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Published bi-monthly by the Institute of Information Theory and Automation of the
Academy of Sciences of the Czech Republic, Pod Vodárenskou věž́ı 4, 182 08 Praha 8.
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— Printed by PV Press, Pod vrstevnićı 5, 140 00 Prague 4. — Orders and subscriptions
should be placed with: MYRIS TRADE Ltd., P.O.Box 2, V Št́ıhlách 1311, 142 01 Prague 4,
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CONTINUOUS EXTENSION
OF ORDER-PRESERVING HOMOGENEOUS MAPS

Andrew D. Burbanks, Colin T. Sparrow and Roger D. Nussbaum

Maps f defined on the interior of the standard non-negative cone K in RN which are
both homogeneous of degree 1 and order-preserving arise naturally in the study of certain
classes of Discrete Event Systems. Such maps are non-expanding in Thompson’s part metric
and continuous on the interior of the cone. It follows from more general results presented
here that all such maps have a homogeneous order-preserving continuous extension to the
whole cone. It follows that the extension must have at least one eigenvector in K − {0}.
In the case where the cycle time χ(f) of the original map does not exist, such eigenvectors
must lie in ∂K − {0}.
Keywords: discrete event systems, order-preserving homogeneous maps

AMS Subject Classification: 93B27, 06F05

1. INTRODUCTION

We study classes of maps motivated originally by applications to Discrete Event Sys-
tems. We first consider a general setting, and then apply our results to a particular
class of maps.

In Section 2, we consider the general case of maps which are defined on the
interior of a closed cone K1, taking values in another closed cone K2, which are
continuous and order-preserving with respect to the usual partial orderings induced
by K1 and K2. We examine the problem of extending these maps, in a natural
way, to the whole of K1. We give conditions, in considerable generality, (both finite-
and infinite-dimensional) under which a natural extension exists and is continuous.
(There are also interesting examples in which some of the conditions do not hold
and the extension is not everywhere continuous.)

Specifically, we consider order-preserving continuous maps f from the interior of
K1 to K2, where K1 satisfies a geometrical condition (which generalizes the notion
of a polyhedral cone), K2 satisfies a weak version of normality, f satisfies a weak
version of homogeneity of degree 1. Our results show that all such maps have a
continuous extension to the whole of K1. We state these general results without
proofs; the interested reader is referred to [1].

In Section 3, we examine the case of maps f defined on the interior of the standard
non-negative cone K in RN which are both homogeneous of degree 1 and order-
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preserving. Our results imply that such maps always have a continuous extension.
We examine briefly connections between properties of the extension and existence
of the cycle-time vector for such maps.

2. GENERAL RESULTS

We first give some basic definitions.

Definition 2.1. A closed cone (with vertex at zero) in a topological vector space
X is a closed convex subset K ⊂ X such that (1) K ∩ (−K) = {0} and (2) λK ⊆ K
for all real λ ≥ 0. The cone structure induces a partial ordering: We write x ≤K y if
y − x ∈ K (or simply x ≤ y, if K is obvious from the context). If K has non-empty

interior,
◦
K 6= ∅, we write x ¿ y if y − x ∈

◦
K.

In what follows, we usually let K1 be a closed cone in a Hausdorff topological

vector space X1 with
◦

K1 6= ∅ and let K2 be a closed cone in a topological vector

space (t.v.s.) X2, and consider maps f :
◦

K1 → K2 that are both (1) continuous and

(2) order-preserving in the sense that, for all x, y ∈
◦

K1,

x ≤K1 y implies f(x) ≤K2 f(y).

Definition 2.2. When considering the extension of such maps to points x ∈ ∂K1,

on the boundary of K1, it will be natural to consider sequences 〈xn ∈
◦

K1 : n ≥ 1〉
such that xn → x as n → ∞ and xn À x for all n. We will call such sequences
allowable.

