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LARGE ADAPTIVE ESTIMATION
IN LINEAR REGRESSION MODEL

Part 1. Consistency

Jan Ámos V́ı̌sek

Condition of identifiability of linear regression model with symmetric distribution of errors is
given. Following Beran’s approach for location case consistency and asymptotic normality of this
adaptive estimator is proved. The result shows that the estimator is not asymptotically efficient.
But it selects model with such distribution function of errors which is (in the sense of Hellinger
distance applied on F(x) and 1 – F(-x)) “as much as possible symmetric” which may be useful
when we know that there are no reasons for the asymmetry.

1. INTRODUCTION

An endeavour to robustify the regression analysis yielded in the last twenty years
a lot of excellent results. For an insight offering discussion see [5] and for many
illustrative examples see [11]. Large attention was devoted to the methods based on
L1-norm or on a combination of L1 and L2-norms. For a nice review of results see
[3] and references given there. Most of these methods have paid for the robustness
by a decrease of efficiency. Moreover some of them were not able to cope with a
“heavy” contamination or with leverage points. On the other hand, in some cases
highly robust methods may yield an overdetermined model. A hope to solve some
of these difficulties seems to be offered by adaptive estimation.

Since the decrease of efficiency is not usually dramatic the main reason to use
this adaptive method may be the “symmetry” of residuals of estimated model. Since
symmetry of distribution of errors is the (basic) assumption for consistency of many
methods of robust regression (e. g. Least Median of Squares) it may be considered
also as an attempt to check this assumption. It means that when the model found
by the further introduced adaptive procedure is not far from a model obtained by
a robust procedure, let us say by the Least Median of Squares, then we may accept
the latter model because the assumption under which the model was derived is, at
least approximately, fulfilled. In the opposite case we should be more careful and
either try to separate the data into (two) groups and build up models for the each
group or to accept the “adaptive” model, for numerical example see [18]. (For a
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detailed discussion of this topic see [16].)
An idea of an adaptive estimation of parameters of unknown type of distribution

goes back to [14] and later was discussed in generality by Bickel [2]. For the location
model the problem was solved already in seventies by Stone [15] and Beran [1].

We have followed closely the approach of Beran [1] and extended it for the regres-
sion model. It revealed (again) the fact that linear regression model is not a mere
generalization of location model, compare [4], and hence a difficulty with identifia-
bility of coefficients may occur. It will be shown on an example. Let us mention
that alternative approaches to adaptive estimation in linear models were described
in [6], [7], [9] and [18].

2. NOTATION

Let us denote by N the set of all positive integers, by R the real line and by Rn the
n-dimensional Euclidean space. We shall consider a linear model

Y = X · β0 + e, (1)

where Y ′ = (Y1, . . . , Yn)T is a real vector (response variable), X = (xij)
n p
i=1,j=1 a

known and fixed design matrix, β0′ = (β0
1 , . . . , β0

p)T a vector of unknown (but fixed)
parameters and e = (e1, . . . , en)T a vector of i. i. d. random variables following
distribution function (d. f.) G (we implicitly assume that {ei}∞i=1 are defined on a
space (Ω,A, P )). We assume that the intercept, if any, is included in the design
matrix, i. e. xi1 = 1 for i = 1, . . . , n. The d. f. G is assumed to allow a density g
with respect to Lebesgue measure which is symmetric around zero, i. e. for any x ∈
R g(x) = g(−x). The assumption of symmetry may be omitted, but without it the
intercept has to be estimated separately from other coefficients and not adaptively.
Naturally, the whole theory have to be modified, too. The data have to be divided
into two parts and Hellinger distance of the estimates of density for these halves must
be minimized. Although the symmetry is not acceptable in so many situations as it is
sometimes believed there are cases which admit symmetry quite well. Let us consider
for a while location model and assume that we are in a situation, may be rare, when
we do not want to specify type of the parametric model at all. Then only under the
assumption of the symmetry the sense of “location” is out of any discussion since
modus (if unimodal), median, mean (if exists) and center of symmetry coincide. May
be that it is the reason why some practitioner, in the case when data are apparently
not symmetric, look for a (one-to-one) transformation which brings (bulk of) data to
the symmetry and having estimated location as the center of symmetry they apply
inverse transformation. Similar facts are also true for regression analysis, especially
in situation when for all data a model cannot be “reasonably” found. When we
are able to choose a subsample of data and a regression model (for this subsample)
implying approximately symmetric density of residuals we may claim (without any
additional assumption on distribution of errors ei) – in at least intuitively reasonable
and clear sense – that the errors ei have no systematic influence on response variable.

