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COMPUTING THE DISTRIBUTION OF A LINEAR
COMBINATION OF INVERTED GAMMA VARIABLES 1

Viktor Witkovský

A formula for evaluation of the distribution of a linear combination of independent
inverted gamma random variables by one-dimensional numerical integration is presented.
The formula is direct application of the inversion formula given by Gil–Pelaez [4]. This
method is applied to computation of the generalized p-values used for exact significance
testing and interval estimation of the parameter of interest in the Behrens–Fisher problem
and for variance components in balanced mixed linear model.

1. INTRODUCTION

Gil-Pelaez in [4] derived a version of the inversion formula which is particularly
useful for numerical evaluation of a general distribution function by one-dimensional
numerical integration:

Theorem 1. Let φ(t) =
∫∞
−∞ eitx dF (x) be a characteristic function of the one-

dimensional distribution function F (x). Then, for x being the continuity point of
the distribution, the following inversion formula holds true:

F (x) =
1
2
− 1

π

∫ ∞

0

(
e−itxφ(t)− eitxφ(−t)

2it

)
dt

=
1
2
− 1

π

∫ ∞

0

Im
(

e−itxφ(t)
t

)
dt. (1)

P r o o f . See [4]. 2

Furthermore, it is easy to observe that if the distribution belongs to the continuous

1A version of this paper was presented at the conference DATASTAT ’99 in Rusava – Jestřáb́ı
(Czech Republic), August 30 – September 3, 1999.
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type (if
∫ |φ(t)| dt < ∞) then the density function is given by

f(x) =
1
2π

∫ ∞

0

(
eitxφ(−t)− e−itxφ(t)

)
dt

=
1
π

∫ ∞

0

Re
(
e−itxφ(t)

)
dt. (2)

The limit properties of the integrand in (1) are given by the following Lemma 1:

Lemma 1. Let F (x) be a distribution function of a random variable X with ex-
pectation E(X) and its characteristic function φ(t). Then

lim
t→0

Im
(

e−itxφ(t)
t

)
= E(X)− x, and lim

t→∞
Im

(
e−itxφ(t)

t

)
= 0. (3)

P r o o f . We will show the first equality:

lim
t→0

Im
(

e−itxφ(t)
t

)
= lim

t→0

1
i

(
e−itxφ(t)− eitxφ(−t)

2t

)

=
1
i

(
e−itxφ(t)

)′∣∣∣
t=0

=
1
i

(
(−ix) e−itxφ(t) + e−itxφ′(t)

)∣∣
t=0

=
1
i

(φ′(t)|t=0 − ix) = E(X)− x. (4)

The second equality is direct consequence of the fact that the function e−itxφ(t) is
bounded in modulus. 2

Consider now X =
∑n

k=1 λkXk, a linear combination of independent random
variables, and let φXk

(t) denotes the characteristic function of Xk, k = 1, . . . , n.
The characteristic function of X is

φX(t) = φX1(λ1t) · · ·φXn(λnt), (5)

and, the distribution function FX(x) = Pr{X ≤ x} is given by (1) with φ(t) = φX(t).
Notice that

lim
t→0

Im
(

e−itxφX(t)
t

)
=

n∑

k=1

λkE(Xk)− x, (6)

lim
t→∞

Im
(

e−itxφX(t)
t

)
= 0. (7)

Formula (1) is readily applicable to numerical approximation of the distribution
function FX(x) using a finite range of integration 0 ≤ t ≤ T , T < ∞. In general
a complex-valued function should be numerically evaluated. The degree of approxi-
mation depends on the error of truncation and the error of integration method.
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An interesting application of the above inversion formula was given by Imhof in
[5] who derived the formula to calculate the distribution of a linear combination
of independent non-central chi-squared random variables X =

∑n
k=1 λkXk, where

Xk ∼ χ2
νk

(δ2
k), with νk degrees of freedom and the non-centrality parameter δ2

k.
Imhof’s algorithm does not require evaluation of the complex-valued function. Ob-
serving that the characteristic function of X is

φX(t) =
n∏

k=1

φXk
(λkt) =

n∏

k=1

(1− 2iλkt)−
1
2 νk exp

{
iδ2

kλkt

1− 2iλkt

}
, (8)

