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SOME REPRESENTATIONS FOR SERIES
ON IDEMPOTENT SEMIRINGS –
or How to Go Beyond Recognizability
Keeping Representability

Ines Klimann

In this article, we compare different types of representations for series with coefficients
in complete idempotent semirings. Each of these representations was introduced to solve
a particular problem. We show how they are or are not included one in the other and we
present a common generalization of them.

Keywords: idempotent semirings, recognizable series
AMS Subject Classification: 93B25, 13F25

1. INTRODUCTION

The aim of this article is to compare different types of representations for series
on certain idempotent semirings (certain of them are available also without such
hypotheses, for example, it is possible to define rational series with coefficients in a
non-complete semiring).

After recalling the basic definitions in Section 2, we introduce in Section 3 the
classical notions of recognizable and rational series [2]. In Section 4 we develop the
notion of pseudo-recognizable series, introduced in [7] to solve certain inequations
on series. Then we present the non linear representations which appear in a paper
of J.-E. Pin and J. Sakarovitch [9] to solve the following classical problem of formal
language theory: let L1, . . . , Ln be n languages recognized by the monoids M1, . . .Mn

respectively; given an operation ϕ, how to build a monoid M , function of M1, . . .Mn,
which recognizes the language (L1, . . . , Ln)ϕ? Finally, in the last section, we build
a common generalization of multi-representations and non linear representations.

For each type of representation introduced, we show that, in the particular case
of a finite semiring of coefficients, the corresponding notion of regularity is in fact
the simple rationality.

2. BASES

In this section, we explore the basic properties of idempotent semirings and series.
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If X is a set, we denote by P(X) the power set of X and by Pf (X) the set of
finite subsets of X. The set of rational languages over an alphabet Σ is denoted by
Rat(Σ).

If w is a word and a a letter, we denote by |w| the length of w and by |w|a the
number of occurrences of letter a in w.

2.1. Idempotent semirings

2.1.1. Definition and basic properties

A semiring is a quintuple (S, +, ∗, 0, 1) with the following properties (see [5]):

– (S,+, 0) is a commutative monoid,

– (S, ∗, 1) is a monoid; as usual we denote by ab the product a∗b for all a, b ∈ S,

– 0 is absorbing: a0 = 0a = 0 for all a ∈ S,

– multiplication is distributive with respect to addition, i. e. a(b + c) = ab + ac
and (b + c)a = ba + ca, for all a, b, c ∈ S.

A semiring is commutative if multiplication is commutative and is idempotent if
addition is idempotent. In this paper, we always treat with idempotent semirings.
We often write (S,+, ∗) or simply S for the semiring (S, +, ∗, 0, 1).

Examples 1.

– The boolean semiring B = {0, 1} is a finite commutative idempotent semiring.

– The tropical semiring Nmin = (N ∪ {+∞}, min, +, +∞, 0) is an infinite com-
mutative idempotent semiring. Several exotic semirings of this type can be
defined, like Zmin = (Z ∪ {+∞}, min,+, +∞, 0).

– The set of (recognizable) languages over a fixed alphabet, with union for ad-
dition and concatenation for multiplication, is an idempotent semiring (with
identity elements: for addition the empty set and for multiplication the single-
ton {1} containing the empty word). It is infinite if the alphabet is non-empty
and non commutative if the alphabet contains at least two letters.

– The power set P(M) of a monoid M , provided with union and multiplication,
is an idempotent semiring. It is commutative if M is commutative. If P and
Q are subsets of M , their product is the subset PQ = {pq | p ∈ P and q ∈ Q}
of M .

Throughout this paper, S denotes an idempotent semiring and Σ a finite alphabet.
We consider the natural order over S given by: a ≤ b if and only if there exists

c ∈ S such that b = a + c. It is well known and easy to see that a ≤ b if and only if
b = a + b. It follows in particular that the least element of S is 0.

Note that for the tropical semiring, the natural order is exactly the inverse of the
usual order on N; in N: 2 ≤ 3, but in Nmin: 3 ≤ 2.

Multiplication is compatible with the order.
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2.1.2. Supremum and infimum

If T ⊆ S is non empty, the sum of its elements is its supremum. By analogy, if
T is any subset of S, we denote by

∑
x∈T x the supremum of T , if it exists. This

notation is justified since, in particular, the supremum of T ∪ T ′ is the sum of the
suprema of T and T ′. If T ⊆ S is non empty and has an infimum, we denote it by⋂

t∈T t, or a ∩ b if T = {a, b}.