Assuming that
◦

K1 6= ∅, if we take any u ∈
◦

K1 and define xn := x + n−1u, then
limn→∞ xn = x and xn À x for all n ≥ 1 (by convexity). So such a sequence always
exists.

2.1. Natural extension

Under the assumption (Condition A) given below, namely that the images under f
of decreasing sequences must converge, it follows that a natural extension exists.

Definition 2.3. Let f :
◦

K1 → K2 where K1,K2 are closed cones in Hausdorff
topological vector spaces X1, X2, respectively. Suppose that if x1 ≥ x2 ≥ · · · ≥
xk ≥ · · · is any decreasing sequence in

◦
K1, then the sequence 〈f(xj) : j ≥ 1〉

converges in K2. If f , K1, and K2 satisfy these conditions, then we shall say that
Condition A is satisfied.

Condition A holds in some useful cases:
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Lemma 2.4. Let K1 be a closed cone in a Hausdorff t.v.s. X1 with
◦

K1 6= ∅.
Assume that K2 is a closed cone in a finite-dimensional Hausdorff t.v.s. X2. Let

f :
◦

K1 → K2 be a continuous order-preserving map. Then Condition A holds.

Note that there are interesting closed cones K which are not finite-dimensional,
but which have the property that decreasing sequences converge. This motivates the
following definition.

Definition 2.5. Let K be a closed cone in a Hausdorff t.v.s. X. We say that K
has the monotone convergence property if whenever 〈yj : j ≥ 1〉 is a sequence in K
and yj+1 ≤ yj for all j ≥ 1, there exists y ∈ K with limj→∞ yj = y.

Example 2.6. Any finite-dimensional closed cone has the monotone convergence
property.

Example 2.7. Let H be a real Hilbert space and X be the set of bounded self-
adjoint linear maps A : H → H. Equip X with the strong operator topology: if
〈Aj : j ≥ 1〉 is a sequence in X, then Aj → A in the strong operator topology if
and only if ||Aj(x) − A(x)|| → 0 as j → ∞ for all x ∈ H. Let K be the cone of
nonnegative-definite bounded self-adjoint operators in X, so that 〈Ax, x〉 ≥ 0 for all
x ∈ H. It is a standard result that K has the monotone convergence property (see,
for example, [8]).

Example 2.8. Let (S,M, µ) be a measure space and let X = L1(S,M, µ) denote
the usual Banach space of µ-integrable real-valued maps. Let K denote the closed
cone in X of maps which are greater than or equal to zero µ-almost everywhere
(two maps in X being identified if they agree µ-almost everywhere). The monotone
convergence theorem from real analysis implies that K has the monotone convergence
property.

We use the monotone convergence property and the previous remarks to gener-
alize Lemma 2.4 to the case where X2 need not be finite-dimensional:

Lemma 2.9. Let K1 be a closed cone in a Hausdorff t.v.s. X1 with
◦

K1 6= ∅. Let
K2 be a closed cone in a Hausdorff t.v.s. X2 and suppose that K2 satisfies the

monotone convergence property. Let f :
◦

K1 → K2 be a continuous order-preserving
map. Then Condition A is satisfied.

We now state our first extension theorem:
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Theorem 2.10. Let K1 be a closed cone with non-empty interior in a Hausdorff
t.v.s. X1. Let K2 be a closed cone in a Hausdorff t.v.s. X2. Assume that f :
◦

K1 → K2 is order-preserving and continuous and that Condition A is satisfied.

Suppose that x ∈ K1 and that 〈xn ∈
◦

K1 : n ≥ 1〉 is an allowable sequence with
limn→∞ xn = x. Then:

(a) There exists z = zx ∈ K2 such that limn→∞ f(xn) = zx.

(b) Further, if 〈yn ∈
◦

K1 : n ≥ 1〉 is another allowable sequence such that
limn→∞ yn = x, then limn→∞ f(yn) = limn→∞ f(xn) = zx.