In what follows we shall use kernel estimator of density of residuals. Let us
denote by w a kernel which is assumed to be symmetric, twice absolutely continuous,
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positive everywhere and

sup
y∈R

w(y) < K1,

sup
y∈R

|w′(y)|
w(y)

< K2

and

sup
y∈R

|w′′(y)|
w(y)

< K3

where K1,K2 and K3 are some (positive) real numbers. By {cn}∞n=1 ↘ 0 we shall
denote the bandwidth of the kernel estimator. Further for y ∈ R, Y ∈ Rn and
β ∈ Rp, let us denote by

gn(y, Y, β) =
1

ncn

n∑

i=1

w


c−1

n (y − (Yi −
p∑

j=1

xijβj))




the above mentioned kernel estimator of density of residuals. In the sequel we shall
use XT

i β as an alternative notation for
∑p

j=1 xijβj . Moreover let 0 ≤ b(y) ≤ 1 be a
continuous function with b(0) = 1 and b(y) = 0 for |y| > 1. Then for a sequence of
positive constants {an}∞n=1 ↗∞ and for any y ∈ R define {bn(y)}∞n=1 as follows:

bn(y) = 1, |y| ≤ an,

= b

( |y| − an

c4
n

)
an < |y| ≤ an + c4

n,

and

= 0 otherwise.

Finally put

hn(y, Y, β) = bn(y)g1/2
n (y, Y, β).

3. PRELIMINARIES

Let us recall that the “true” value of β was denoted by β0 (see (1)).

Lemma 1. For any β ∈ Rp

∫ [
hn(y, Y, β)− E

1
2 gn(y, Y, β) · bn(y)

]2

dy = Op(n−1c−1
n an).

P r o o f . Since for any a ≥ 0 and b > 0 we have (a− b)2 ≤ b−2(a2 − b2)2 we may
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write

E
[
hn(y, Y, β)− E

1
2 gn(y, Y, β) · bn(y)

]2

≤
≤ b2

n(y) E−1gn(y, Y, β)E [gn(y, Y, β)− Egn(y, Y, β)]2 =

= b2
n(y)E−1gn(y, Y, β)E

{
1

ncn

n∑

i=1

[
w(c−1

n (y − Yi + XT
i β))− Ew(c−1

n (y − Yi + XT
i β))

]
}2

= b2
n(y)E−1gn(y, Y, β)

1
n2c2

n

n∑

i=1

E
[
w(c−1

n (y − Yi + Xiβ))− Ew(c−1
n (y − Yi + XT

i β))
]2

=

≤ b2
n(y)E−1gn(y, Y, β)

1
n2c2

n

n∑

i=1

Ew2(c−1
n (y − Yi + XT

i β)) ≤

≤ sup
z∈R

w(z) · b2
n(y)E−1gn(y, Y, β)

1
n2c2

n

n∑

i=1

Ew(c−1
n (y − Yi + XT

i β)) =

=
1

ncn
sup
z∈R

w(z) · b2
n(y).

2

Notice that

Egn(y, Y, β) =
1

ncn

n∑

i=1

∫
w

(
c−1
n (y − z + XT

i (β0 − β))
)
g(z)dz

and

∂Egn(y, Y, β)
∂βk

=
1

nc2
n

n∑

i=1

xik

∫
w′

(
c−1
n (y − z + XT

i (β0 − β))
)
g(z)dz.

