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PITMAN EFFICIENCIES
OF Lp-GOODNESS-OF-FIT TESTS

Jan Beirlant and László Györfi

Pitman efficiencies are used to describe the problem of choice of the number of classes

in Lp-goodness-of-fit tests (p ≥ 1) based on histogram density estimates. We consider the

case where the number of classes increases with the sample size.

1. INTRODUCTION

Let X1, X2, . . . be i.i.d. real valued random variables. Consider the problem of
testing the simple null hypothesis H0 that the Xi’s are distributed according to some
distribution µ0 with a continuous distribution function F0, versus a simple hypothesis
H1. Without loss of generality we may assume that µ0 is the uniform distribution
on [0, 1], otherwise one transforms the data by F0. Let µ1 be the distribution of Xi’s
under H1.

Let µn be the empirical distribution for the sample X1, X2, . . . Xn:

µn(A) =
#{i;Xi ∈ A, 1 ≤ i ≤ n}

n

and let Pn = {An,j , j = 1, 2, . . .} be a uniform partition of [0, 1] of interval size
hn > 0 (kn = 1/hn is integer).

In this paper we consider the Lp-goodness-of-fit test statistics:

J
(p)
k,n =

kn∑

j=1

|µn(An,j)− µ0(An,j)|p.

In case no confusion is possible we abbreviate J (p)
k,n to Jn. The case p = 2 corresponds

to a χ2-statistic, while p = 1 was studied by Györfi and van der Meulen [4] and
Beirlant, Györfi and Lugosi [1]. These authors introduced these statistics in the
context of Lp-errors for the histogram density estimator

fn(x) = µn(An,j)/hn (x ∈ An,j).
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Indeed,

Jn = hp−1
n

∫ 1

0

|fn − 1|p.

The aim of this paper is to prove some new results with respect to the Pitman
efficiency of any pair of tests induced by two different values of p, hence providing
some new insight in the number of classes to be taken relatively from one Lp-test
with respect to another. This note can also be considered as an addition to the work
of Quine and Robinson [6] who performed this same program for the L2-test and
the likelihood ratio test for uniformity.

2. MAIN RESULT

The Pitman efficiency is defined along a sequence of neighboring alternatives, as-
suming that

µ1(A) = µ0(A) + νnτ(A)

where νn > 0 and νn → 0 as n → ∞, and τ is a signed measure with density g.
Obviously

τ([0, 1]) =
∫ 1

0

g(x) dx = 0.

The technique in the sequel is based on a Poissonization argument developed in
Beirlant, Györfi and Lugosi [1] and Beirlant and Mason [2] as a generalization of the
work of Morris [5]. When using this technique Ñ will denote a Poisson(n) random
variable independent of the data, and Π̃n be the empirical Poisson measure:

Π̃n(A) = #{i;Xi ∈ A, 1 ≤ i ≤ Ñ},

leading to the auxiliary test statistics

J̃n = n−p
kn∑

j=1

|Π̃n(An,j)− nµ0(An,j)|p.

Furthermore let us introduce sequences of normalizing constants E`,n, V`,n, ` =
0, 1 such that if nhn →∞ and hn → 0 as n→∞, we have under H0

Jn − E0,n√
V0,n

D→ N(0, 1),

and under H1,n

Jn − E1,n√
V1,n

D→ N(0, 1).

In the sequel N stands for a standard normal random variable.
In the same way as in Beirlant, Györfi and Lugosi [1] or in Beirlant and Mason

[2] one can prove the following result:



Pitman Efficiencies of Lp-goodness-of-fit Tests 225

Theorem 1. Assume that for some δ > 0,
∫ 1

0
|g(x)|4+δdx < ∞. If hn → 0 and

nhn →∞ as n→∞, and ν2
n = O(h−1/2

n n−1) then under H0 and H1,n respectively

Jn − El,n√
Vl,n

D→ N(0, 1), (l = 0, 1)

where
lim

n→∞
V1,n

V0,n
= 1

and

lim
n→∞

E1,n − E0,n√
V0,n

=
c(p)
2

ν2
nn

√
hn

∫ 1

0

g2(x) dx+ o(1),

where

c(p) =
pE(|N |p)√
Var(|N |p) .

