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Olga Štěpánková, Igor Vajda, Pavel Źıtek,
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THE BEHAVIOR OF LOCALLY MOST
POWERFUL TESTS

Marek Omelka

The locally most powerful (LMP) tests of the hypothesis H : θ = θ0 against one-sided as
well as two-sided alternatives are compared with several competitive tests, as the likelihood
ratio tests, the Wald-type tests and the Rao score tests, for several distribution shapes and
for location, shape and vector parameters. A simulation study confirms the importance of
the condition of local unbiasedness of the test, and shows that the LMP test can sometimes
dominate the other tests only in a very restricted neighborhood of H. Hence, we cannot
recommend a universal application of the LMP tests in practice. The tests with a high
Bahadur efficiency, though not exactly LMP, also seem to be good in the local sense.

Keywords: testing statistical hypothesis, locally most powerful tests

AMS Subject Classification: 62F03

1. INTRODUCTION

Let X1, . . . , Xn be independent identically distributed (i.i.d.) random variables with
a common density f(x, θ) (with respect to Lebesgue measure), where θ ∈ Ω ⊂ R.
Consider the problem of testing the simple null hypothesis H : θ = θ0 against the
one-sided alternative K : θ > θ0 (K : θ < θ0) or against the two-sided alternative
K : θ 6= θ0. A uniformly most powerful (UMP) test or a uniformly most powerful
unbiased (UMPU) test of H exists e. g. when the density f belongs to the exponential
family of distributions (Lehmann [8]). In the case of nonexistence of a UMP test,
the task of a statistician is to find a suitable and reasonable test. One possibility
is to use a locally most powerful (LMP) test, which maximizes the slope of a power
function in a neighborhood of the null hypothesis. Another natural way how to
derive the locally most powerful test is to restrict the attention to the tests which
are locally admissible in the Brown and Marden [1] sense. While the form of locally
most powerful tests is well known in many situations, surprisingly there are not
many studies showing up to what extent, in which neighborhood, the test is really
optimal, and whether the neighborhood of the hypothesis is large enough to justify
the use of the locally most powerful test.

This is just the goal of the present paper: In several specific cases, we shall
compare the power functions of the LMP tests and of some competitive tests in
order to show how far their optimalities go. Our results supplement the theoretic
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asymptotic results of Chibisov [2], Kallenberg [7], as well as the simulation study of
Ramsey [11].

Section 2 describes some basic concepts pertaining to the locally optimal tests,
and introduces some alternative tests to LMP ones. Section 3 studies the tests based
on sample X1, . . . , Xn for three specific models:

1. the double-exponential distribution with the location parameter θ and density
f(x) = 1

2 e−|x−θ| and testing H : θ = 0 against K : θ > 0;

2. the Weibull distribution with the shape parameter a and density function
f(x) = axa−1 exp(−xa) and testing H : a = 1 against K : a > 1 and also
H : a = 1 against K : a 6= 1;

3. the normal distribution N (µ, σ2) with both parameters unknown and testing
H : (µ, σ2)T = (0, 1)T against K : (µ, σ2)T 6= (0, 1)T (sometimes called the test
of full specification of the normal distribution).

The aim of this paper is to provide an insight into the performance of tests rather
than to give exact values of power functions. That is why our results are often
illustrated on the figures, which give a better picture of the situation than the tables.

2. BASIC CONCEPTS AND DEFINITIONS

Consider a random sample X = (X1, . . . , Xn) from a distribution with density
f(x, θ) which depends on the unknown parameter θ. Let H be a null hypothesis
about this parameter and Φ be a test function defined on the sample space which
gives the probability of rejecting H when the sample X = x is observed. Denote
βΦ(θ) = EθΦ(X) the power function of this test.

Definition 1. Let d be a measure of the distance of an alternative θ ∈ K from a
given hypothesis H. A level α test Φ◦ is said to be locally most powerful (LMP) if,
given any other level α test Φ, there exists ∆ > 0 such that βΦ◦(θ) ≥ βΦ(θ) for all
θ ∈ K with 0 < d(θ) < ∆.

