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A SECOND ORDER APPROXIMATION FOR THE
INVERSE OF THE DISTRIBUTION FUNCTION
OF THE SAMPLE MEAN

Jorge M. Arevalillo

The classical quantile approximation for the sample mean, based on the central limit
theorem, has been proved to fail when the sample size is small and we approach the tail of
the distribution. In this paper we will develop a second order approximation formula for
the quantile which improves the classical one under heavy tails underlying distributions,
and performs very accurately in the upper tail of the distribution even for relatively small
samples.

1. INTRODUCTION

Since the appearance of H. E. Daniels’ paper: “Saddlepoint Approximations in
Statistics” [3] a great deal of literature has been written on this topic.

Until now all efforts have been focused on finding different approaches that yield
to Daniels’ approximation of the sample mean density, trying to extend them to the
multivariate case and evaluating new ones for tail probabilities; but little research
has been developed to look into sample mean quantile expansions.

This is very interesting for us, since it has a great deal of applications in statistical
testing. We aim to invert one of these tail probability expansions in order to get a
quantile approximation and therefore a second order expansion for the critical value
of the test.

The paper is organized in four sections. In Section 2 we deal with an approxima-
tion formula for the solution of the saddlepoint equation. This expression is used in
Section 3 in order to get a new formulation for the tail probability saddlepoint ap-
proximation. Its inversion, by means of an inversion technique used in [2], is achieved
in Section 4 and will yield to a second order approximation for the quantile of the
sample mean distribution. We will finish the paper by displaying some numerical
examples which will shed light on the analytical results.
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2. AN APPROXIMATION FOR THE SOLUTION OF SADDLEPOINT
EQUATION

Let X be a random variable with distribution function, F (x), absolutely continuous
with respect to Lebesgue measure and density function f(x). Suppose X has moment
generating function M(λ) =

∫
eλxf(x) +dx, finite in an interval (−r, s) , r > 0 , s >

0; this suffices to guarantee the existence of all the moments and cumulants of the
distribution.

Let K(λ) = log M(λ) be the cumulant generating function of X; we will denote
the mean of X by µ, the variance by σ2 and the cumulants by kj : j ≥ 1, where
k1 = µ and k2 = σ2.

Suppose X1, X2, · · · , Xn is a random sample of X; we can deduce a saddlepoint
approximation for the tail probability, thus for

P (Zn ≥ x) = P (X̄ ≥ x̄) where Zn =
(X̄ − µ)

√
n

σ
and x̄ = µ +

xσ√
n

.

If we start from Daniels’ saddlepoint approximation for the sample mean density
[3] and use Laplacian expansion [7] (see Chapter 3, Section 3.1), as outlined in [5],
we will get a large deviation approximation for the tail probability given by

P (Zn ≥ x) = P (X̄ ≥ x̄) =
en[K(λ̂)−λ̂x̄]

λ̂

√
2πnK ′′(λ̂)

+ O(n−3/2), (1)

with λ̂ satisfying the saddlepoint equation

K ′(λ̂) = x̄ = µ +
xσ√

n
. (2)

A high order large deviation expansion for the tail probability is deduced in [1];
we have considered in (1) the first term of this expansion.

Some assumptions on the cumulant generating function are established in [3]
(Section 6), so that (2) has a unique real root. These assumptions, for the general
case of a distribution with support (a, b) : −∞ ≤ a < b ≤ ∞, are given by

lim
λ→−r

K ′(λ) = a, lim
λ→s

K ′(λ) = b

and guarantee the existence of a unique real solution of the saddlepoint equation for
every x̄ within (a, b).

We will get an approximation of equation (2) solution by means of a one step
Newton–Raphson method. Since K ′(λ̂) = µ + σ2λ̂ + O(λ̂2) = µ + xσ√

n
, it is natural

that we use as a starting point λ̂0 = x
σ
√

n
; this point will yield to an approximation

of λ̂ given by λ̃ = λ̂0 + x̄−K′(λ̂0)

K′′(λ̂0)
.

Expanding the previous quotient, we get
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λ̃ = λ̂0 +
− k3x2

2σ2n − k4x3

6σ3
√

n3 + O(n−2)

σ2 + k3x
σ
√

n
+ k4x2

2σ2n + O(n−3/2)
=

a1√
n

+
a2

n
+

a3

n3/2
+ O(n−2),

with a1 = x
σ , a2 = −k3x2

2σ4 and a3 = k2
3x3

2σ7 − k4x3

6σ5 .