Examples 2.

– The infimum of two (rational) languages is their intersection (note that inter-
section on languages preserve rationality).

– If S = Nmin, the infimum of two elements is their maximum in the usual order.

Recall that an ordered set is complete if each of its subsets has a supremum. A
semiring S is complete if it is complete as an ordered set and satisfies the following
distributivity conditions:

for all T ⊆ S, s ∈ S :

(∑

t∈T
t

)
s =

∑

t∈T
(ts) and s

(∑

t∈T
t

)
=

∑

t∈T
(st).

Examples 3.

– If Ξ is an alphabet,
(P(Ξ∗),∪, ·) is a complete semiring.

– The tropical semiring is complete.

If we now assume that S is a complete idempotent semiring, then every T ⊆ S
has an infimum: the sum of all x such that x ≤ t for each t ∈ T . It follows directly
that the operation of infimum is idempotent and compatible with the order.

Proposition 1. In a complete idempotent semiring S, the following distributivity
property holds. Let Y be a subset of S and let x ∈ S. Then:

x


 ⋂

y∈Y

y


 ≤

⋂

y∈Y

(xy) and


 ⋂

y∈Y

y


 x ≤

⋂

y∈Y

(yx).

From now on, we assume that S is complete and moreover that the operations
+ and ∩ supply S with a structure of a distributive lattice, i. e. + distributes over
∩ and ∩ over +. This property is used in Section 4 to define pseudo-recognizable
series.
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Example 4.

– If S is the set of (recognizable) languages on Σ, union and intersection dis-
tribute one with respect to the other.

– If S = Nmin, minimum and maximum distribute one with respect to the other.

We define a new operation which is not classical in series theory, but corresponds
to the notion of residuation [3]. If a and y are elements of a semiring S, the cut a\y
of y by a is the element

a\y = sup{x | ax ≤ y}.
This element is well-defined since the semiring is idempotent and complete.

If a, x and y are elements of S, then ax ≤ y if and only if x ≤ a\y. As a direct
consequence, for each x ∈ S, 1\x = x.

If the semiring of coefficients is the tropical semiring, the cut is the quasi-
difference [4]: a\x = maxZ(0Z, x − a) (here the difference is the classical differ-
ence on Z).

Product has precedence with respect to cut, and cut with respect to sum and
infimum: a\xy = a\(xy), a\x + y = (a\x) + y and a\x ∩ y = (a\x) ∩ y.

2.2. Formal series

We consider the set S〈〈Σ〉〉 of formal series on Σ, with coefficients in S. A typical
element of S〈〈Σ〉〉 is written A =

∑
w∈Σ∗(A,w)w, with (A,w) ∈ S.

The constant coefficient of A is (A, 1); A is proper if its constant coefficient is
zero. We identify an element a of S with the constant series, also denoted by a,
defined by (a, 1) = a and (a,w) = 0 for every non-empty word w. In the same
way, we identify a word w ∈ Σ∗ with the series also denoted by w and defined by
(w, u) = 0 if u 6= w and (w, w) = 1. Our notation is taken from [2].

The support of a series A is the language supp A = {w ∈ Σ∗ | (A,w) 6= 0}. If
s ∈ S, the s-support of a series A is the language A−1s = {w | (A,w) = s}.

A series is said to be a language if its coefficients belong to {0, 1}, a polynomial
if its support is finite. The set of polynomials is denoted by S〈Σ〉.

Operations on S are extended to the set of formal series by letting

(S + T,w) = (S,w) + (T, w) and (ST,w) =
∑

uv=w

(S, u)(T, v).

These operations provide S〈〈Σ〉〉 with a semiring structure. The natural order over
S〈〈Σ〉〉 is then exactly the extension of the order of S: X ≤ Y if and only if for all
w ∈ Σ∗, (X,w) ≤ (Y, w). Since S is idempotent and complete, S〈〈Σ〉〉 is a complete
idempotent semiring. In particular, the infimum A∩B of two elements A,B ∈ S〈〈Σ〉〉
is given by (A ∩ B, w) = (A,w) ∩ (B, w) for each w ∈ Σ∗. The distributivity of the
lattice (S〈〈Σ〉〉,+,∩) is inherited from the distributivity of (S, +,∩).