We shall restrict ourselves to the real θ and the null hypothesis H : θ = θ0; then
it is natural to take d(θ) = θ− θ0 as a measure of distance for one-sided alternatives
K : θ > θ0 and d(θ) = |θ − θ0| for two-sided alternatives.

In typical cases the LMP test can be found as a test maximizing the first deriva-
tive of the power function at the point of the null hypothesis θ0. Computing the
derivative of the power function βΦ(θ) =

∫
Φ(x1, . . . , xn)

∏n
i=1 f(xi, θ) dx1, . . . , dxn

of an arbitrary test Φ, we are often allowed to differentiate under the integral sign
(the differentiability of power functions is closely connected with L1-derivatives and
the precise mathematical theory can be found e. g. in Witting [12]). Let ḟ(x, θ)
denote the derivative of f(x, θ) with respect to θ. Then

∂βΦ(θ)
∂θ

=
∫

Φ(x1, . . . , xn)l(x, θ)
n∏

i=1

f(xi, θ) dx1, . . . , dxn,



The Behavior of Locally Most Powerful Tests 701

where l(x, θ) =
∑n

i=1
ḟ(xi,θ)
f(xi,θ) is the well-known Fisher score function (calculated

as the logarithmic derivative of the likelihood L(x, θ) =
∏n

i=1 f(xi, θ)). From the
Neyman–Pearson lemma we get that the LMP test has the critical region l(x, θ0) ≥
Cα where Cα is appropriately chosen constant to reach the prescribed level α.

Remark. Notice that if the LMP test is not simultaneously the UMP test, then
typically (with an exception of the finite sample space) there does not exist a uni-
versal neighborhood over which the LMP maximize the power uniformly. To see it,
it suffices to compare the power of LMP test with the power of the Neyman–Pearson
test for an arbitrarily close simple alternative θ1.

As we may look at a LMP test as at a one-sided version of Rao score test (Lagrange
multiplier test) for a one-dimensional parameter, it seems natural to compare this
test with the Wald (W) test and with the likelihood ratio (LR) test. The W test for a
one-dimensional parameter has a simple critical region θ̂ ≥ Cα, where θ̂ is an efficient
(e. g. maximum likelihood) or at least a consistent estimate of the parameter θ. We
shall modify the LR test, originally constructed as a two-sided test, in a one-sided
version in the following way: The test rejects the null hypothesis when θ̂ > θ0 and at
the same time LR = 2{log L(x, θ̂)− log L(x, θ0)} ≥ Cα. The third alternative test,
which will be considered in the case of one-sided hypothesis, is the test maximizing
the power for the simple alternative θ1 = θ0 + 2/

√
n If , where If is the Fisher

information at θ0. Efron [3] suggested this test as an alternative to the LMP test
for the distribution with the “big statistical curvature”. We denote this test as the
EFR test.

A natural condition imposed on tests of the simple hypothesis H : θ = θ0 against
two-sided alternatives K : θ 6= θ0 is that of the local unbiasedness:

Definition 2. A level α test Φ◦ is said to be locally unbiased, if there exists ∆ > 0
such that βΦ◦(θ) ≥ α for all θ with 0 < d(θ) < ∆.

If the score function l(X, θ0) has a symmetric distribution under the null hy-
pothesis (θ = θ0), the locally most powerful locally unbiased (LMPLU) test has
a simple critical region |(x, θ0)| ≥ Cα. But as Jurečková [6] pointed out, the test
with such a critical region is not locally unbiased if the distribution of l(X, θ0) is
asymmetric. To find the LMPLU test in this situation, we put the first derivative
of the power function equal to zero at θ0 and under that condition we maximize the
second derivative of power function at θ0. Under sufficiently smooth densities, we
get the critical region using the generalized Neyman–Pearson lemma:

l̇(x, θ0) + [l(x, θ0)]
2 ≥ C1 l(x, θ0) + C2, (1)

here C1, C2 are constants determined by the conditions of size and local unbiasedness
and l̇(x, θ) denotes the derivative of l(x, θ) with respect to θ.