Imhof applied (1) and derived the distribution function of X as

FX(x) = Pr{X ≤ x} =
1
2
− 1

π

∫ ∞

0

sin θ(u)
u%(u)

du, (9)

where

θ(u) =
1
2

n∑

k=1

(
νk arctan(λku) +

δ2
kλku

1 + λ2
ku2

)
− 1

2
xu,

%(u) =
n∏

k=1

(1 + λ2u2)
1
4 νk exp

{
(δkλku)2

2(1 + λ2
ku2)

}
, (10)

are real-valued functions.
In [12] the inversion formula (1) was used for exact computation of the density

and of the quantiles of linear combinations of t and F random variables.

2. INVERTED GAMMA DISTRIBUTION

Let Z ∼ G(α, β) be a gamma random variable with the shape parameter α > 0
and the scale parameter β > 0. Random variable Y = Z−1, known as an inverted
gamma variable, Y ∼ IG(α, β), has its probability density function fY (y) defined
for y ≥ 0 by

fY (y) =
1

βαΓ(α)

(
1
y

)α+1

exp
{
− 1

βy

}
. (11)

Theorem 2. Let Y ∼ IG(α, β) be an inverted gamma random variable with its
probability density function fY (y) given by (11). Then the characteristic function
of Y is

φY (t) = E
(
eitY

)
=

2(−itβ)
1
2 α

Kα

{
2
β (−itβ)

1
2

}

βαΓ(α)
, (12)

where Kα(z) denotes the modified Bessel function of second kind.

P r o o f . Using the result of Prudnikov et al, see the formula 2.3.16.1 in [7]:
∫ ∞

0

yν−1e−py− q
y dy = 2

(
q

p

) ν
2

Kν

{
2(pq)

1
2

}
, (13)
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where ν, p, q are complex numbers with Re(p) > 0, and Re(q) > 0, and Kν(z)
denotes the modified Bessel function of second kind (see [1], p. 374), we directly get
the Laplace transform of Y :

E
(
e−tY

)
=

2(tβ)
1
2 α

Kα

{
2
β (tβ)

1
2

}

βαΓ(α)
. (14)

Substitute t by ε−it, ε being a small positive real number. Then, for ε approaching 0,
we get that the characteristic function φY (t) of Y is given by (12). 2

Lemma 2. Let Y ∼ IG(α, β) be an inverted gamma random variable with char-
acteristic function φY (t) given by (12). Consider Z = λY , where λ be a real num-
ber. Let κZ(t) denote the cumulant generating function of Z, κZ(t) = log φZ(t) =
log φY (λt). Then the first and second derivative of κZ(t) are

κ′Z(t) =
α

t
+

iλ

(−itλβ)
1
2
R(t), (15)

κ′′Z(t) = − α

t2
+

iλ

tβ

(
R2(t)− (1 + α)β

(−itλβ)
1
2
R(t)− 1

)
, (16)

where

R(t) =
Kα+1

{
2
β (−itλβ)

1
2

}

Kα

{
2
β (−itλβ)

1
2

} . (17)

P r o o f . The result is easy to obtain by using the following property:

[Kα(z)]′ = −Kα+1(z) +
α

z
Kα(z). (18)

See [1], p. 376, equation 9.6.26. 2

Consequently, the expectation and variance of Z are given by

E(Z) = lim
t→0

κ′Z(t)
i

=
λ

(α− 1)β
, for α > 1, (19)

Var(Z) = lim
t→0

κ′′Z(t)
i2

=
λ2

(α− 1)2β2(α− 2)
, for α > 2. (20)

The following Lemma 3 gives simple recursive relation for evaluation of the char-
acteristic function of the inverted gamma random variable IG(α, β) with α = n+ 1

2 ,
where n = 0, 1, 2, . . . . This could avoid calling of the modified Bessel function Kα{z}
during the numerical calculation.
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Lemma 3. Let Yn ∼ IG(αn, β) be an inverted gamma random variable with
αn = n+ 1

2 and β > 0 for n = 0, 1, 2, . . . . Let w = 2
β (−2it)

