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ON AN ESTIMATION PROBLEM FOR TYPE I
CENSORED SPATIAL POISSON PROCESSES

Jan Hurt1, Petr Lachout2 and Dietmar Pfeifer3

In this paper we consider the problem of estimating the intensity of a spatial homo-
geneous Poisson process if a part of the observations (quadrat counts) is censored. The
actual problem has occurred during a court case when one of the authors was a referee for
the defense.

1. INTRODUCTION

In this paper we consider a spatial homogeneous Poisson process ξ with unknown
intensity µ > 0 which is to be estimated by quadrat counts. However, not all of the
information is present; rather, only those quadrats are counted for which the number
of points does not exceed a fixed number K > 0. Such a situation actually arose
when one of the authors was a referee for the defense in a recent court case. Toner
dust particles produced by a copy machine were counted on a critical document
by electron microscopy, but the intensity of the underlying Poisson process was
estimated on the basis of type I censored quadrats only which did not contain more
than K = 4 observed particles. (The non-mathematical reasoning of the laboratory
for this kind of censoring was to exclude what they called “systematic errors”.) Since
the resulting underestimate for the intensity of the Poisson process was unfavorable
for the accused, however, a “naive” bias correction for the estimate was suggested,
which could be understood and accepted also by non-mathematically trained judges.
In this paper, we want to show that this “naive” intensity estimator is related to
the maximum-likelihood estimator for type I censored data, and investigate the
asymptotic properties of these estimators.

2. A “NAIVE” ESTIMATOR FOR TYPE I CENSORED DATA

The original problem can be reformulated in mathematical terms as follows (see [1]
or [3] for a survey on censorization): suppose X1, . . . , Xn are independent Poisson

1Supported partly by the Grant Agency of the Czech Republic, Grant No. 201/00/0770.
2Supported partly by the project CEZ: MSM 113200008 and by the Grant Agency of the Czech

Republic, Grant No. 201/99/0264.
3Supported partly by the Verein zur Förderung der Versicherungswissenschaften inHamburg e.V.
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distributed random variables with parameter λ > 0, distributed as X, corresponding
to the counts ξ(A1), . . . , ξ(An) in disjoint quadrats A1, . . . , An of equal area
λ = µm(Ai), where m denotes Lebesgue measure. Observed are the couples (Wi, Ii),
i = 1, . . . , n with Wi = min{Xi, K + 1} and Ii = 1{Xi ≤ K}. Let N =

∑n
i=1 Ii,

S =
∑n

i=1 IiWi. Obviously, the estimator

λ̂1 =

{
S
N , N¿0
∞, N=0(i. e. allobservationsarecensored)

for λ which was used in the court case is biased, with

E
[
λ̂1|λ̂1 < ∞]

= E[X|X ≤ K] =

K−1∑

i=0

λi+1

i!
K∑

i=0

λi

i!

= λ− λK+1

K!
K∑

i=0

λi

i!

< λ− λK+1

K!
e−λ < λ.

Let for abbreviation denote

a(λ,K) = E[X|X ≤ K], b(λ,K) = E[X|X > K].

Then obviously,

b(λ, K) = λ

∞∑

i=K

λi

i!
∞∑

i=K+1

λi

i!

= λ +
λK+1

K!
∞∑

i=K+1

λi

i!

> λ +
λK+1

K!
e−λ > λ,

and

a(λ, K) P (X ≤ K) + b(λ, K) P (X > K) = λ.

The “naive” estimator λ̂2 under censoring is then given implicitly as solution of the
equation

S + (n−N) b(λ,K)
n

= λ. (1)

The idea behind the “naive” estimator is as follows: S gives the number of observed
particles without censoring, and (n − N) b(λ,K) is close to the expected value for
the number of censored particles when λ is known, so S + (n − N) b(λ,K) is ap-
proximately equal to the total number of counted particles, say T , with T/n being
the “classical” unbiased estimate for λ. Note that in general, there is no explicit
solution for λ̂2; however, since b(λ,K) is strictly increasing with λ and convex with
limλ→∞ b(λ,K)/λ = 1, limλ→0 b(λ,K) = 0, there is always a unique positive so-
lution for λ in case of N > 0, which can easily be calculated using e. g. computer
algebra systems. For N = 0, i. e. all observations are censored, we put λ̂2 = ∞. In
the case of toner dust particles, S = 159 uncensored particles were reported within
N = 234 quadrats of 0.5 mm2 each, with a total number of n = 240 quadrats. From
these figures, one obtains
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λ̂1 = 0.679487, λ̂2 = 0.791128

which means that λ̂2 (and therefore possibly also λ) is actually considerably larger
than λ̂1.