The situation is much more complicated when we consider simple hypothesis
H : θ = θ0 for a vector parameter (θ = (θ1, . . . , θk)). We can easily see that the Def-
inition 1 is not very useful here and a different approach has to be adopted. Suppose
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that the power function is twice continuously differentiable and let {β̈Φ(θ0)} be the
matrix of the second derivatives of the power function of a test Φ at θ0. Isaacson [5]
proposed the type D test which maximizes the determinant of the matrix {β̈Φ(θ0)}
subject to the conditions of size and unbiasedness. But the disadvantage of this test
is that it is very difficult to construct. To overcome this inconvenience, Gupta and
Vermaire [4] came up with the test which is also locally unbiased but which maxi-
mizes the trace of the matrix {β̈Φ(θ0)}. Brown and Marden [1] showed that the test
of this type is locally admissible. We shall refer to this test as the LMMPU (Locally
Most Mean Powerful Unbiased) test.

Remark. From a geometrical point of view the type D test maximizes the Gaussian
curvature of the power surface at θ0 and the LMMPU test maximizes the mean
curvature among all locally unbiased level α tests. This implies that while type
D test locally minimizes the volume of an infinitesimal ellipse with a given power
β > α (subject to the conditions of size and unbiasedness), the LMMPU test locally
maximizes the average power over a spherical neighborhood of the null hypothesis.

3. EXAMPLES – MONTE CARLO STUDY

3.1. Tests on the location parameter of the double-exp. distribution

Let X1, . . . , Xn be a sample from the double-exponential distribution with the den-
sity 1

2e−|x−θ| and consider testing H : θ = 0 against K : θ > 0. We take the modest
sample size n = 10 and prescribe the size α = 0.0546875( .= 0.055). In this situa-
tion the maximum likelihood estimate is the median X̃ = (X(5) + X(6))/2 (where
X(1) ≤ . . . ≤ X(n) is the ordered sample). We consider the following tests:

1. The sign test :
∑n

i=1 1{Xi>0} ≥ k (k = 8), which is the LMP test in this case
(e. g. Lehmann [8]).

2. The EFR test :
∑n

i=1

{|Xi| − |Xi − θ|
} ≥ Cα, where θ1 = 0 + 2/

√
10 .= 0.63

and Cα = 1.26.

3. The Wald test : X̃ ≥ Cα (Cα = 0.625).

4. The LR test :
X̃ ≥ 0 & LR = 2

∑n
i=1

{
|Xi| − |Xi − X̃|

}
≥ Cα (Cα = 2.86).

The power function of the sign test can be easily computed, as the statistic
of this test has the binomial distribution Bi(n, p) with parameters n = 10 and
p = 1 − 0.5 e−θ. The power functions of the other tests are estimated by means of
Monte Carlo simulation (in this example, as well as in the following ones, more than
1 000 000 “pseudorandom” samples were generated).

The Figure 1, which includes the envelope power function (also calculated using
the Monte Carlo simulation), illustrates the differences of power functions, using
the LMP test as a standard. Thus the power function for the LMP test appears
as a “zero” straight line and if βΦ(θ) is the power function for another test, it is
illustrated as βΦ(θ)− βLMP(θ).
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Fig. 1. The differences of power functions with the LMP test as a standard; solid :

βEnv − βLMP, dashed : βEFR − βLMP, dotted : βLR − βLMP, dotdashed : βWT − βLMP.

We can see that we pay quite a high price for the local optimality of the sign test.
For more distant alternatives, the power of this test is considerably smaller than
that of any other test. Hence, if our priority is not only the local sensitivity of the
test, the EFR test and the LR test seem to be more preferable, since their power
functions are quite near to the envelope power function over the whole alternative.
We can also conclude that the W test is convenient when we look for a test strong
against more distant alternatives. On the other hand, the sign test can be convenient
in the practice, but it calls for a randomization if the prescribed size is not a natural
level of the test. The W test is also quite simple to provide, since the formula
Cα = − log{2(1 − Bn(α))}, where Bn(α) is the 100(1 − α) per cent quantile of the
beta distribution B(p, q) with parameters p = n+1