We shall denote
[

∂Egn(y,Y,β)
∂βk

]
β=β0

by ∂Egn(y,Y,β0)
∂βk

. Notice also that in fact we have

shown that for any y ∈ R

E
[
g

1
2
n (y, Y, β)− E

1
2 gn(y, Y, β)

]2

≤ (ncn)−1 sup
z∈R

w(z).

We shall need it in the proof of

Lemma 2. Let limn→∞ n−1c−1
n an = 0. Then

∫
hn(y, Y, β0) · hn(−y, Y, β0)dy → 1 in probability .

Remark 1. The assumption of Lemma 2 implies a usual requirements that ncn →
∞ as n →∞.
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P r o o f o f L em m a 2. We may write
∣∣∣∣
∫ [

hn(y, Y, β0) · hn(−y, Y, β0)− b2
n(y)E

1
2 gn(y, Y, β0) · E 1

2 gn(−y, Y, β0)
]
dy

∣∣∣∣

≤
∫

hn(y, Y, β0) ·
∣∣∣hn(−y, Y, β0)− E

1
2 gn(−y, Y, β0) · bn(y)

∣∣∣ dy +

+
∫ ∣∣∣hn(y, Y, β0)− E

1
2 gn(y, Y, β0)

∣∣∣ E
1
2 gn(−y, Y, β0)bn(y)dy.

The first integral is not greater than
{∫

h2
n(y, Y, β0)dy

∫ [
hn(−y, Y, β0)− E

1
2 gn(−y, Y, β0)bn(y)

]2

dy

} 1
2

.

Similar upper bound is easy to derive for the second integral and hence both are
(according to Lemma 1) Op(n−

1
2 c
− 1

2
n a

1
2
n ). A straightforward computation gives (due

to the symmetry of w and g)
∫

E
1
2 gn(y, Y, β0) · E 1

2 gn(−y, Y, β0)dy = 1

which implies
∫

E
1
2 gn(y, Y, β0) · E 1

2 gn(−y, Y, β0) (1− b2
n(y))dy → 0.

That concludes the proof. 2

Corollary 1. Let limn→∞ n−1c−1
n an = 0. Then

sup
β∈Rp

∫
hn(y, Y, β) · hn(−y, Y, β)dy → 1

in probability.
P r o o f . Since from the Cauchy–Schwarz inequality we have

∫
hn(y, Y, β) · hn(−y, Y, β)dy ≤ 1,

the proof follows from Lemma 2. 2

Due to Corollary 1 we may give the following definition.

4. DEFINITION OF ESTIMATOR

Definition 1. For any Y ∈ R∞ let us denote by β̂(n)(Y ) points β ∈ Rp for which∫
hn(y, Y, β)hn(−y, Y, β)dy reaches its maximum. If there is no such point, let us

understand under β̂(n)(Y ) a point(s) β∗ ∈ Rp for which
∫

hn(y, Y, β∗) · hn(−y, Y, β∗)dy > sup
β∈Rp

∫
hn(y, Y, β) · hn(−y, Y, β)dy − 1

n
.
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Remark 2. For evaluation of β̂(n)(Y ) only first n coordinates of Y are used, so
that the above definition may start with Y ∈ Rn. On the other hand in the following
it will be more convenient to assume in every assertion the infinitely dimensional
space R∞.

It will be shown in the next section that the design matrix X has to fulfill some
conditions to allow us to prove consistency of βn(Y ).

5. IDENTIFIABILITY CONDITION

Let us consider a very simple example with p = 1 and Xi1 = (−1)i+1 for every
i = 1, . . . , n and n ∈ N . Further let the sequence of r. v.’s {ei}∞i=1 be i. i. distributed
according to standard normal law. Now let us fix β1 ∈ R, β1 6= 0 and assume
Yi = Xi1 · β1 + ei for i = 1, . . . , n. Finally consider our estimator which is based on
residuals Yi −Xi1 · β1 (= ei) and which utilizes the assumption of their symmetric
distribution. Let us put ourselves a question: Is (or are) there any other β̃ (or β̃’s)
∈ R such that the residuals Yi−Xi1 · β̃ may have a symmetric distribution and hence
our estimator cannot distinguish between β1 and β̃? The answer is, unfortunately,
positive. We see that even for any β ∈ R we obtain for the odd indexes i

e′i = Yi −Xi1 · β = Yi −Xi1 · β1 + Xi1(β1 − β) = ei + β1 − β

and for the even ones e′i = ei−β1+β and therefore any reasonable density estimator
applied on the sequence {e}∞i=1 will yield an estimate converging to the density
corresponding to the mixture