If S is a series and u a word, we denote by u−1S the series whose coefficient on
a word v is equal to (S, uv).
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Remark 2. B〈〈Σ〉〉 can be identified with P(Σ∗): (A,w) = 1 if and only if w ∈ A.
The order previously introduced corresponds to inclusion, the infimum on elements
of S to conjunction and the infimum on series to intersection of languages.

If a series S is proper, the family (Sn)n≥0 is locally finite and hence summable.
The star of S is the sum of this family: S∗ =

∑
n≥0 Sn.

A series S of P(Ξ∗)〈〈Σ〉〉, where Σ and Ξ are alphabets, is called a transduction.

Remark 3. If S belongs to Rat(Ξ)〈〈Σ〉〉, S is a rational series if and only if it is
a rational transduction in the classical sense of the term (i. e. its graph is a rational
relation over Σ and Ξ) [1, Proposition III.7.3].

3. SOME CLASSICAL REPRESENTATIONS

3.1. Rational series

Like for languages, rational operations (sum, product and star of proper series) allow
to define a particular subset of S〈〈Σ〉〉; the set of rational series on Σ with coefficients
in S is the rational closure of S〈Σ〉 in S〈〈Σ〉〉.

Examples 5.

– If S = B, a series is rational if and only if its support is a rational language.

– Let Σ be the two-letter-alphabet {a, b}.
– Let S = Nmin. Define the series R by 1Na + 1Nminb and the series Qa by

R∗. The series Qa is rational, its coefficient on a word w is the number
of occurrences of a in w.

– Let Ξ be the one-letter-alphabet {c} and S = P(Ξ∗) be the set of words
on Ξ. Define the series T by {c}a + {1}b and the series Sa by T ∗. The
series Sa is rational, its coefficient on a word w is {c|w|a}.

3.2. Recognizable series

Let Sn×m denote the set of (n, m)-matrices with entries in S.
A series S〈〈Σ〉〉 is recognizable [2, Chapter 1] if and only if there exist an integer

n ≥ 1, a morphism of monoids µ : Σ∗ → Sn×n and two vectors λ ∈ S1×n and
γ ∈ Sn×1 such that, for all words w, (S,w) = λµ(w)γ. The triple (λ, µ, γ) is called
a linear representation of S and n is its dimension.

Examples 6. Let Σ be the two-letter-alphabet {a, b}.
– Let S = Nmin. Define the morphism µ : Σ∗ → N1×1

min : a 7→ 1N, b 7→ 1Nmin and
the vectors λ = γ = 1Nmin . This linear representation recognizes the series Qa

introduced in Example 5, which is then also recognizable.
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– Let Ξ be the one-letter-alphabet {c} and S = P(Ξ∗) be the set of words on Ξ.
Define the morphism µ : Σ∗ → P(Ξ∗)1×1 : a 7→ {c}, b 7→ {1} and the vectors
λ = γ = {1}. This linear representation recognizes the series Ra introduced in
Example 5, which is then also recognizable.

A morphism µ : Σ∗ → Sn×n being fixed, we denote by S(λ, γ) the series S
recognized by (λ, µ, γ).

The Kleene–Schützenberger theorem is the cornerstone of the theory of formal
series:

Theorem 4. (Kleene–Schützenberger, [2]) A formal series is rational if and only
if it is recognizable.

Here is an algebraic characterization of recognizability. A submodule of S〈〈Σ〉〉
is stable if for each element T of this submodule and each word u, the series u−1T
still belongs to the submodule.

Proposition 5. [2] A series S ∈ S〈〈Σ〉〉 is recognizable iff there exists a stable,
finite generated left submodule of S〈〈Σ〉〉 containing S.

3.3. Hadamard product of recognizable series

In this subsection, we prove that the Hadamard product of two recognizable se-
ries with coefficients in a finite semiring S is recognizable, whether the semiring is
commutative or not.

The Hadamard product of two series S and T is the series S ¯ T such that for
all words w, (S ¯ T, w) = (S, w)(T, w).

Lemma 6. If S is finite, S ∈ S〈〈Σ〉〉 is rational if and only if all its s-supports are
rational (s ∈ S).

P r o o f . Let S be a rational series. According to J. Berstel and C. Reutenauer [2,
Proposition III.2.2], the s-supports of S are rational. Conversely, if the s-supports
of S are rational, according to [2, Proposition III.2.1], for each s ∈ S, the series∑

w∈S−1s w is rational. The result follows straightforwardly since
S =

∑
s∈S s

(∑
w∈S−1s w

)
. 2

Proposition 7. If S is finite, the Hadamard product of two recognizable series is
recognizable.