(c) Further, if we define F (x) := zx for all x ∈ K1, then F (x) = f(x) for all

x ∈
◦

K1, i. e., F is an extension of f . If x ∈ K1 and 〈xn ∈ K1 : n ≥ 1〉 is any sequence
such that limn→∞ xn = x and xn+1 ¿ xn for all n ≥ 1, then limn→∞ F (xn) = F (x).
(In fact, if 〈yn ∈ K1 : n ≥ 1〉 is any sequence such that yn ≥ x for all n ≥ 1 and
limn→∞ yn = x, it follows that limn→∞ F (yn) = F (x).)

That the above limits all exist and take the same value, namely F (x) as defined
in the theorem, is our intended meaning of the term “natural” extension.

Remark 2.11. The extended map F is also order-preserving since, if x, y ∈ K1

and x ≤ y, we may take u ∈
◦

K1 and note that

F (x) = lim
n→∞

f(x + n−1u)

≤ lim
n→∞

f(y + n−1u) = F (y).

Theorem 2.10 also implies that F : K1 → K2 is continuous at 0 ∈ K1. However,
as we show in detail in [1], the map F need not be everywhere continuous, even if
K1 and K2 are finite-dimensional closed cones.

2.2. Continuity of the extension

The aim of this section is to give some further conditions on f , K1, and K2, in
considerable generality, which ensure that F : K1 → K2 is continuous.

We begin with a geometrical condition on K1 which generalizes the polyhedral
property of a cone.

Definition 2.12. Let K be a closed cone in a Hausdorff t.v.s. X. If x ∈ K, we
shall say that K satisfies Condition G at x if, whenever 〈xn ∈ K : n ≥ 1〉 is a
sequence in K with limn→∞ xn = x and λ < 1, there exists an integer n∗ such that
λx ≤ xn for all n ≥ n∗. We shall say simply that K satisfies Condition G if K
satisfies Condition G at x for all x ∈ K.

In [1], we exhibit a map f :
◦

K1 → K2 where K1 is a normal cone for which
Condition G does not hold. The map is the harmonic mean (A−1 + B−1)−1 of two
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nonnegative-definite symmetric real 2 × 2 matrices A, B. This is a map from the
cone C × C = K1 to C = K2, where C is the cone of such matrices. Its extension
is order-preserving, homogeneous of degree 1 and continuous on the interior of K1,
but is not continuous at certain points on the boundary ∂K1.

Definition 3.12. Recall that a closed cone K in a Hausdorff t.v.s. X is called
polyhedral if there exist continuous linear functionals ϕj : X → R, 1 ≤ j ≤ N < ∞,
such that

K = {x ∈ X : ϕj(x) ≥ 0 for 1 ≤ j ≤ N}.

Lemma 2.14. Let K be a closed cone in a Hausdorff t.v.s. X. It follows that K
is polyhedral if and only if K is finite-dimensional and satisfies Condition G.

We are grateful to Cormac Walsh, who pointed-out the converse part of the
lemma.

The next condition that we will need to ensure continuity of F is a weak form of
homogeneity.

Definition 2.15. We say that f :
◦

K1 → K2 is homogeneous (of degree 1) if for all

x ∈
◦
K and λ > 0,

f(λx) = λf(x).

Definition 2.16. Let K1 be a closed cone with
◦

K1 6= ∅ in a Hausdorff t.v.s. X1

and let K2 be a closed cone in a Hausdorff t.v.s. X2. Let f :
◦

K1 → K2. We say
that f satisfies Condition WH at x ∈ K1 if, for every real α, 0 < α < 1, there exists

δ > 0 and an open neighbourhood V of x in X1 such that for all y ∈ V ∩
◦

K1 and for
all real λ ∈ [1− δ, 1],

f(λy) ≥ αf(y).

If f satisfies Condition WH at x for every x ∈ K1, then we shall say simply that f
satisfies Condition WH or that f is weakly homogeneous.