3. THE MAXIMUM–LIKELIHOOD APPROACH

Let us first observe that for the joint distributions of Wi and Ii, we have in general

P (Wi = w, Ii = 1) =





P (Xi = w) for w ≤ K

0 otherwise,

P (Wi = w, Ii = 0) =





P (Xi > K) for w = K + 1

0 otherwise.

The frequency function f - i. e. the counting density - for each pair (Wi, Ii) is
hence given by

f(w, j) =
[
Pλ(Xi = w)

]j[
Pλ(Xi > K)1{w = K+1}]1−j

, w = 0, . . . , K+1, j ∈ {0, 1},

where Pλ denotes the underlying parametric probability measure. Given the ob-
servations Wi = wi, Ii = ji, i = 1, . . . , n, the likelihood function L(λ;w, j) with
w = (w1, . . . , wn), j = (j1, . . . , jn) can hence be written as

L(λ;w, j) =
n∏

i=1

f(wi, ji) =
n∏

i=1

[
Pλ(Xi = wi)

]ji
[
Pλ(Xi > K)1{wi = K + 1}]1−ji

=
∏

i∈K

Pλ(Xi = wi)
∏

i∈Kc

Pλ(Xi > K)

or, in terms of random variables,

L(λ;W, I) = G(λ,K)n−Ne−NλλS
∏

Wi≤K

(Wi!)−1

with the index set K = {i|wi ≤ K, i = 1, . . . , n} = {i|ji = 1, i = 1, . . . , n},
survival function G(λ,K) = Pλ(Xi > K) and W = (W1, . . . , Wn), I = (I1, . . . , In).
Note that

∑
Wi≤K Wi = S and

∑
Wi≤K Ii = N . To maximize L, it thus suffices to

maximize ln L which is up to a term independent of λ equal to

L∗(λ;W, I) = (n−N) ln G(λ,K)−Nλ + S ln λ,
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with

∂

∂λ
L∗(λ;W, I) = (n−N)

G′(λ, K)
G(λ,K)

−N +
S

λ
= (n−N)

b(λ,K)
λ

− n +
S

λ
.

Here we have used the relationship

G′(λ,K) = G(λ,K − 1)−G(λ,K), i. e.
G′(λ,K)
G(λ,K)

=
b(λ,K)

λ
− 1.

Equating the partial derivative of the log-likelihood function to zero hence gives the
equivalent expression

S + (n−N) b(λ,K)
n

= λ, (2)

which corresponds precisely to equation (1). The corresponding maximum-likelihood
estimator is thus identical to the naive estimator above.

4. ASYMPTOTIC PROPERTIES OF THE (NAIVE) ML–ESTIMATOR

In this section we study the asymptotic distribution for the properly normalized
estimator sequences obtained form equations (1) and (2). The argumentation here
follows closely the general scheme introduced in [2]. Let

F (λ,K) = P (Xi ≤ K) = e−λ
K∑

j=0

λj

j!
,

G(λ,K) = P (Xi > K) = 1− F (λ,K) = e−λ
∞∑

j=K+1

λj

j!
,

H(λ, S, N) = (n−N)
b(λ,K)

λ
− n +

S

λ
= (n−N)

F (λ,K)− F (λ,K − 1)
G(λ,K)

−N +
S

λ
.

Note that here H(λ, S,N) = ∂
∂λL∗(λ;W, I) is just the partial derivative of the log-

likelihood function above. Further,

E(N) = nF (λ,K), E(S) = nλF (λ,K − 1).

For the sequel, let λ0 denote the true underlying Poisson parameter. Then

1
n

E
[
H(λ, S,N)

]
=

G(λ0,K)
G(λ,K)

(
F (λ,K)−F (λ,K − 1)

)− (
F (λ0, K)−F (λ0,K − 1)

)
,

which is independent of n. Denote this expression as H∗(λ, λ0,K). In particular,

E
[
H(λ0, S,N)

]
= H∗(λ0, λ0,K) = 0.