P r o o f . Let S and T be two recognizable series and r in S. The r-support of
S ¯ T is rational. Indeed, the set Θ = {(s, t) ∈ S × S | st = r} is finite because S is
finite. Furthermore, for each word w, w belongs to (S ¯ T )−1r if and only if there
exist (s, t) in Θ such that w belongs to S−1s ∩ T−1t.
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And so
(S ¯ T )−1r =

⋃

(s,t)∈Θ

(S−1s ∩ T−1t).

Now, the languages S−1s and T−1t are recognizable by Lemma 6. Since the set Θ
is finite, the r-supports of S ¯ T are recognizable. It follows by Lemma 6 that the
series S ¯ T is recognizable. 2

4. MULTI–REPRESENTATIONS AND PSEUDO–RECOGNIZABILITY

4.1. Definitions

In this section, we extend the notion of linear representation introduced in Section 3.2
to that of multi-representation. We defined this new notion in [7], in analogy with
multi-automata [6].

If c is an element of S, we define the series c\S by (c\S,w) = c\(S,w), for each
word w. A morphism µ being fixed, for each triple (c, λ, γ) ∈ S × S1×n × Sn×1, we
denote by S(c, λ, γ) the series c\S(λ, µ). Note that S(1, λ, γ) = S(λ, γ).

In some cases, such a series is recognizable. We fix µ. Let S = S(c, λ, γ) and
T = S(λ, γ): c\T = S.

Proposition 8. If S is finite, S(c, λ, γ) is rational.

P r o o f . We claim that c\T =
∑

s∈S(c\s)T−1s. Indeed, for each word w ∈ Σ∗

and every s ∈ S, we have




(T−1s, w) = 1 if (T, w) = s

(T−1s, w) = 0 if (T, w) 6= s.

So

∑

s∈S
(c\s)(T−1s, w) =

∑

s∈S

∑

w∈T−1s

c\s

=
∑

s∈S
c\(T,w) =

∑

s∈S
(c\T, w).

Hence S is a finite sum of recognizable series, since, by Lemma 6, the s-supports of
T are rational languages. Thus, S is recognizable. 2

In the commutative case, the Hankel matrix of a series can be used. The Hankel
matrix of a series S on a commutative semiring is the infinite (Σ∗×Σ∗)-matrix H(S)
defined by H(S)u,v = (S, uv).

Let us recall the key result about Hankel matrices.
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Theorem 9. [10, Corollary II.3.2], [2, Thm. II.1.2] Let S be a commutative semir-
ing. A series with coefficients in S is recognizable if and only if its Hankel matrix
has only a finite number of independent columns.

Corollary 10. If the semiring of coefficients S is commutative, the series S(c, λ, γ)
is rational.

P r o o f . The following relation holds, for any words u, v:

H(S)u,v = S(uv) = c\T (uv) = c\H(T )u,v.

If H(T ) has a finite number of independent columns, so has H(S). 2

Let us define multi-representations and pseudo-recognizability.
Let n ≥ 1 be an integer, µ be a morphism of monoids Σ∗ → Sn×n and Φ be

a positive boolean formula on S × S1×n × Sn×1. It is convenient to call atom an
element of S × S1×n × Sn×1.

The series S(Φ) is the image of Φ by the morphism from the free distributive
lattice over S ×S1×n×Sn×1 into the distributive lattice (S〈〈Σ〉〉, +,∩) obtained by
mapping the atom (c, λ, γ) to S(c, λ, γ).

The pair (µ,Φ) is by definition a multi-representation of S. We call µ the base
and Φ the acceptance formula of the multi-representation (µ, Φ). The series S is
said to be recognized by (µ, Φ).

A series is pseudo-recognizable if it has a multi-representation. As it is shown in
the next examples, pseudo-recognizable series are not necessarily recognizable.

Examples 7.

– Let Σ = {a, b} and Ξ = {c}. Consider series with coefficients in the commuta-
tive semiring P(Ξ∗).

Let S and T be the series defined as follows: (S, w) = {c|w|a} and (T, w) =
{c|w|b}, for all w ∈ Σ∗.

Both series are recognizable (see Example 5 and Theorem 4) and admit a
linear representation with the same base. Indeed, let µ : Σ∗ → P(Ξ∗)2×2 be
the morphism defined by

µ(a) =
({c} ∅
∅ {1}

)
and µ(b) =

({1} ∅
∅ {c}

)
,

and let λS = ({1} ∅), γS =
({1}
∅

)
, λT = (∅ {1}) and γT =

( ∅
{1}

)
. Then

(S, w) = λSµ(w)γS and (T,w) = λT µ(w)γT .