1
2

[
N(β1 − β, 1) + N(β − β1, 1)

]

where N(µ, σ2) denotes normal distribution with mean µ and variance σ2.
This simple example shows that under the mere assumption of symmetry of d. f.

of ei we cannot prove such property as consistency of β̂n(Y ). There exist a few dif-
ferent remedies. We may for instance require not only the minimization of Hellinger
distance but also minimization of variance of r. v. corresponding to estimated den-
sity of errors. It is clear that it may be misleading since it may change the “true”
variance of residuals (at least). On the other hand, we may arrive at a pragmatical
model with better predictive, and maybe even explaining properties than the “true”
model.

Let us return to our example. We see that the source of the described difficulties
lies in symmetry of the design matrix which may be interpreted as realization of a
sequence of i. i. d. r. v.’s {Zi}∞i=1 such that

P (Zi = −1) = P (Zi = 1) =
1
2
.

We may then consider Yi being sum of two random variables, both symmetrically
distributed and hence unseparable by our estimator.
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Moreover, the design matrix is – in some sense – a tool, say a microscope, through
which we observe response variable and in many – not at all – cases we may prescribe
its properties (and check them). Hence it seems (quite) natural to assume something
about it. Even in the case when X represents a (realization of) sequence of random
vectors we may sometimes prefer to restrict character of this sequence than to restrict
character of errors.

So our condition has to remove the “symmetry” of the design matrix. Another
thing which we need when proving the consistency of estimator is some compactness
restriction which holds without any assumption for the case of location parameter
(see [1], Lemma 2) but which, as it is easy to show, may generally fail for regression
model.

Denote by
Cp(a, β0) = {β ∈ Rp : ‖β − β0‖ > a}

and by
Cp(a, b, β0) = Cp(a, β0) ∩ Cc

p(b, β
0).

Condition A. For any δ > 0 there exist a ∆ ∈ (0, 1) and K∆ ∈ R such that

i)
lim sup

n→∞
sup

β∈Cp(δ,K∆,β0)

∫
E

1
2 gn(y, Y, β) · E 1

2 gn(−y, Y, β)dy < ∆

and

ii)
lim sup

n→∞
sup

β∈Cp(K∆,β0)

∫
hn(y, Y, β)hn(−y, Y, β)dy < ∆ in probability.

Moreover let K4 ∈ R be such that

sup
i∈N

sup
j=1,...,p

|xij | < K4.

Remark 3. The problem of identifiability may be probably solved also under
another conditions similar to those of [10]. We have preferred more “direct” ones.
It is easy to see that the first condition guarantees that the large values of estimator
are senseless. The second assures that the kernel estimate behaves similarly as the
“true” density.

6. CONSISTENCY OF ESTIMATOR

Now we are going to give the main result of the paper.
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Theorem 1. Let the Condition A be fulfilled and

lim
n→∞

nc4p
n a−2p

n = ∞.

Then β̂(n)(Y ) is a consistent estimator of β0.
P r o o f . Let us fix an ε ∈ (0, 1) and δ > 0 and find ∆ ∈ (0, 1), K4 and K∆ from

Condition A.
Since β0 is the fixed (“true”) value we may find K̃ such that for any β ∈ Rp

such that supj=1,2,...,p |βj | > K̃ we have ‖β − β0‖ > K∆. From ii) of Condition A it
follows that there exists n1 ∈ N , so that for n > n1 we have

P

{
sup

β∈C(K∆,β0)

∫
hn(y, Y, β)hn(−y, Y, β) dy > ∆

}
≤ ε

4
. (2)

Similarly from Corollary 1 follow that there exists n2 > n1 such that for any n ∈
N , n > n2 we have

P

{
sup

β∈Rp

∫
hn(y, Y, β)hn(−y, Y, β) dy < ∆ +

(
1−∆

2

)
}

<
ε

4
. (3)

(In fact (2) and (3) implies that

P

{
sup

j=1,...,p
|β̂(n)j | > K̃

}
<

ε

2
.)