1
2 . Then the characteristic

function φn(t) of Yn is given as

φ0(t) = exp{−w}
φ1(t) = exp{−w}(1 + w)

φ2(t) = exp{−w}
(

1 + w +
1
3
w2

)
. (21)

For n ≥ 2, φn+1(t) is given by the recursive relation:

φn+1(t) =
w2

(2n + 1)(2n− 1)
φn−1(t) + φn(t). (22)

P r o o f . Equation 10.2.17, [1] p. 444, states that

K 1
2
(z) =

( π

2z

) 1
2

exp−z,

K 3
2
(z) =

( π

2z

) 1
2

exp−z
(
1 + z−1

)
,

K 5
2
(z) =

( π

2z

) 1
2

exp−z
(
1 + 3z−1 + 3z−2

)
. (23)

Define

fn(z) = (−1)n+1
( π

2z

) 1
2

Kn+ 1
2
(z), (24)

then, according to the equation 10.2.18 in [1]

fn−1(z)− fn+1(z) = (2n + 1)z−1fn(z). (25)

From (12) we observe that for n ≥ 1

Kn+ 1
2
(w) = [2(n− 1) + 1]!!

( π

2w

) 1
2

w−nφn(t), (26)

where w = 2
β (−2it)

1
2 , and we get the required result. 2

Consider now a sample of independent variables Y(α1,β1), . . . , Y(αn,βn), where
Y(αk,βk) ∼ IG(αk, βk), with αk > 0 and βk > 0, k = 1, . . . , n, and define X =∑n

k=1 λkY(αk,βk) a linear combination of n inverted gamma variables, with real co-
efficients λk. Let φk(t) = E(exp{itY(αk,βk)}) denote a characteristic function of the
distribution of Y(αk,βk).

The characteristic function φX(t) of X is given by (5) and the formula for eval-
uation of FX(x) is given by (1), using φ(t) = φX(t). From (6) and (19) we get also

lim
t→0

Im
(

e−itxφX(t)
t

)
=

n∑

k=1

λk

(αk − 1)βk
− x, (27)
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and from (7) we get

lim
t→∞

Im
(

e−itxφX(t)
t

)
= 0. (28)

If αk ∈ (0, 1〉 for some subset of indices k, k = 1, . . . , n, the limit (27) does not exist
and the result becomes more complicated as the limit of the integrand could be +∞,
−∞, or a finite number (depending on the coefficients αk, βk, and λk). This suggest
that the numerical integration in the range close to zero should be carried out very
carefully if αk ∈ (0, 1〉 for some k.

3. SOME NUMERICAL RESULTS

Davies in [3] gave a general method for selecting the sampling interval which ensures
the maximum allowable error ε. He suggested approximation of the integral (1)
using the trapezoidal rule

Pr{X ≤ x} ≈ 1
2
− 1

π

K∑

k=0

Im
(

exp{−i(k + 1
2 )∆x}φX{(k + 1

2 )∆}
(k + 1

2 )

)
, (29)

where ∆ > 0 is chosen so that

max
[
Pr

{
X ≤ x− 2π

∆

}
, Pr

{
X ≤ x +

2π

∆

}]
<

ε

2
, (30)

and K is chosen so that the truncation error is also less then ε
2 , i. e.

1
π

∞∑

k=K+1

Im
(

exp{−i(k + 1
2 )∆x}φX{(k + 1

2 )∆}
(k + 1

2 )

)
<

ε

2
. (31)

For more details on finding the bounds ∆ and K see [3]. For other details on
obtaining distribution functions by numerical inversion of characteristic functions
see [9].

Table 1 presents some results of numerical evaluation of the distribution function
of different linear combinations of independent inverted gamma random variables. In
fact, the table presents the probabilities, rounded to the fifth decimal place, that the
random variable X exceeds given number x. The algorithm is a adirect application
of (1), (27), and (28).

The integral was computed on the finite interval 〈0, Tub〉 if the integrand has
a finite limit as t approaches 0, or on the interval 〈10−12, Tub〉 if such limit does
not exist. The upper bound Tub was chosen such that the integrand function is in
absolute value less then 10−7 for t > Tub.