Example 2.17. If f :
◦

K1 → K2 is continuous, it is easy to prove that f satisfies

Condition WH at every x ∈
◦

K1 such that f(x) ∈
◦

K2.

Example 2.18. If there exists δ∗ > 0 and a map ϕ : [1 − δ∗, 1] → (0,∞) with
limλ→1− ϕ(λ) = 1 such that

f(λy) ≥ ϕ(λ)f(y),

for all y ∈
◦

K1 and λ ∈ [1− δ∗, 1], then f satisfies Condition WH.

The final condition that we shall need is a variant of normality for the cone K2.
We call this the weak normality (WN) or sandwich condition.
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Definition 2.19. A cone K in a normed linear space, not necessarily finite-dimen-
sional, is said to be normal if there exists a constant M such that ||x|| ≤ M ||y||
whenever 0 ≤K x ≤K y.

Definition 2.20. Let K2 be a closed cone in a Hausdorff t.v.s. X2. We shall say
that K2 satisfies Condition WN (or is weakly normal) if, whenever 〈xn〉, 〈yn〉, and
〈zn〉 are sequences in K2 with 0 ≤ xn ≤ yn ≤ zn for all n ≥ 1 and limn→∞ xn =
limn→∞ zn = y, for some y ∈ K2, it follows that limn→∞ yn exists and equals y.

Lemma 2.21. Let K2 be a closed cone in a normed linear space. Then K2 is
normal if and only if K2 satisfies Condition WN.

We now state our second extension theorem; we use the above additional condi-
tions to ensure that the extended map F is sequentially continuous:

Theorem 2.22. Let K1 be a closed cone with
◦

K1 6= ∅ in a Hausdorff t.v.s. X1, K2

a closed cone in a Hausdorff t.v.s. X2 and f :
◦

K1 → K2 a continuous order-preserving
map. Assume that Condition A is satisfied, that K1 satisfies Condition G at some
x ∈ ∂K1, that f satisfies Condition WH at x and that K2 satisfies Condition WN.
Define the extension F as in Theorem 2.10. Then F is sequentially continuous at x.

Corollary 2.23. Let K1 be a closed polyhedral cone with
◦

K1 6= ∅ in a Hausdorff
t.v.s. X1. Let K2 be a closed cone in a Hausdorff t.v.s. X2 and assume either that
(i) K2 is finite-dimensional or, more generally, that (ii) K2 has the monotone con-

vergence property and satisfies Condition WN. Let f :
◦

K1 → K2 be continuous and
order-preserving and satisfy Condition WH on K1. Then f has a sequentially con-
tinuous extension F : K1 → K2 that is order-preserving and satisfies Condition WH
on K1.

3. THE POSITIVE CONE

In this section, we focus on maps f defined on the interior of the standard non-
negative cone K = RN

+ in RN which are both homogeneous of degree 1 and order-
preserving. In this case, the partial ordering induced by the cone is exactly the usual
partial product ordering on RN . These maps arise naturally in the study of certain
classes of Discrete Event Systems. Such maps are non-expanding in Thompson’s
part metric and continuous on the interior of the cone, so that continuity is no
longer required as an explicit assumption.

First, we work in a more general setting. Recall the definition of Thompson’s
part metric:
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Definition 3.1. Let v, y denote elements of a cone K. We say that v and y are
comparable if there exist reals α > 0 and β > 0 with αy ≤K v ≤K βy. The notion
of comparability divides K into disjoint equivalence classes called the components
or parts of K; for v ∈ K we let K(v) denote the set of points that are comparable
with v.

Definition 3.2. Let v, y denote comparable elements of a cone K. We define the
positive real quantities,

M(v/y) := inf{β > 0 : v ≤ βy},
d̄(v, y) := max{log M(v/y), log M(y/v)}.

The restriction of d̄ to each part K(v) is a metric, called Thompson’s (part) metric.
By defining d̄(v, y) := +∞ if v, y are non-comparable elements of K, we extend d̄ to
the whole of K (but only the restrictions to each part are actually metrics).