Denote by K = {β ∈ Rp : supj=1,...,p |βj | < K̃}. Now for every n ∈ N find
a set of points from Rp say {β1, β2, . . . , βr}, such that for any β ∈ K there is an
`0 ∈ {1, 2, . . . , r} such that ‖β − β`0‖ < n−

1
2p and r is the smallest possible integer.

Then we have
∣∣∣∣
∫

hn(y, Y, β) hn(−y, Y, β)dy −
∫

hn(y, Y, β`0) hn(−y, Y, β`0) dy

∣∣∣∣ (4)

≤
{∫

h2
n(y, Y, β)dy

∫ [
hn(−y, Y, β)− hn(y, Y, β`0)

]2
dy

} 1
2

+

+
{∫ [

hn(y, Y, β)− hn(y, Y, β`0)
]2

dy

∫
h2

n(−y, Y, β`0)dy

} 1
2

.

Since
∫

h2
n(y, Y, β)dy is not greater than one it suffices to find an upper bound for∫ [

hn(y, Y, β)− hn(y, Y, β`0)
]2 dy. Making use of the inequality [a− b]2 ≤ 2|a2− b2|

valid for nonnegative a and b we obtain
∫ [

hn(y, Y, β)− hn(y, Y, β`0)
]2

dy ≤

≤ 2
ncn

n∑

i=1

∫ ∣∣w (
c−1
n (y − Y + Xiβ)

)− w
(
c−1
n (y − Y + Xiβ

`0)
)∣∣ dy.
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But
∣∣w (

c−1
n (y − Y + Xiβ)

)− w
(
c−1
n (y − Y + Xiβ

`0)
)∣∣ =

=
∣∣c−1

n w′(c−1
n ξi) ·Xi[β − β`0 ]

∣∣ =

=
∣∣∣∣c−1

n

w′(c−1
n ξi)

w(c−1
n ξi)

· w(c−1
n ξi) ·Xi[β − β`0 ]

∣∣∣∣ ≤

≤ c−1
n ·K1 ·K2 ·K4 · p · n−

1
2p .

Hence

sup
Y ∈R∞

sup
β∈K

min
`=1,...r

∣∣∣∣
∫

hn(y, Y, β)hn(−y, Y, β)dy−

−
∫

hn(y, Y, β`)hn(−y, Y, β`)dy

∣∣∣∣ = O
(
n−

1
2p c−2

n an

)
.

i. e. it converges to zero. Let us choose n3 > n2 so that for any n ∈ N , n > n3

the just studied difference (4) is less than (1 − ∆)/8. Further we have for any
` ∈ {1, . . . , r}

∣∣∣∣
∫

hn(y, Y, β`)hn(−y, Y, β`)dy −
∫

E
1
2 h2

n(y, Y, β`)dy · E 1
2 h2

n(−y, Y, β`)dy

∣∣∣∣

≤
∣∣∣∣
∫

hn(y, Y, β`)
[
hn(−y, Y, β`)− E

1
2 h2

n(−y, Y, β`)
]
dy

∣∣∣∣ +

+
∣∣∣∣
∫

E
1
2 h2

n(−y, Y, β`)
[
hn(y, Y, β`)− E

1
2 h2

n(y, Y, β`)
]
dy

∣∣∣∣ . (5)

Now
[∫

hn(y, Y, β`)
[
hn(−y, Y, β`)− E

1
2 h2

n(−y, Y, β`)
]
dy

]2

≤

≤
∫

h2
n(y, Y, β`)dy

∫ [
hn(−y, Y, β`)− E

1
2 h2

n(−y, Y, β`)
]2

dy ≤

≤
∫ [

hn(−y, Y, β`)− E
1
2 h2

n(−y, Y, β`)
]2

dy

and similarly for the second term of the right-hand side of (5). Using once again
inequality from the proof of Lemma 1 we obtain