Since K ′(λ̂) − K ′(λ̃) = O(n−2), we can conclude that λ̂ − λ̃ = O(n−2) and
therefore

λ̂ =
a1√
n

+
a2

n
+

a3

n3/2
+ O(n−2). (3)

3. A NEW FORMULATION FOR THE TAIL PROBABILITY SADDLEPOINT
APPROXIMATION

In this section we aim to get a new formulation for (1) that incorporates the results
of the previous one. We will face up the task in three steps: The first one will
deal with an approximation formula for n[K(λ̂)− λ̂x̄]; the second one is devoted to

develop an analogous formula for λ̂

√
nK ′′(λ̂). We will finally mix up the preceding

results in order to obtain an expansion for the quotient, thus for the tail probability.

3.1. Phase I

Taylor expansion of K(λ̂)− λ̂x̄ yields to

K(λ̂)− λ̂x̄ = µλ̂ +
σ2

2!
λ̂2 +

k3

3!
λ̂3 + · · · − λ̂(µ +

xσ√
n

) = −λ̂
xσ√

n
+

σ2

2
λ̂2 +

k3

6
λ̂3 + · · · .

Therefore

K(λ̂)− λ̂x̄ = − xσ√
n

(
3∑

i=1

ain
−i/2 + O(n−2)

)
+

σ2

2

(
3∑

i=1

ain
−i/2 + O(n−2)

)2

+
k3

6

(
3∑

i=1

ain
−i/2 + O(n−2)

)3

+
k4

24

(
3∑

i=1

ain
−i/2 + O(n−2)

)4

+ · · · .

If we replace a1, a2, a3 by its values from (3) and gather together the terms of the
same order we will get

K(λ̂)− λ̂x̄ = −x2

2n
+

1
n3/2

k3x
3

6σ3
+

1
n2

(
k4x

4

24σ4
− k2

3x
4

8σ6

)
+ O(n−5/2),

where the coefficients of 1√
n5 in the expansion of K(λ̂) − λ̂x̄ have been grouped

together to obtain a O(n−5/2) remainder.
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Hence

n[K(λ̂)− λ̂x̄] = −x2

2
+

1
n1/2

k3x
3

6σ3
+

1
n

(
k4x

4

24σ4
− k2

3x
4

8σ6

)
+ O(n−3/2). (4)

3.2. Phase II

Considering that

K ′′(λ̂) = σ2 + k3λ̂ +
k4

2
λ̂2 + · · ·

= σ2 + k3

(
3∑

i=1

ain
−i/2 + O(n−2)

)
+

k4

2

(
3∑

i=1

ain
−i/2 + O(n−2)

)2

+ · · · ,

we will get an expansion for
√

K ′′(λ̂) in powers of n−1/2, that is to say:
√

K ′′(λ̂) =∑∞
i=0 bin

−i/2, where the unknown coefficients are deduced by comparisons between
the terms of the same order from K ′′(λ̂) expansion and

K ′′(λ̂) =

( ∞∑

i=0

bin
−i/2

)2

.

For example, to obtain the values of b0, b1 and b2, we need comparisons up to the
n−1 power; in this way we will get the following equations:

— b2
0 = σ2

— 2b0b1 = k3a1

— 2b0b2 + b2
1 = k3a2 + k4

2 a2
1

from which b0 = σ, b1 = k3x
2σ2 and b2 = k4x2

4σ3 − 3k2
3x2

8σ5 .

These values and those from (3), lead to an expansion for λ̂

√
K ′′(λ̂):

λ̂

√
K ′′(λ̂) =

(
3∑

i=1

ain
−i/2 + O(n−2)

)(
2∑

i=0

bin
−i/2 + O(n−3/2)

)

=
b0a1√

n
+

1
n

(b0a2 + a1b1) +
1

n3/2
(a1b2 + a2b1 + a3b0) + O(n−2)

=
x√
n

+
1

n3/2
(
k4x

3

12σ4
− k2

3x
3

8σ6
) + O(n−2).

Therefore
λ̂

√
nK ′′(λ̂) = c1 +

c2√
n

+
c3

n
+ O(n−3/2), (5)

where c1 = x, c2 = 0 and c3 = k4x3

12σ4 − k2
3x3

8σ6 .
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3.3. Phase III

Including (4) and (5) into (1) we will get

P (X̄ ≥ x̄) =
φ(x) exp

(
1

n1/2
k3x3

6σ3 + 1
n ( k4x4

24σ4 − k2
3x4

8σ6 ) + O(n−3/2)
)

(
c1 + c3

n + O(n−3/2)
) + O(n−3/2).