Now, the infimum of these series is pseudo-recognizable, recognized by (µ, Φ),
where Φ = (1, λS , γS)∧ (1, λT , γT ). The coefficient of a word w in S ∩T is the
intersection of (S,w) and (T,w) (see Example 2). So we have:

(S ∩ T, w) =




∅ if |w|a 6= |w|b,

c|w|/2 if |w|a = |w|b
(
= |w|

2

)
.
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Note that S ∩ T has rational coefficients since they are singletons. Hence, by
Remark 3, S ∩ T is rational if and only if it is a rational transduction.

But the inverse of a rational transduction is a rational transduction (it is
easy to see using transducers) and a rational transduction preserves rational
languages [1, Corollary III.4.2]. Since the support of a transduction Σ∗ →
Ξ∗ is the inverse image1 of Ξ∗, the series S ∩ T is pseudo-recognizable and
not recognizable (here supp(S ∩ T )={w ∈ Σ∗ | |w|a = |w|b}, which is not
recognizable [2, Example III.3.1]).

– Consider series on Σ = {a, b} with coefficients in Nmin. We take series S and
T as follows: (S,w) = |w|a and (T, w) = |w|b, for all w ∈ Σ∗. Both series
are recognizable. We can obtain some multi-representations for them from the
previous example. The infimum of these series is pseudo-recognizable. Now,
we saw in Example 2 that the infimum on Nmin is the maximum on N, so
(S ∩ T, w) = |w|a ∩ |w|b = max(|w|a, |w|b). But this series is not recognizable
on Zmin [8], and hence cannot be recognizable on Nmin.

Remark 11. As shown in [7], if the semiring of coefficients is finite, then a formal
series is pseudo-recognizable if and only if it is recognizable.

Note that, in general, there exist series which are not pseudo-recognizable. For
example, if the semiring of coefficients is countable, there is a countable number of
pseudo-recognizable series, but the set of series is not countable.

Example 8. It is easy to see, as a special case of Remark 11, that the pseudo-
recognizable series with coefficients in B are recognizable. Indeed, these series can
be identified with their supports and the infimum of two languages is their intersec-
tion. In particular, the series

∑
|w|a=|w|b w is not pseudo-recognizable in B〈〈Σ〉〉 [2,

Example III.3.1].

Proposition 12. The set of pseudo-recognizable series is closed under (finite)
addition and (finite) infimum.

We denote by SPsRec〈〈Σ〉〉 the set of pseudo-recognizable series on Σ, with coef-
ficients in S.

4.2. Why using multi-representations?

Multi-representations can be used to solve certain equations on formal series. Con-
sider the following problem: let A, B and K be recognizable series on an idem-
potent semiring S, what can be said about the supremal series X ≤ K such that
AX ≤ X + B? It is shown in [7] that this series exists, is recognizable if S is finite
(with a constructive proof), and is pseudo-recognizable if S = Nmin and A is a
language.

1The inverse image of a language L by a transduction S : Σ∗ → Ξ∗ is the set S−1(L) = {w ∈
Σ∗ | (S, w) ∩ L 6= ∅}, so S−1(Ξ∗) = {w ∈ Σ∗ | (S, w) ∩ Ξ∗ 6= ∅} = {w ∈ Σ∗ | (S, w) 6= ∅} = supp S.
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5. REPRESENTATION IN THE PIN–SAKAROVITCH WAY

5.1. Non linear representations

This subsection is tightly inspired by a paper of J.-E. Pin and J. Sakarovitch [9].
Let (M, 1M ) and (N, 1N ) be monoids. The free product (or coproduct) M ∗N of

monoids M and N is the quotient (M ∪N)∗/R, where R is the set of relations:

R = {m·m′ = mm′, n·n′ = nn′, m· 1N = m, 1N ·m = m,

n· 1M = n, 1M ·n = n |m,m′ ∈ M, n, n′ ∈ N}.

We can identify M ∗ N to the elements of the form m0n1m1 · · ·nrmr with
m0, . . . , mr ∈ M and n1, . . . , nr ∈ N with the product

(m0n1m1 · · ·nrmr)(m′
0n
′
1m

′
1 · · ·n′r′m′

r′)
= m0n1m1 · · ·nr(mrm

′
0)n

′
1m

′
1 · · ·n′r′m′

r′ .