The limit results mentioned in the preceding theorem now can be used to derive
Pitman efficiencies of the Lp-tests under consideration for sequences of alternatives
considered in the introduction. To this end, as in Quine and Robinson [6] we will
suppose that the number of cells k = k(n) will be induced by a function k which,
when taken as a function of the continuous variable x, is regularly varying, that is
that for some q, k(ax)/k(x) → aq as x→∞, for all a > 0. We consider then tests of
the hypothesis H0 using Jn chosen in such a way that that the power of the size α
test under H1,n tends to β (α < β < 1) as n tends to ∞. Let J ′n be another statistic
and n′ a sequence such that the power of the size α test based on J ′n′ under H1,n′

also tends to β as n′ → ∞. Then if the limit of n′/n exists and is the same for all
such sequences n′, we call it the Pitman efficiency of Jn with respect to J ′n and write

PE(Jn, J
′
n) = limn′/n.

Specifically, we choose νn = ν(n) such that

lim
n→∞

E1,n − E0,n√
V0,n

→ b > 0

and we take n′ such that the same limit relation holds with the same constant b
when using the other test based on J ′n and when k(n) is replaced by k′(n′). Here the
role of J and J ′ is played by considering two different values of p. With the method
of proof used in Section 2 of Quine and Robinson [6] the following result now follows
from Theorem 1:

Theorem 2. Under the conditions of Theorem 1 and assuming that both k(n) and
k′(n) are regularly varying sequences of numbers of intervals with indices of regular
variation q and q′ in [0, 1], then

PE(J (p1)
k,n , J

(p2)
k′,n ) =

(
c2(p1)
c2(p2)

c

) 1
2−q

(1 ≤ p1, p2 <∞)
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if q = q′ and k′(n)/k(n) → c ∈ (0,∞), and

PE
(
J

(p1)
k,n , J

(p2)
k′,n

)
= ∞

if k′(n)/k(n) →∞.

Since for any a > 1 one obtains that

E(|N |a) =
2a/2

√
π

Γ
(
a+ 1

2

)

one finds that
c(p) =

p√√
πΓ(p+1/2)

Γ2( p+1
2 )

− 1
.

For large p, using Stirling’s formula one gets

c(p) ∼ p2−p/2 (p→∞).

Finally Lemma 1 in the Appendix states that c(p) has a unique maximum at p = 2.
Figure 1 provides a graph of this function, showing that for any test J ′n using a value
p2 different from 2 one has to choose k′(n)/k(n) → c2(p2)/2 < 1 as n→∞ in order
to have Pitman efficiency 1 with respect to the χ2 test.

Fig. 1.
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3. PROOF OF THEOREM 1

It is shown in Theorem 3.1 in Beirlant and Mason [2] that

Jn − E0,n√
V0,n

D→ N(0, 1)

if hn → 0 and nhn →∞ with

E0,n = n−p
kn∑

j=1

E0

(
|Π̃n(An,j)− nµ0(An,j)|p

)

and

V0,n = n−2pVar(|N |p)np
kn∑

j=1

µp
0(An,j) = n−php−1

n Var(|N |p).

From Lemma 2.2 in Beirlant and Mason [2] it follows that

E0

(
|Π̃n(An,j)− nµ0(An,j)|p(nµ0(An,j))−p/2

)
− E(|N |p) = O(1/

√
n)

as n→∞ so that then

E0,n =
kn∑

j=1

E

(
|N

√
µ0(An,j)/n|p

)
+O

(
1√
n

(nhn)−p/2hp−1
n

)

= E(|N |p)h−1+p/2
n n−p/2 +O

(
1√
n

(nhn)−p/2hp−1
n

)

= E(|N |p)h−1+p/2
n n−p/2 +O

(
1√
n

(nhn)−p/2hp−1
n

)

=: E∗0,n + bn.