Expanding the quotient P (X̄≥x̄)
φ(x) in powers of n−1/2: P (X̄≥x̄)

φ(x) =
∑∞

i=0 din
−i/2, we

get

exp
(

1
n1/2

k3x
3

6σ3
+

1
n

(
k4x

4

24σ4
− k2

3x
4

8σ6
) + O(n−3/2)

)

= 1 +
(

1
n1/2

k3x
3

6σ3
+

1
n

(
k4x

4

24σ4
− k2

3x
4

8σ6
) + O(n−3/2)

)

+
1
2

(
1

n1/2

k3x
3

6σ3
+

1
n

(
k4x

4

24σ4
− k2

3x
4

8σ6
) + O(n−3/2)

)2

=
(
c1 +

c3

n
+ O(n−3/2)

) (
d0 +

d1√
n

+
d2

n
+ · · ·

)
.

Comparisons between terms of the same order lead to the following equations:

— c1d0 = 1

— c1d1 = k3x3

6σ3

— c3d0 + c1d2 = k2
3x6

72σ6 + k4x4

24σ4 − k2
3x4

8σ6

which allow us to determine d0, d1, d2 :

d0 =
1
x

, d1 =
k3x

2

6σ3
and d2 =

k2
3

8σ6

(
x5

9
− x3 + x

)
+

k4

12σ4

(
x3

2
− x

)
.

Therefore

P (Zn ≥ x) = P (X̄ ≥ x̄) =
φ(x)

x
+

φ(x) d1(x)√
n

+
φ(x) d2(x)

n
+ O(n−3/2), (6)

with d1(x) = k3x2

6σ3 and d2(x) = k2
3

8σ6

(
x5

9 − x3 + x
)

+ k4
12σ4

(
x3

2 − x
)

.
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4. A SECOND ORDER APPROXIMATION FOR THE QUANTILE

If we put P̄ (x) = φ(x)
x + φ(x) d1(x)√

n
+ φ(x) d2(x)

n , then (6) can be written as follows:

P (Zn ≥ x) = P (X̄ ≥ x̄) = P̄ (x) + O(n−3/2)

so that, a certain significance level α will almost satisfy that

P̄ (x) =
φ(x)

x
+

φ(x) d1(x)√
n

+
φ(x) d2(x)

n
= α. (7)

Proper inversion of (7) will allow us to find an approximation formula for the
quantile x̄. This approximation will be deduced using the inversion technique from
[2] together with the following lemma, which is a consequence of an inequality
from [4].

Lemma. If Φ and φ are the distribution and density functions of the standard
normal law, then

1− Φ(x) =
φ(x)

x
(1 + o(1)) as x →∞.

In our framework x is in the upper tail of the distribution. It then stands to reason
that x is large enough, so φ(x)

x may be replaced by 1−Φ(x) in (7). This will perform
very accurately when α is small enough, at least for heavy tails distributions, as will
be shown in Section 5.

Under these conditions, (7) can be replaced by

P̄ (x) = 1− Φ(x) +
φ(x) d1(x)√

n
+

φ(x) d2(x)
n

= α. (8)

From now on, we will focus on inverting (8).

Assume that x = zα + t1√
n

+ t2
n + · · · with zα = Φ−1(1− α).

To begin with, we will expand P̃ (X̄ ≥ x̄) in a Taylor series at zα:

1− Φ(zα) + φ(zα)
(

d1(zα)√
n

+
d2(zα)

n

)
+ φ(zα)

(
−1 +

−zαd1(zα) + d′1(zα)√
n

+
−zαd2(zα) + d′2(zα)

n

)
(x− zα) + · · · = α,

which implies that

d1(zα)√
n

+
d2(zα)

n
+

(
−1 +

d′1(zα)− zαd1(zα)√
n

+
d′2(zα)− zαd2(zα)

n

)
(x−zα)+· · · = 0.

If we replace x− zα by
∑∞

i=1 tin
−i/2 in the previous expression and compare the

terms of the same order from both members of the equality, we get

t1 = d1(zα).
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Consequently

x = zα +
d1(zα)√

n
+ O(n−1),

and the desired second order quantile approximation for the quantile x̄ will be

x̄ = µ +
xσ√

n
= µ +

σzα√
n

+
σd1(zα)

n
+ O(n−3/2) with d1(zα) =

k3z
2
α

6σ3
. (9)

5. NUMERICAL EXAMPLES

In this section we will display some numerical examples which will allow us to com-
pare the normal approximation with ours.

5.1. Example I

The following tables show for different significance levels, α, the values of the ex-
act quantile, the normal quantile approximation and the second order quantile ap-
proximation, as well as the relative errors under an exponential distribution with
parameter 1.