Remark 3.3. Let K1 be a normal cone with
◦

K1 6= ∅ in a Banach space X1 and

K2 be a normal cone in a Banach space X2. Let d̄1 denote the part metric on
◦

K1.

It is known that d̄1 gives the same topology on
◦

K1 as the topology induced by the
norm on X1. See Proposition 1.1 in [7] for a proof and references to the literature.

See also [9]. If f :
◦

K1 → K2 is homogeneous of degree 1 and order-preserving, then

there exists v ∈ K2 such that f(x) is comparable to v in K2 for all x ∈
◦

K1 (i. e., the
interior maps to a single part). If K2(v) is the part corresponding to v and d̄2 is the
part metric on K2(v), then

d̄2(f(x1), f(x2)) ≤ d̄1(x1, x2),

for all x1, x2 ∈
◦

K1, i. e., f is non-expanding on
◦

K1 in the part metric. It follows

automatically that f is continuous as a map from
◦

K1 to K2. Thus, in this case we

do not need to assume explicitly that f :
◦

K1 → K2 is continuous.

3.1. Topical maps on the positive cone

Let K1 = K2 = K := RN
+ , the standard positive cone in RN . Maps f :

◦
K →

◦
K

that are order-preserving and homogeneous of degree 1 are a specific example of
the general case above; they are non-expanding with respect to the part metric on
◦
K. In fact, if homogeneity holds, then being order-preserving is equivalent to being

non-expanding, see [3]. Hence these maps are continuous on
◦
K. Such maps are

sometimes called “topical” in the literature and are of interest for certain classes
of discrete event systems. They may be viewed as the image under the bijection

(component-wise exponentiation) exp : RN →
◦
K of maps g : RN → RN that are

additively homogeneous and order-preserving and, consequently, non-expanding in



212 A.D. BURBANKS, C. T. SPARROW AND R.D. NUSSBAUM

the supremum (`∞) norm. To each such map g there corresponds a map f :
◦
K →

◦
K

with

f(x) = (exp ◦ g ◦ log )(x).

With suitable modifications of the proofs to take advantage of full, rather than
weak, homogeneity, our results imply the following corollary. This result was proved
previously, by more direct means involving the comparison of various component-
wise limits, by [2].

Corollary 3.4. All homogeneous order-preserving maps f :
◦
K →

◦
K with K = RN

+

have an extension F : K → K that is homogeneous, order-preserving, and continuous
on the whole of K.

Remark 3.5. We can also show, see [2], that the extended map F is non-expanding
in the extended part metric, mapping each part of K to a part.

Corollary 3.6. Let f :
◦
K →

◦
K, with K = RN

+ , be an order-preserving homo-
geneous map with the order-preserving homogeneous (and continuous) extension
F : K → K. Then F has at least one eigenvector in K − {0}.

P r o o f . Let Π ⊂ K denote the intersection of the positive cone with the surface
of the (`2) unit hyper-sphere,

Π := {x ∈ K : ||x||2 = 1},

and let π denote the projection (normalization),

π : K − {0} → Π, x 7→ x

||x||2 .

We have seen that f has a continuous extension F to the whole cone K. If F (x) = 0
for some x ∈ Π then, by definition, F has an eigenvector with eigenvalue 0 and we

are done. This happens, for example, in the case f :
◦
R2

+ →
◦
R2

+ with f(x1, x2) :=√
x1x2(1, 1), where all x ∈ ∂Π are mapped to the vertex 0. Suppose, on the other

hand, that F (x) 6= 0 for all x ∈ Π, then the projected map π ◦ F : Π → Π is well-
defined and continuous on Π. Further, Π is homeomorphic to a compact convex set.
Hence, by Brouwer’s fixed point theorem, π ◦F has at least one fixed point in Π. By
homogeneity, it follows that F itself must have at least one eigenvector in K − {0}.