The proof of the given limit result under H1,n asks for a little bit more care. Again
the technique used in the proof of Theorem 3.1 in Beirlant and Mason [2] can be
applied given that the following conditions are satisfied:

max
j=1,...,kn

µ1(An,j) → 0 (1)

n min
j=1,...,kn

µ1(An,j) → ∞ (2)

max
j=1,...,kn

µp
1(An,j)/

kn∑

j=1

µp
1(An,j) → 0. (3)
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First, using Hölder’s inequality we obtain that

max
j=1,...,kn

µ1(An,j) = hn + νn max
j=1,...,kn

∫

An,j

g(x) dx

= hn +O(n−1/2h1/2−1/4
n )

(∫ 1

0

g2(x) dx
)1/2

= hn +O(n−1/2h1/4
n ) = o(1) (n→∞).

Next, to prove (2) remark that

n min
j=1,...,kn

µ1(An,j) ≥ nhn

(
1− νn

hn
max

j=1,...,kn

∣∣∣∣∣
∫

An,j

g(x) dx

∣∣∣∣∣

)
.

Now, using Hölder’s inequality again, we obtain

νn

hn
|
∫

An,j

g(x) dx| ≤ νn

hn
h

1− 1
4+δ

n

(∫ 1

0

g4+δ(x)dx
)1/(4+δ)

= O
(
h−1/4−1/(4+δ)

n n−1/2
)

which tends to zero as n → ∞, hence finishing the proof of (2). The proof of (3)
goes along similar lines.

With the method of proof used in the proof of Theorem in Beirlant, Györfi and
Lugosi [1] or Theorem 3.1 in Beirlant and Mason [2] one can now check that under
the given conditions

Jn − E1,n√
V1,n

D→ N(0, 1),

where the expressions for E1,n and V1,n will now be specified.
First,

V1,n = n−pVar(|N |p)
kn∑

j=1

µp
1,n(An,j)

= n−pVar(|N |p)
kn∑

j=1

(
hn +O(n−1/2h−1/4

n )
∫

An,j

g(x) dx

)p

which as in the proof of (2) leads to

V1,n = n−ph−1+p
n Var(|N |p)(1 + o(1))

as n→∞, from which we get that

lim
n→∞

V1,n

V0,n
= 1.
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Secondly, introducing the notation

ψp(a) = E(|N + a|p)

one obtains with the help of a straightforward extension of Lemma 2.2(a) in Beirlant
and Mason [2] that

E1,n = n−p
kn∑

j=1

E1(|Π̃n(An,j)− nµ0(An,j)|p)

= n−p
kn∑

j=1

E1(|Π̃n(An,j)− nµ1(An,j) + nµ1(An,j)− nµ0(An,j)|p)

= n−p
kn∑

j=1

E1(|Π̃n(An,j)− nµ1(An,j) + nνnτ(An,j)|p)

=
kn∑

j=1

(
µ1(An,j)

n

)p/2 {
E

(∣∣∣∣N +
√

n

µ1(An,j)
νnτ(An,j)

∣∣∣∣
p)}

+O(1/
√
n)}

=
kn∑

j=1

(
µ1(An,j)

n

)p/2

ψp

(√
n

µ1(An,j)
νnτ(An,j)

)

+O
(

1√
n
n−p/2h−1+p/2

n

)

=: E∗1,n + cn.