2 , q = n+1
2 , gives us the critical

value which is exact for n odd and approximate for n even. For large n the critical
value of the LR test can be approximated as well. However, the author does not
know any simple approximation for the critical value of the EFR test in this case.
Hence, the critical values should be tabulated to facilitate the practical application
of the Efron test.
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3.2. Tests on the shape parameter of the Weibull distribution

Let X1, . . . , Xn be a sample from the Weibull distribution with the density f(x) =
axa−1 exp(−xa). Consider first testing the hypothesis H : a = 1 against K : a > 1.
We take the modest sample size n = 10 and α = 0.05 again. Let â be the maximum
likelihood estimate of the parameter a. In this situation this estimate almost surely
exists and is unique. Consider the following tests:

1. The LMP test –
∑n

i=1 {(1−Xi) log Xi + 1} ≥ Cα (Cα = 5.76).

2. The EFR test –
∑n

i=1

{
(θ1 − 1) log(Xi)− (Xi)θ1 + Xi

} ≥ Cα, where in our
case θ1 = 1 + 2/

√
10 · 1.82 .= 1.47 and Cα = −2.33.

3. The Wald test – â ≥ Cα (Cα = 1.64).

4. The LR test – â ≥ 1 &
LR = n log(â) +

∑n
i=1

[
(â− 1) log(Xi)− (Xi)â + Xi

] ≥ Ca (Cα = 3.22).

Still another test, based on the extreme quotient Q = X(n)

X(1)
, was proposed by

Wong and Wong [13]. This test is easy to apply, scale-invariant and the critical
values are easily computed. But we have found out that the power of this test is
significantly smaller (relative loss is about 20 per cent) than the power of any of four
considered tests. Thus this test is not considered in the sequel.

Figure 2 illustrates the differences in power functions, again using the LMP test
as a standard. We can see how much we must pay for the local optimality. As well as
in the test on the location parameter of the double-exponential distribution, we can
reach the similar conclusions about power functions of the tests. But a closer look at
Figures 1 and 2 shows that in this case the differences of the power functions are five
times smaller. This is in agreement with the asymptotic theory which tells us that
the shortcoming of the LMP test depends on the functional γ which Efron [3] called
the statistical curvature. For the Weibull distribution with the shape parameter the
curvature is γ2

a
.= 0.7 (and in fact does not depend on the parameter a > 0). Efron

pointed out that LMP tests work quite well if γ2
a/n < 1/8, which is our case. Of

course, such a simple rule is convenient for users, but it does not make sense if we
are interested in a finer comparison of the tests based for example on the asymptotic
deficiency. Unfortunately, we were not able to make such analysis in the case of the
double-exponential distribution, since the density of this distribution is not smooth
enough to define the Efron statistical curvature.

The smoothness of the Weibull density allows us to make an asymptotic ex-
pansions according to Chibisov [2]. He showed, that for large, n the W test be-
haves similarly as the Neyman–Pearson (NP) test for the simple alternative θW =
θ0 + 2 u1−α/

√
n If ; this can give us some intuition for which alternative is this test

suitable. As θW = 1.77 in our special situation (n = 10), we can see from Figure 2
that the approximation is not yet very precise. We have also checked that the ap-
proximation of critical values of an arbitrary NP test derived by Chibisov [2] is very
accurate but unfortunately rather complicated.

Consider now the two-sided alternative K : a 6= 1. The sample size n and level α
remain the same. We will investigate the following tests:
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1. The locally most powerful locally unbiased test which has the critical region
after a slight rearrangement of (1):

−
n∑

i=1

Xi (log Xi)2 +

{
n∑

i=1

(1−Xi) log Xi)

}2

+ λ1

{
n∑

i=1

(1−Xi) log Xi

}
≥ λ2,

(2)

where λ1 = 24.07 and λ2 = −80.37 in our special case.

2. The LR test with the critical value 3.93 (to achieve the size α = 0.05)

3. The Wald test : â ≤ C1 or â ≥ C2, where C1, C2 are found subject to the
conditions of size and unbiasedness (C1 = 0.66, C2 = 1.76 in our case).