P

{∣∣∣∣
∫ [

hn(y, Y, β`)hn(−y, Y, β`)− E
1
2 h2

n(y, Y, β`) · E 1
2 h2

n(−y, Y, β`)
]
dy

∣∣∣∣ >
(

1−∆
8

)} ≤

≤ P

{∫ [
E−1h2

n(−y, Y, β`) · [h2
n(−y, Y, β`)− Eh2

n(−y, Y, β`)
]]2

dy >
1
4

((
1−∆

8

))2
}

+

+ P

{∫ [
E−1h2

n(y, Y, β`) · [h2
n(y, Y, β`)− Eh2

n(y, Y, β`)
]]2

dy >
1
4

((
1−∆

8

))2
}

.
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But the probabilities may be bounded by

4 · (8/(1−∆))2 E

{∫
E−1h2

n(y, Y, β`).
[
h2

n(y, Y, β`)− Eh2
n(y, Y, β`)

]2 dy

}
=

= 4 · (8/(1−∆))2
∫ {

E−1h2
n(y, Y, β`) · E [

h2
n(y, Y, β`)− Eh2

n(y, Y, β`)
]2} dy

and proceeding further as in the proof of Lemma 1 one obtains

P

{∣∣∣∣
∫ [

hn(y, Y, β`) · hn(−y, Y, β`)− E
1
2 h2

n(y, Y, β`) · E 1
2 h2

n(−y, Y, β`)2
]
dy

∣∣∣∣ >
((

1−∆
8

))}
<

< 8 · (8/(1−∆))2 · 1
ncn

sup
z∈R

w(z) · 2(an + 1).

Notice that the upper bound does not depend on ` ∈ {1, . . . , r}. Hence

P

{
sup

`=1,...r

∣∣∣∣
∫ [

hn(y, Y, β`).hn(−y, Y, β`)−

−E
1
2 h2

n(y, Y, β`) · E 1
2 h2

n(−y, Y, β`)
]
dy

∣∣∣ <
((

1−∆
8

))}
>

< 1− r · 8.
(

8
1−∆

)2 · 1
ncn

· sup
z∈R

w(z) · 2(an + 1) >

> 1−
[
2K̃ · n 1

2p

]p

· 8 · 8
1−∆

2 · 1
ncn

· sup
z∈R

w(z) · 2(an + 1) =

= 1−O
(
n

1
2 c−1

n · an

)
.

Find an n4 ∈ N , n4 > n3 such that this probability is less than ε
2 . Finally using i)

of Condition A select n5 > n4 so that for any n ∈ N , n > n5

sup
β∈Cp(δ,K∆,β0)

∫
E

1
2 gn(y, Y, β) · E 1

2 gn(−y, Y, β)dy < ∆ + (1−∆)/8.

So we have derived that for any n ∈ N , n > n5 there is a set, say C, such that
P (C) > 1− ε

2 and for any ω ∈ C we have

sup
β∈Cp(δ,K∆,β0)

∫
hn(y, Y, β) · hn(−y, Y, β)dy < ∆ + 3(1−∆)/8. (6)

Finally find n6 ∈ N , n6 > n5 such that n−1
6 < (1 − ∆)/8. Then taking into

account (2), (3), (6) and the way how n3 and n6 were selected, we obtain for any
n ∈ N , n > n6

P

{
sup

β∈Cp(δ,β0)

∫
hn(y, Y, β) · hn(−y, Y, β)dy < ∆ + 3(1−∆)/8 and

sup
β∈Rp

∫
hn(y, Y, β) · hn(−y, Y, β)dy > ∆ + (1−∆)/2

}
> 1− ε,
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which concludes the proof. 2

The asymptotic normality of β̂n(Y ) together with numerical examples will be
presented in the second part of this paper.

(Received June 19, 1990.)
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