We have chosen small sample sizes for better comparisons between normal and
second order approximations.

n = 3

α e n s er1 er2

0.050 2.098598 1.949657 2.250273 7.097176 7.227433

0.045 2.146482 1.978838 2.298213 7.810149 7.068842

0.040 2.199636 2.010759 2.351304 8.586726 6.895139

0.035 2.259446 2.046107 2.410887 9.442098 6.702567

0.030 2.327936 2.085877 2.478919 10.398028 6.485714

0.025 2.408229 2.131586 2.558414 11.487423 6.236336

0.020 2.505535 2.185732 2.654386 12.763828 5.940916

0.015 2.629565 2.252902 2.776157 14.324157 5.574748

0.010 2.801982 2.343118 2.944439 16.376432 5.084146

0.005 3.091264 2.487156 3.224366 19.542436 4.305761

e = exact quantile, n = normal approximation, s = second order approximation,

er1 = 100 ∗ |e− n|/e and er2 = 100 ∗ |e− s|/e.

Note that as we approach the upper tail of the distribution, the normal approx-
imation based on central limit theorem breaks down, giving large relative errors:
16.37% or 19.54%, in comparison with the relative errors given by the second order
approximation: 5%, 4.3%.
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n = 7

α e n s er1 er2

0.050 1.691768 1.621696 1.750532 4.141935 3.473493

0.045 1.718931 1.640800 1.777675 4.545307 3.417487

0.040 1.748959 1.661697 1.807645 4.989381 3.355450

0.035 1.782599 1.684838 1.841172 5.484197 3.285824

0.030 1.820935 1.710873 1.879320 6.044231 3.206342

0.025 1.865636 1.740797 1.923723 6.691526 3.113527

0.020 1.919480 1.776244 1.977096 7.462245 3.001610

0.015 1.987625 1.820217 2.044469 8.422491 2.859922

0.010 2.081516 1.879277 2.136986 9.715943 2.664903

0.005 2.237096 1.973572 2.289519 11.779753 2.343351

e = exact quantile, n = normal approximation, s = second order approximation,

er1 = 100 ∗ |e− n|/e and er2 = 100 ∗ |e− s|/e.

n = 11

α e n s er1 er2

0.050 1.542020 1.495942 1.577928 2.988126 2.328679

0.045 1.562393 1.511182 1.598284 3.277722 2.297204

0.040 1.584875 1.527852 1.620728 3.597961 2.262174

0.035 1.610012 1.546312 1.645797 3.956522 2.222653

0.030 1.638597 1.567081 1.674274 4.364506 2.177277

0.025 1.671850 1.590951 1.707359 4.838875 2.123941

0.020 1.711795 1.619229 1.747043 5.407564 2.059141

0.015 1.762186 1.654307 1.797013 6.121874 1.976355

0.010 1.831334 1.701420 1.865417 7.093961 1.861083

0.005 1.945257 1.776642 1.977699 8.668021 1.667758

e = exact quantile, n = normal approximation, s = second order approximation,

er1 = 100 ∗ |e− n|/e and er2 = 100 ∗ |e− s|/e.

Note that, n increase reduces the relative errors corresponding to the normal
and second order approximations; however the former remains larger than the later.
In fact, we have thought that such differences are quite appreciable for heavy tails
distributions. It would be an interesting task, analyzing them with respect to a
tailing order, i. e. Loh order that is alluded in [6].
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5.2. Example II

This example shows the accuracy of the normal and second order approximations
when the underlying distribution is a χ2

1 distribution. Small sample sizes have been
tried in order to make the differences between both approximations clear.

We will use the same notation as in the previous examples; the results are dis-
played in the following tables.