This operation provides M ∗N with a monoid structure. The set P(M ∗N) has
a semiring structure inherited from the monoid structure of M ∗N (see Example 1).

Let S be a complete idempotent semiring and Ω = {ω1, . . . , ωr} be an alphabet.
We denote by S ∗Ω∗ the free product of S and Ω∗ provided with their multiplicative
structure. If τ ∈ S ∗ Ω∗, we call specialization of τ in the r-tuple (s1, . . . , sr) ∈ Sr

the image of τ by the morphism from S ∗ Ω∗ into (S, ·) which associates si to ωi,
1 ≤ i ≤ r. This element is denoted by τ(s1, . . . , sr).

If σ belongs to P(S∗Ω∗), we call specialization of σ in the r-tuple (s1, . . . , sr) ∈ Sr

the image of σ by the morphism of complete idempotent semirings, from P(S ∗Ω∗)
into S, which associates si to ωi, 1 ≤ i ≤ r. More concretely, it is the element

σ(s1, . . . , sr) =
∑
τ∈σ

τ(s1, . . . , sr).

A formal series S is representable if and only if there exist an integer n ≥ 1, a
morphism µ : Σ∗ → Sn×n and an element σ ∈ P(S ∗ Ω∗), where Ω is a n2-letters
alphabet, Ω = {ε11, . . . , εij , . . . , εnn}, such that for all words w

(S, w) = σ
((

µ(w)
)
11

, . . . ,
(
µ(w)

)
ij

, . . . ,
(
µ(w)

)
nn

)
.

The couple (µ, σ) is a non linear representation of the series S.
A series is representable by a singleton if it has a non linear representation (µ, σ)

where σ is a singleton of P(S ∗ Ω∗).
We denote by SRep〈〈Σ〉〉 the set of all representable series on Σ, with coefficients

in S.

Example 9. A recognizable series is representable.
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Example 10. Consider the following transduction from Σ = {a} into Ξ = {b}:

(S, an) =
∑

m∈M

bmn, where M is any set of integers.

This transduction is representable in P(Ξ∗)〈〈Σ〉〉. Indeed, let us consider the
one-letter-alphabet Ω = {ω}, the element σ =

∑
m∈M ωm of P(P(Ξ∗) ∗Ω∗

)
and the

morphism µ : Σ∗ → P(Ξ∗) : a 7→ {b}. We have (S,w) = σ
(
µ(w)

)
.

Proposition 13. The series

(S, an) =
∑

m∈M

bmn, where M is any infinite set of integers,

is not recognizable.

P r o o f . By contradiction: assume that S is recognizable and M is infinite.
We denote by uq the word aq (for q in N) and by Bq the coefficient of uq in S,

i. e.
Bq = {bmq |m ∈ M}.

Note that words in Bq have as a length a multiple of q.
Since the series S is recognizable, according to Proposition 5, it belongs to a

stable, finite generated left submodule of S〈〈Σ〉〉, say M. We denote by (Si)i∈I a
finite generating family of M.

The submodule M is stable and so for each positive integer q, the series u−1
q S

belongs to M. Hence, there exist families (αq,i)i∈I of elements of P(Ξ∗) such that

∀ q ∈ N, u−1
q S =

∑

i∈I

αq,iSi.

That is, for the coefficient of an:

∀ q ∈ N, ∀n ∈ N,
∑

i∈I

αq,i(Si, a
n) = (u−1

q S, an) = (S, an+q) = Bn+q. (1)

Let us have a look to the set I.
For i ∈ I, we set

Qi = {q |αq,i 6= ∅} and Ni = {n | (Si, a
n) 6= ∅}.

If Qi is finite, we denote by q̄i its maximal element and in the same way, if Ni is
finite, we denote by n̄i its maximal element. We set

q̄ = max{q̄i, i ∈ I |Qi finite} and n̄ = max{n̄i, i ∈ I |Ni finite},

with the convention max(∅) = 0.
Note that if an element i of I is such that Qi is finite and q > q̄, then αq,i = ∅.

In the same way, if Ni is finite and n > n̄, then (Si, a
n) = ∅.
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We denote by J the following subset of I:

J = {i ∈ I |Qi and Ni are infinite}.

According to the above remark, we have for q > q̄ and n > n̄:
∑

i∈I

αq,i(Si, a
n) =

∑

i∈J

αq,i(Si, a
n).