Similarly as in the previous examples, Figure 3 illustrates the difference in power
functions with the LMPLU test as a standard. Although comparing with the one-
sided test the region on which the LMPLU test is more powerful than the other tests
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Fig. 3. The difference in power functions with the LMPLU test as a standard;

dotted : βLR − βLMPLU, dotdashed : βWT − βLMPLU.

is considerably larger, the good behavior of the LR test is apparent again. The LR
test is also locally unbiased by its nature and its critical value is well approximated
by its asymptotic version. We notice that generally LR tests are efficient in the
Bahadur sense under some mild conditions. The only disadvantage of LR tests is
usually in calculating the maximum likelihood estimates. From this point of view,
if our highest priority is not a local sensitivity, it is not worth using the LMPLU
test whose construction is laborious (no approximations of constants λ1, λ2 in (2)
are known to the author) and whose critical region is inscrutable. As in the previous
examples, the W test can be recommended if we look for a test powerful especially
against more distant alternatives. However, besides the rather poor local behavior,
the computation of critical values can be difficult. As the distribution of â is rather
skewed, the normal approximation does not work well for modest sample size and,
moreover, if we insist on local unbiasedness, the critical values should be tabulated,
because the acceptance region is not symmetric. So we can conclude that the W test
is not very convenient for practical usage in this case.
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3.3. Tests on the two-dimensional parameter of the normal distribution

Let X1, . . . , Xn be a sample from the normal distribution with the density f(x) =
1√

2πσ2 e−
1

2σ2 (x−µ)2 , where both parameters µ and σ are unknown. Set θ = (µ, σ2)T

and consider testing H : θ = (0, 1)T against K : θ 6= (0, 1)T. Let θ̂ = (X̄, s2)T be
the maximum likelihood estimate of the parameter θ, where X̄ = 1

n

∑n
i=1 Xi and

S2 = 1
n

∑n
i=1(Xi − X̄)2. The Fisher score function is

l(X, θ) = (∂/∂θ) log L(X, θ) =
(∑ Xi − µ

σ2
, − n

2σ2
+

∑ (Xi − µ)2

2σ4

)T

and the Fisher information matrix is

Jn(θ) = Eθl(X, θ)l(X, θ)T =
[

n
σ2 0
0 n

2σ4

]
.

We shall consider the following tests:

1. Likelihood ratio (LR) test with the test statistic
LR = 2{log L(X, θ̂)− log L(X, θ0)} = nX̄2 + n (S2 − 1− log(S2)).

2. Wald (W) test with the test statistic

WT = (θ̂ − θ0)TJn(θ̂)(θ̂ − θ0) =
nX̄2

S2
+

n (S2 − 1)2

2 S4
. (3)

The matrix Jn(θ̂) is sometimes replaced with Jn(θ0). But this would lead
to a test which would be almost identical with the approximate D type test
introduced later.

3. Rao score (RS) test with the test statistic
RST = l(X,θ0)TJn(θ0)−1l(X,θ0) = n X̄2 + n

2

(
X̄2 + S2 − 1

)2
.

4. Approximate type D (AD) test – with the test statistic

AD = nX̄2 +
n− 1

2

(
nS2

n− 1
− 1

)2

.

This test was proposed Isaacson [5], as he was not able to construct the exact
type D test.

5. Kolmogorov–Smirnov (KS) test – this test was suggested by one of the referees.

6. LMMPU test ([4]) with the critical region
(
X̄2 + S2 − C

)2+4X̄2 ≥ K2, where
constants C,K are determined subject to the conditions of size and unbiased-
ness.
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7. Fisher test : Let Φ stand for a distribution function of a standard normal
variable and Gp for a distribution function of a variable with a χ2-distribution
with p degrees of freedom. The Fisher test is based on the statistic

Fisher = −2 log
{
2 [1− Φ(|√nX̄n|)]

}− 2 log {1−G2[−2 log(Hn)]} ,

where Hn = 2 Gn−1(S) if S ≤ med Gn−1 or Hn = 2 [1−Gn−1(S)] otherwise,
and med Gn−1 stands for the median of the distribution Gn−1.