n = 3

α e n s er1 er2

0.050 2.604909 2.343017 2.944249 10.05378 13.026939

0.045 2.683162 2.384286 3.023036 11.13892 12.666941

0.040 2.770390 2.429429 3.110518 12.30733 12.277265

0.035 2.868982 2.479419 3.208979 13.57846 11.850768

0.030 2.982429 2.535662 3.321747 14.97999 11.377231

0.025 3.116135 2.600304 3.453961 16.55354 10.841216

0.020 3.279136 2.676879 3.614187 18.36634 10.217636

0.015 3.488344 2.771871 3.818381 20.53904 9.461144

0.010 3.781622 2.899455 4.102098 23.32774 8.474565

0.005 4.279385 3.103156 4.577577 27.48595 6.968099

n = 5

α e n s er1 er2

0.050 2.214100 2.040297 2.401036 7.849817 8.442997

0.045 2.268461 2.072264 2.455513 8.648901 8.245807

0.040 2.328866 2.107231 2.515885 9.516874 8.030443

0.035 2.396911 2.145953 2.583689 10.470077 7.792427

0.030 2.474924 2.189518 2.661170 11.531886 7.525319

0.025 2.566500 2.239590 2.751785 12.737591 7.219332

0.020 2.677645 2.298905 2.861289 14.144509 6.858452

0.015 2.819559 2.372486 3.000391 15.856143 6.413498

0.010 3.017254 2.471312 3.192898 18.094029 5.821286

0.005 3.349920 2.629097 3.513750 21.517615 4.890561
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n = 7

α e n s er1 er2

0.050 2.009591 1.879211 2.136882 6.487898 6.334151

0.045 2.052663 1.906228 2.179978 7.133887 6.202441

0.040 2.100435 1.935781 2.227676 7.839050 6.057851

0.035 2.154143 1.968507 2.281176 8.617606 5.897153

0.030 2.215584 2.005326 2.342220 9.489947 5.715693

0.025 2.287538 2.047645 2.413498 10.486950 5.506370

0.020 2.374632 2.097775 2.499478 11.658933 5.257513

0.015 2.485490 2.159962 2.608466 13.097145 4.947746

0.010 2.639330 2.243485 2.758904 14.997912 4.530476

0.005 2.896820 2.376839 3.008734 17.950073 3.863326

Observe that for very small significance levels, corresponding to quantiles far
away in the upper tail of the distribution, the second order approximation is more
accurate than the normal; see table for n = 5 in which the relative errors are 5.82%
against 18.09% for α = 0.010. But as α increases we move away the tail, and the
differences between both approximations become smaller; in some cases the normal
approximation is more accurate than ours (see the relative errors of the first table
for α = 0.050).

However, if we load the upper tail of the distribution, that is to say if we increase
the degrees of freedom of the χ2, (9) will become more accurate than the central
limit approximation for every significance level. The next example, which considers
a χ2

5 distribution, corroborates this assertion.

5.3. Example III

n = 3
α e n s er1 er2

0.050 8.331920 8.003078 8.604310 3.946774 3.269232
0.045 8.461816 8.095359 8.734108 4.330719 3.217893
0.040 8.605376 8.196301 8.877390 4.753715 3.160981
0.035 8.766149 8.308081 9.037641 5.225418 3.097051
0.030 8.949302 8.433844 9.219929 5.759758 3.024005
0.025 9.162787 8.578388 9.432046 6.377957 2.938613
0.020 9.419822 8.749615 9.686923 7.114854 2.835522
0.015 9.744951 8.962025 10.00853 8.034177 2.704814
0.010 10.19263 9.247311 10.44995 9.274570 2.524571
0.005 10.93377 9.702799 11.17722 11.258457 2.226562
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n = 5
α e n s er1 er2

0.050 7.530496 7.326174 7.686913 2.713251 2.077126
0.045 7.624566 7.397654 7.780904 2.976056 2.050456
0.040 7.728328 7.475844 7.884498 3.266997 2.020739
0.035 7.844286 7.562429 8.000165 3.593151 1.987166
0.030 7.976076 7.659844 8.131495 3.964761 1.948564
0.025 8.129292 7.771808 8.284002 4.397490 1.903114
0.020 8.313214 7.904440 8.466824 4.917161 1.847788
0.015 8.545037 8.068971 8.696877 5.571250 1.776941
0.010 8.862821 8.289953 9.011539 6.463719 1.678000
0.005 9.385578 8.642773 9.527426 7.914327 1.511336

n = 7
α e n s er1 er2

0.050 7.114550 6.965976 7.223647 2.088304 1.533440
0.045 7.191100 7.026388 7.300138 2.290498 1.516289
0.040 7.275443 7.092470 7.384365 2.514941 1.497122
0.035 7.369585 7.165647 7.478316 2.767289 1.475400
0.030 7.476439 7.247978 7.584872 3.055738 1.450335
0.025 7.600478 7.342605 7.708458 3.392851 1.420704
0.020 7.749119 7.454699 7.856403 3.799392 1.384466
0.015 7.936089 7.593754 8.042258 4.313650 1.337799
0.010 8.191725 7.780518 8.295936 5.019786 1.272155
0.005 8.610682 8.078705 8.710600 6.178102 1.160399

The three preceding tables display the quantile approximation under a χ2
5 distribu-

tion. Observe that the relative errors have decreased for both the normal and second
order approximation, with the former always higher than the later.
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