By the SLLN, we also have

lim
n→∞

1
n

H(λ, S, N) = H∗(λ, λ0,K) a.s.
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Since the functions H(λ, S, N) and H∗(λ, λ0,K) are decreasing and continuous in
λ with H∗(λ0, λ0,K) = 0, we further have limn→∞ λ̂2 = λ0 a.s., i. e. the (naive)
ML-estimator sequence is strongly consistent. Next, we see that H∗(λ, λ0, K) is
differentiable w.r.t. λ, giving

∂

∂λ
H∗(λ, λ0,K) = −λ0

λ2
F (λ0,K − 1)−

(
F (λ, K)− 2F (λ,K − 1) + F (λ,K − 2)

G(λ, K)
+

· · ·+
(
F (λ,K)− F (λ,K − 1)

)2

G2(λ,K)

)
G(λ0,K) = H∗∗(λ, λ0,K).

This allows for a stochastic expansion of H(λ, S, N) as

H(λ, S, N) =
n∑

i=1

Yi + Zn(λ) + n(λ− λ0) (H∗∗(λ0, λ0, K) + Rn(λ)) ,

where

Yi = −Ii +
WiIi

λ0
+

F (λ0,K)− F (λ0,K − 1)
G(λ0,K)

(1− Ii),

Zn(λ) = (1/λ− 1/λ0) (S − nλ0F (λ0,K − 1)) + . . .

+
(

F (λ,K)− F (λ,K − 1)
G(λ,K)

− F (λ0,K)− F (λ0,K − 1)
G(λ0,K)

) (
n−N−nG(λ0,K)

)
,

and Rn(λ) → 0 for λ → λ0 a.s. Observe E(Yi) = 0 and

V ar(Yi) = E(Y 2
i )

= E(Ii) +
E(W 2

i Ii)
λ2

0

+

(
F (λ0, K)− F (λ0,K − 1)

)2

G2(λ0,K)
E(1−Ii)− 2

λ0
E(WiIi)

= F (λ0, K) +
λ0F (λ0,K − 1) + λ2

0F (λ0,K − 2)
λ2

0

+ . . .

+

(
F (λ0,K)− F (λ0,K − 1)

)2

G2(λ0,K)
G(λ0,K)− 2λ0F (λ0,K − 1)

λ0

= F (λ0, K) + (1/λ0 − 2) F (λ0,K − 1) + F (λ0,K − 2) + . . .

+

(
F (λ0,K)− F (λ0,K − 1)

)2

G(λ0,K)
= −H∗∗(λ0, λ0,K) > 0.

From the CLT, we finally obtain

1√
n

n∑

i=1

Yi
d−→

n→∞
N (0, V ar(Y1)),

1√
n

Zn(λ) d−→
n→∞

0.

Hence,

√
n(λ̂2 − λ0) =

1√
n

n∑

i=1

Yi +
1√
n

Zn(λ)

H∗∗(λ0, λ0,K) + Rn(λ)
d−→

n→∞
N (0, σ2)
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where

σ2 =
V ar(Y1)

H∗∗(λ0, λ0,K)2
=

1
V ar(Y1)

(cf. equation (3)).

5. SIMULATION STUDIES

The following table contains some results of simulation studies, which were per-
formed with a Poisson intensity of λ0 = 0.8. 100 and 500 samples each of size 240
were generated, with censoring at the level K = 4. The table contains the empirical
quantities corresponding to the estimates λ̂2.

empirical sample size 100 sample size 500

mean 0.800751 0.794921

variance 0.00326 0.00344

standard deviation 0.0571 0.0587

skewness 0.1357 0.0941

kurtosis 2.472 2.901

s. e. of sample mean 0.00571 0.00262

median 0.794053 0.795833

1st quartile 0.76487 0.7542

3rd quartile 0.84824 0.8357

min 0.675 0.6167

max 0.93823 0.9924

Note that by relation (3), the corresponding asymptotic standard deviation s =
σ/
√

n with n = 240 is here given by s = 0.057743 which is quite close to the
observed standard deviations of 0.0571 and 0.0587, resp. On the basis of the normal

approximation for the estimator λ̂2 we thus obtain an asymptotic 95 % confidence
interval for the true λ0 in the initial example as 0.791128±1.96∗0.057743 or (0.6795,

0.9043). Note that the lower interval value here is even larger than the originally

used estimate λ̂1.

(Received July 13, 2000.)
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