result
of clustering, i. e., the prototypes. In a future study, we will try to develop a con-
struction method without clustering. The use of computational geometry techniques
with probabilistic algorithms may be one possibility. Determination of the optimal
number of clusters using the MDL criterion will also be studied.

(Received December 18, 1997.)
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