This construction is known as Fisher’s method of combining independent test statis-
tics. Under the null hypothesis the statistic Fisher has χ2-distribution with 4 de-
grees of freedom. The test is a one sample analogue of the test of Littel and Folks [9]
who were dealing with the two sample problem. Analogously as [9], it can be shown
that our test is optimal in the sense of Bahadur efficiency.

We prescribe the size α = 0.05. It is well known that under the null hypothesis
the statistics LR, WT, RS and also AD have asymptotically χ2-distribution with
2 degrees of freedom. In practice we mostly approximate the critical values of these
tests by the asymptotic ones. Let αn = P θ0(Tn > χ2

2(1 − α)), where Tn is one of
the mentioned statistics for a fixed sample size n. The Table 1 gives the true sizes
of these tests when the asymptotic critical χ2

2(0.95) .= 5.99 value is used. As the
true sizes are not always 0.05, in the sequel the estimates of the true critical values
are used ensuring that all the test have approximately the size 0.05. We can also
see that the W test defined in (3) is not very advisable unless the sample size is
extremely large.

Table 1. True sizes of the tests when using the asymptotic critical value.
The sign † (††) used when the true size is larger than 0.055 (0.10).

Test α20 α50 α100 α500

LR test 0.057† 0.053 0.051 0.050

W test 0.135†† 0.087† 0.069† 0.054

RS test 0.049 0.049 0.049 0.050

AD test 0.051 0.050 0.050 0.050

Let us now look at local properties of the proposed tests. To calculate the deriva-
tives of power functions at θ0 we can easily differentiate the power function

βΦ(θ) =
∫

Φ(x1, . . . , xn)
n∏

i=1

1√
2πσ2

e−
1

2σ2 (xi−µ)2 dx1, . . . , dxn (4)

under the integral sign. After some algebra we get

∂βΦ(θ)
∂θ

∣∣∣∣
θ=θ0

= EΦ(X) l(X, θ0) and
∂2βΦ(θ)
∂θ ∂θT

∣∣∣∣
θ=θ0

= EΦ(X)A(X, θ0),

where

A(X, θ0) =

[
n2X̄2 − n, n

2

∑n
i=1 X2

i X̄ − n(n+2)
2 X̄

n
2

∑n
i=1 X2

i X̄ − n(n+2)
2 X̄, 1

4

(∑n
i=1 X2

i − n
)2 −∑n

i=1 X2
i + n

2

]
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Table 2. The derivatives of the power functions of the tests at θ0

for two sample sizes.

n = 20 n = 100

Test β̇2 β̈11 β̈22 det{β̈Φ} tr{β̈Φ} β̇2 β̈11 β̈22 det{β̈Φ} tr{β̈Φ}
LR 0 2.78 1.59 4.44 4.38 0 14.5 7.5 108.3 22.0

W –0.23 0.87 1.31 1.15 2.19 – 0.45 11.1 6.6 73.3 17.7

RS 0.30 3.07 1.39 4.26 4.46 0.33 15.0 7.3 109.2 22.3

AD 0.27 2.87 1.67 4.81 4.55 0.30 14.9 7.6 113.6 22.5

KS 0.05 3.36 0.12 0.4 3.48 0.04 16.7 0.9 15.0 17.6

LMMPU 0 3.71 0.97 3.61 4.69 0 20.5 3.8 77.2 24.3

Fisher 0 2.98 0.05 0.15 3.03 0 14.9 0 0 14.9

and the expectation is taken under the null hypothesis. The expectation in (4) can
be now easily estimated by means of the Monte Carlo simulation. For convenience
we will denote the first and second derivatives of power functions of tests at θ0 as

β̇i =
∂βΦ(θ)

∂θi

∣∣∣∣
θ=θ0

and β̈ij =
∂2βΦ(θ)
∂θi∂θj

∣∣∣∣
θ=θ0

.

The derivatives are given in Table 2. The table does not include the values of
derivatives β̇1, β̈12(= β̈21), since their values are zero for each of considered tests.