Equation (1) now becomes:

∀ q > q̄, ∀n > n̄,
∑

i∈J

αq,i(Si, a
n) = Bn+q. (2)

Let us fix some i in J : Qi is infinite by definition of J .
For all q in Qi, let vq be a word of αq,i.
From Equation (2),

vq(Si, a
n) ⊆ Bn+q.

In particular, the length of any word of vq(Si, a
n) is a multiple of n + q. If (Si, a

n)
is not the empty language, let x and y be two of its words.

For each element q of Qi, n + q divides |vqx| and |vqy|, hence n + q divides
||x| − |y||. Since the set Qi is infinite, ||x| − |y|| can be divided by an infinity of
integers, and so it is 0. Hence x and y have the same length. As we are dealing with
a one-letter-alphabet, x and y are the same word.

We conclude that the set (Si, a
n) is either empty or a singleton for i ∈ J . Using

similar arguments, we can prove that the set αq,i is either empty or a singleton for
i ∈ J . The left term of Equation (2) is a finite sum of empty sets and singleton sets
and the right one is infinite for n + q > 0, hence we have a contradiction. 2

We saw in Example 7 that rational transduction preserve rational languages [1,
Corollary III.4.2]. Here is a generalization to representable transductions.

Theorem 14. [9, Corollary 5.3] Let Ξ be an alphabet. The inverse image of a
recognizable language on Ξ by a representable transduction (from Σ∗ into Ξ∗) is a
recognizable language of Σ∗, and hence a rational language of Σ∗.

5.2. Representable vs. pseudo-recognizable

5.2.1. General case

Theorem 14 says, in particular, that the inverse image of Ξ∗ by a representable
transduction, is a rational set of Σ∗. But the support of the transduction proposed
in Example 7 is the language {w ∈ Σ∗ | |w|a = |w|b} which is not rational (see
Example 8). So

P(Ξ∗)PsRec〈〈Σ〉〉 6⊆ P(Ξ∗)Rep〈〈Σ〉〉.
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Proposition 15. The series

(S, an) =
∑

m∈M

bmn, where M is any infinite set of integers,

is not pseudo-recognizable.

P r o o f . The proof of this proposition is quite similar to the proof of Proposi-
tion 13.

We denote by S the semiring of coefficients, that is P({b}∗) and, as in the proof
of Proposition 13, by uq the word aq and by Bq its coefficient in S: Bq = {bmq |m ∈
M}.

Assume S is pseudo-recognizable. Let (µ, Φ) be a multi-representation of S. We
can put Φ in normal form. In other words, we write Φ as

Φ =
∨

E∈P′


 ∧

(c,λ,γ)∈E

(c, λ, γ)


 ,

where P ′ is a finite subset of Pf (S × S1×n × Sn×1).
By Corollary 10, we know that left-cut has no influence on rationality, because

the semiring S is commutative (see Example 1). So we can write:

Φ =
∨

E∈P


 ∧

(λ,γ)∈E

(1, λ, γ)


 ,

where P is a finite subset of Pf (S1×n × Sn×1).
Hence the series S can be written as:

S =
∑

E∈P


 ⋂

(λ,γ)∈E

S(1, λ, γ)


 , (3)

where the sum is done over a finite set.
Let us consider a particular E in P. From Equation (3), we obtain:

⋂

(λ,γ)∈E

S(1, λ, γ) ≤ S. (4)

To simplify notation, we assume that E has two elements. Equation (4) becomes
T ∩ U ≤ S, where T and U are rational series.

By the algebraic characterization of Proposition 5, we know that T (resp. U)
belongs to a stable, finite generated left submodule of S〈〈Σ〉〉, say M (resp. N ). We
denote by (Ti)i∈I (resp. (Uj)j∈J) a finite generating family of M (resp. N ).

The submodules M (resp. N ) is stable, and so for all positive integer q, the series
u−1

q T (resp. u−1
q U) belongs to M (resp. N ). Hence, there exist families (αq,i)i∈I

(resp. (βq,j)j∈J)) of elements of S such that

∀ q ∈ N, u−1
q T =

∑

i∈I

αq,iTi and u−1
q U =

∑

j∈J

βq,jUj .



190 I. KLIMANN

That is, for the coefficient of an:

∀ q ∈ N, ∀n ∈ N,

(∑

i∈I

αq,i(Ti, a
n)

)
= (u−1

q T, an) = (T, an+q),

and


∑

j∈J

βq,j(Uj , a
n)


 = (u−1

q U, an) = (U, an+q).