Using the same method as in the derivation of (2) one first shows that

cn√
V0,n

= O(1/
√
nhn)



230 J. BEIRLANT AND L. GYÖRFI

as n→∞. Next, by Lemma 2 in the Appendix

E∗1,n − E∗0,n =
kn∑

j=1

(
µ1(An,j)

n

)p/2

ψp

(√
n

µ1(An,j)
νnτ(An,j)

)

−
kn∑

j=1

(
µ0(An,j)

n

)p/2

ψp(0)

=
kn∑

j=1

(
µ1(An,j)

n

)p/2 [
ψp

(√
n

µ1(An,j)
νnτ(An,j)

)
− ψp(0)

]

+ψp(0)
kn∑

j=1

[(
µ1(An,j)

n

)p/2

−
(
µ0(An,j)

n

)p/2
]

=
kn∑

j=1

(
µ1(An,j)

n

)p/2
pE(|N |p)

2

(√
n

µ1(An,j)
νnτ(An,j)

)2

[1 + o(1)]

+ψp(0)
kn∑

j=1

p

2n

(
µ0(An,i)

n

)p/2−1

νnτ(An,i)[1 + o(1)]

=
pE(|N |p)

2

kn∑

j=1

(
µ1(An,j)

n

)p/2−1

ν2
nτ(An,j)2[1 + o(1)].

Hence

E∗1,n − E∗0,n√
V0,n

=
pE(|N |p)
2
√
Vp(0)

ν2
nn

√
hn

kn∑

j=1

(
µ0(An,j)

hn

)p/2−1 (
τ(An,j)
hn

)2

hn + o(1)

=
c(p)
2
ν2

nn
√
hn

∫ 1

0

g(x)2dx+ o(1).

4. APPENDIX

Lemma 1. The function c : [1,∞) → (0,∞) has a unique maximum at p = 2.

P r o o f . Setting h(p) = E(|N |2p)/(E(|N |p))2 we get c2(p) = p2

h(p)−1 .
Now

g(q) =
(

d
dq
E(|N |q)

)
/E(|N |q) =

ln 2
2

+
1
2
Ψ(
q + 1

2
)

where Ψ(z) = Γ′(z)/Γ(z) denotes the logarithmic derivative of the gamma function.
We find that

h′(p) = 2h(p)(g(2p)− g(p))

= h(p)
(

Ψ(p+ 1/2)−Ψ
(
p+ 1

2

))
.
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On the other hand, the numerator of the expression for the derivative of c2 is equal
to

p(2h(p)− 2− ph′(p)) = p

([
2− p

(
Ψ(p+ 1/2)−Ψ

(
p+ 1

2

))]
h(p)− 2

)

so that it remains to show that

1− p

2

(
Ψ(p+ 1/2)−Ψ

(
p+ 1

2

))



>
=
<





1
h(p)

=
Γ2((p+ 1)/2)√
πΓ(p+ 1/2)

as

p





<
=
>



 2.

To this end remark that

h(p) = exp

{∫ p/2

0

(Ψ(v + 1/2 + p/2)−Ψ(v + 1/2))dv

}
,

so that it suffices to prove that

1− p

2
dp/2(p/2)





>
=
<



 exp

{
−

∫ p/2

0

dp/2(v) dv

}

as

p





<
=
>



 2,

with
dq(u) = Ψ(u+ q + 1/2)−Ψ(u+ 1/2).

As d1(u) = 1/u, one immediately checks the equality in case p = 2. From Gauss’
expression for the logarithmic derivative Ψ of the gamma function one obtains that
if u > 0 and u+ q > 0

dq(u) =
∫ 1

0

xu−1/2(1− xq)
1− x

dx,

from which one derives that
• for any q, dq is a decreasing function of u,

• dq1 ≤ dq2 if q1 < q2,

• d′q1
≥ d′q2

if q1 < q2.
From these three properties of dq the result now follows since they imply that

q 7→ qdq(q) + exp
{
−

∫ q

0

dq(v)dv
}

is a decreasing function in q > 1/2. 2
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Lemma 2. As a ↓ 0

ψp(a) = ψp(0) + pE(|N |p)a
2

2
(1 + o(1)).

P r o o f . One easily checks that ψ′p(0) = 0 and ψ′′p (0) = pE(|N |p). 2

(Received March 3, 1994.)
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