Firstly, we should note that the W, RS, AD test and also KS test are not locally
unbiased. In agreement with the asymptotic results of Peers [10], the W test is more
powerful when σ2 < 1, and the RS test is more powerful when σ2 > 1. We can also
see that the LMMPU really maximizes the trace of the matrix {β̈Φ} and the AD test
maximizes the determinant of this matrix although it is only an approximation of the
type D test. Another apparent fact is that the ratio of the second derivatives tends
to one for any pair of the LR test, W test, RS test and AD test. But this is not true
for the KS, LMMPU tests and for the Fisher test, whose local performance seems to
be completely different. The LMMPU test seems being extremely sensitive to small
departures of µ from the null hypothesis and much less sensitive to small departures
of σ2 than these four tests. Also, the KS has a better-than-average sensitivity to
the change in the location parameter. The sensitivity of the Fisher test to small
departures of µ is even only average, and this test together with the KS test seem
to be quite insensitive to small changes of the scale parameter σ.

Global properties

After the local considerations, let us shortly consider also the global behavior of
the considered tests. Some of the results for the sample size n = 20 can be found
in the Figure 4, where we can see the contour plot of the difference of the power
function of the LR test with respect to the power functions of the other tests. The
axes shows the true value of parameters. For the scale parameter the logarithmic
transformation is used. Because of the symmetry of the power functions in the
parameter µ, only µ ≥ 0 are considered. We see immediately that the LR test has
a very good performance. Although this test is not uniformly most powerful, the



710 M. OMELKA

LR − W

log(σ)

µ

−0.4 −0.2 0.0 0.2 0.4

0
.0

0
.2

0
.4

LR − RS

log(σ)
µ

−0.4 −0.2 0.0 0.2 0.4

0
.0

0
.2

0
.4

LR − AD

log(σ)

µ

−0.4 −0.2 0.0 0.2 0.4

0
.0

0
.2

0
.4

LR − KS

log(σ)

µ

−0.4 −0.2 0.0 0.2 0.4

0
.0

0
.2

0
.4

LR − LMMPU

log(σ)

µ

−0.4 −0.2 0.0 0.2 0.4

0
.0

0
.2

0
.4

LR − Fisher

log(σ)

µ

−0.4 −0.2 0.0 0.2 0.4

0
.0

0
.2

0
.4

Fig. 4. The contour plot of the difference of the power function of the LR test with

respect to the power functions of the other tests.
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lack of power in the part of the parameter space is small in comparison with the
excess of the power in the rest. This is especially true for the W, RS, AD and KS
test which are not locally unbiased. From the figures we can easily deduce that for
each of the tests there exists a region where the test is doing very badly and the
area of this region is not negligible, especially when the sample size n is modest.
This is particularly true for the W test which is doing very badly for σ2 > 0. But
also the KS test has a rather poor performance and it was completely outperformed
by the LMMPU test. The only tests which are comparable with the LR test are
the locally unbiased tests. Moreover, it is interesting that the Fisher test behaves
very well, despite the small values of the derivative of the power function. This fact
confirms the observations made in the previous examples, showing that the value of
the derivative of the power function at the point of the null hypothesis gives only
rather local information about the performance of the corresponding test.

As a conclusion, we recommend to choose the LMMPU test if the sensitivity to
the changes in the location parameter is our main interest. However, it is difficult to
compute the constants C, K of its critical region. On the other hand, the preference
between the LR and Fisher tests might be a matter of taste. While the LR test
does better for σ2 < 1, the Fisher test is preferable in the opposite case. Table 2
also confirms a better local sensitivity of the LR test. However, the exact knowledge
of the null distribution of the statistic Fisher strongly speaks in favour of this test,
while the asymptotic critical value of the LR test, being used for small sample sizes,
leads to size exceeding 0.05 (see Table 1). Therefore, the Fisher test may be a slightly
more convenient. Nevertheless, our conclusions are in a good accordance with the
theory of hypotheses testing, because both the most advisable tests are also optimal
in the Bahadur sense.
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