2

In fact, we can prove a stronger result:
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Lemma 3.7. Let C be a closed cone with non-empty interior in a finite dimensional
Banach space X. Let F : C → C be a continuous order-preserving homogeneous (of
degree one) map that maps the interior of C into itself. Then F has an eigenvector
in C − {0} with nonzero eigenvalue.

P r o o f . (Outlined.) If u ∈
◦
C, there exists c > 0 such that F (u) ≥ cu. Take a > 1

and define g(x) := (a/c)F (x), so that g(u) ≥ au and the sequence 〈gm(u) : m ≥ 1〉
is unbounded in norm. Theorem 2.1 in [6] then implies that there exists x ∈ C with
||x|| = 1 and t ≥ 1 such that g(x) = tx. (The assumption of compactness of the
map g, in the statement of that theorem, can be weakened.)

It follows that F (x) = (tc/a)x. A simple limiting and compactness argument,
letting a → 1, shows that F has an eigenvector with eigenvalue not less than c. In
fact, if we define

c := sup{k : ∃x ∈ C, ||x|| = 1, F (x) ≥ kx},

then we deduce that there exists an eigenvector of F with eigenvalue c. 2

Definition 3.8. From the viewpoint of applications, a natural question is whether

the map f :
◦
K →

◦
K has a cycle-time vector, defined formally by

χ(f) := lim
k→∞

(
fk(x)

)1/k
.

If this limit exists for some x ∈
◦
K, then it follows, from the fact that f is non-

expanding, that it exists for all y ∈
◦
K and takes the same value everywhere. Thus

the cycle time is naturally regarded as a property of the map itself.

Existence of an eigenvector x ∈
◦
K in the interior with, say, f(x) = λx for some

λ > 0, implies directly the existence of the cycle time with χ(f) = λ1, where
1 := (1, 1, . . . , 1). Thus our above result establishes the following corollary:

Corollary 3.9. If χ(f) does not exist, for f :
◦
K →

◦
K homogeneous and order-

preserving on the positive cone K, then the extended map F has at least one eigen-

vector in ∂K − {0} with nonzero eigenvalue and there are no eigenvectors in
◦
K.

The cycle-time vector is known to exist for certain classes of maps in general
dimension N . Specifically, a nonlinear hierarchy of such maps may be built from
simple maps by closure under a finite set of operations, see [4]. The cycle-time also
exists for all order-preserving homogeneous maps with N = 1, 2.

However, χ(f) need not exist in general for N ≥ 3, as illustrated by a family of
maps introduced by [5]: consider a sequence of reals 〈ak ∈ [0, 1] : k ≥ 1〉 and let
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σk :=
∑k

j=1 ak with σ0 := 0. Then there exists a homogeneous order-preserving

map f :
◦
K →

◦
K with K := R3

+, such that for all k ≥ 0,

fk(1, 1, 1) =
(
1, exp(σk), exp(k)

)
.

For suitable choices of the sequence 〈ak〉, we can arrange that the sequence 〈σk/k〉
does not converge and, hence, that χ(f) does not exist.

Construction of a particular family of such maps, for which there is no cycle time,
reveals that the projected map π ◦ F fixes a continuum of points on one edge of Π.

4. CONCLUSION

We have presented results on the continuous extension of maps defined on the interior
of closed cones, firstly in considerable generality and secondly applied to the case of
the standard positive cone.

Our general results have applications in other areas, particularly to operator-
valued means, where the existence of continuous extensions is a natural question.
In this case, it is also relevant to consider maps which are not order-preserving. For
further discussions, see [1].

For the positive cone, we have shown that all homogeneous order-preserving maps
have a continuous extension to the boundary of the cone and that non-existence
of the cycle time restricts the fixed-point set of the extended map. It would be
interesting to have a characterization of the possible fixed-point sets and to clarify
connections between existence of a cycle time and properties of these sets.
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