And so for all integers q and n, we have:
(∑

i∈I

αq,i(Ti, a
n)

)
∩


∑

j∈J

βq,j(Uj , a
n)


 = (T, an+q) ∩ (U, an+q) ⊆ Bn+q. (5)

For i ∈ I, we set

QNi = {(q, n) | (αq,i(Ti, a
n)

) ∩ (U, an+q) = ∅, i ∈ I}
If QNi is finite, we denote by q̄i the maximal q that belongs to it and by n̄i the

maximal n. We set:

q̄ = max{q̄i, i ∈ I |QNi finite} and n̄ = max{n̄i, i ∈ I |QNi finite}.
With a similar argument as in the proof of Proposition 13, we can prove that for

q > q̄ and n > n̄, the pieces of the sets αq,i and (Ti, a
n) that enter into Equation (5)

are either empty sets or singleton ones. So the left member of Equation (5) is a
finite set.

The same conclusion can be drawn for all sets E which appear in Equation (4).
Since the sum in Equation (3) is finite and the set Bn+q is infinite for q and n large
enough, we have a contradiction. 2

Corollary 16.
P(Ξ∗)Rep〈〈Σ〉〉 6⊆ P(Ξ∗)PsRec〈〈Σ〉〉.

Hence there is no inclusion relation between the set P(Ξ∗)Rep〈〈Σ〉〉 and the set
P(Ξ∗)PsRec〈〈Σ〉〉.

5.2.2. A particular case: the coefficients belong to a finite semiring

In this section, we show that a series on a finite semiring S is representable if and only
if it is rational, so if and only if it is pseudo-recognizable, according to Remark 11.

Let n ∈ N and Ω = {ω11, . . . , ωnn} be an alphabet. For all σ ∈ P(S ∗Ω∗), we call
specialization of σ the subset of all specializations of σ in all the n2-tuple of S. We
denote it by Spec σ: Spec σ = {σ(s11, . . . , snn) | (s11, . . . , snn) ∈ Sn2}.

Proposition 17. If S is finite, the set of specializations of all the elements of S∗Ω∗
is finite.
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Corollary 18. A representable series (on a finite semiring) is necessarily represen-
table by an element of Pf (S ∗ Ω∗).

Now, it is sufficient to prove that a series representable by a singleton is recogni-
zable. Since the set of representable series is stable under addition, we will be able
to conclude.

Lemma 19. A series representable by a singleton is recognizable.

P r o o f . Such a series is the Hadamard product of series recognized by singletons
of the form {s1ωijs2}, s1, s2 ∈ S, ωij ∈ Ω, which represent clearly recognizable
series. Since S is finite, such a series is recognizable by Proposition 7. 2

As a result, we obtain the following theorem:

Theorem 20. On a finite semiring, a series is representable if and only if it is
recognizable.

6. A MORE GENERAL REPRESENTATION

In this section, we suggest a common generalization of both notions of pseudo-
recognizability and representability. We work with series on Σ, with coefficients in
a complete idempotent semiring S.

We consider such a representation: let n ≥ 1 be an integer, µ : Σ∗ → Sn×n

be a morphism and Φ be a positive boolean formula on S × P(S ∗ Ω∗), where Ω =
{ω11, . . . , ωnn} is an alphabet. We call atoms the elements (c, σ) ∈ S×P(S∗Ω∗). The
series recognized by such a representation, which we will call pseudo-representable,
is the image of Φ by the morphism from the free distributive lattice on S×P(S ∗Ω∗)
in the distributive lattice S〈〈Σ〉〉 which associates to the atom (c, σ) the series whose
value on a word w is c\σ(

(µ(w))11, . . . , (µ(w))nn

)
.

To obtain a representable series, it is sufficient to reduce Φ to an atom (1, σ). To
obtain a pseudo-recognizable series, it is sufficient for each σ which appears in the
acceptance formula to be of the form {s1ωijs2}, s1, s2 ∈ S, ωij ∈ Ω. Thus this is
really a generalization of both notions. Furthermore, we have the following theorem.

Theorem 21. If S is finite, the pseudo-representable series are recognizable.

7. CONCLUSION

These representations allow us to go beyond representability. It could be interesting
to see if, for recognizable series, they provide smaller representations than linear
ones.

(Received December 9, 2002.)
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