The algorithm was realized in MATLAB environment where the package for nu-
merical evaluation of Bessel functions of a complex argument and nonnegative order
is implemented, see [2].
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Table 1. Probability that X, the linear combination of independent inverted
gamma random variables, exceeds x. Notice that Pr{X > x} = 1−Pr{X ≤ x}.
limt→0 stands for a limit of the integrand as t approaches zero. Tub stands for
the upper bound of integration.

X =
P

λkY(αk,βk) x limt→0 Tub Pr{X > x}
X1 = Y(0.5,2) 1 +∞ 104.74 0.68269

X2 = Y(0.5,2) + Y(0.5,2) 1 +∞ 36.97 0.95450

X3 = Y(1.5,2) + Y(2.5,2) 1 0.3334 73.91 0.34260

X4 = 3Y(1.5,2) − 5Y(2.5,2) 0 1.3334 32.75 0.53515

X5 = 5Y(2.5,2) + Y(1,2) − Y(1,2) 1 0.6667 26.13 0.57869

X6 = 2Y(1,1.5) + Y(1,2.5) 2 +∞ 43.98 0.69683

X7 = 332.313Y(4.5,2) + 733.949Y(3,2) 100 130.9605 0.48 0.93429

X8 = 1265.96Y(1,2) + 668.634Y(9,2) 500 +∞ 0.29 0.74890

X9 = X7 −X8 0 −∞ 0.17 0.05341

X10 = X1 + · · ·+ X9 0 +∞ 0.05 0.67722

4. APPLICATIONS

In this section we briefly mention two applications on testing hypotheses and interval
estimation based on the generalized p-values which lead to the problem of evaluation
of the distribution function of a linear combination of independent inverted chi-
squared random variables. As χ2

ν is a special case of gamma random variable with
α = ν

2 and β = 2 the above mentioned method of evaluation could be used.

4.1. Definition of generalized p-values

The concept of generalized p-values has been introduced in [8, 10]. Several applica-
tions for testing variance components in mixed linear models were given in [13]. For
more details see also [6] and [11].

Consider an observable random vector X such that its distribution depends on
the vector parameter ξ = (θ, ϑ), where θ is the scalar parameter of interest and ϑ is
a vector of the other nuisance parameters. Further, consider the problem of testing
one-sided hypothesis

H0 : θ ≤ θ0, vs. H1 : θ > θ0, (32)

where θ0 is a prespecified value of θ. Let x be an observed value of the random vari-
able X. Then the observed significance level for hypothesis testing is defined on the
basis of a data-based generalized extreme region, a subset of the sample space, with
x on its boundary. In order to define such an extreme region a stochastic ordering
of the sample space according to the possible values of θ is required. This could
be accomplished by means of generalized test variable, say T (X,x, ξ). T (X, x, ξ)
denotes a random variable which functionally depends on the random variable X
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and also on the (nonstochastic) observed value x of X and the vector of parameters
ξ = (θ, ϑ).

A random variable T (X,x, ξ) is said to be a generalized test variable if it has the
following properties:

1. tobs = T (x, x, ξ) does not depend on unknown parameters.

2. The probability distribution of T (X, x, ξ) is free of nuisance vector parameter
ϑ.

3. For fixed x and ϑ, and for any given t, Pr{T (X,x, ξ) ≤ t} is a monotonic
function of θ.

If Pr{T (X,x, ξ) > t} = 1−Pr{T (X,x, ξ) ≤ t} is a nondecreasing function of θ,
then T (X, x, ξ) is said to be stochastically increasing in θ. If Pr{T (X, x, ξ) > t}
is a nonincreasing function of θ, then T (X,x, ξ) is said to be stochastically
decreasing in θ.

If T (X, x, ξ) is a stochastically increasing test variable then the subset of the
sample space Cx(ξ) = {y : T (y, x, ξ) > T (x, x, ξ)} is said to be a generalized
extreme region for testing H0 against H1 and p = supθ≤θ0

Pr{X ∈ Cx(ξ)|θ} =
supθ≤θ0

Pr{T (X, x, ξ) > T (x, x, ξ)|θ} is said to be its generalized p-value for testing
H0. Notice that if T (X, x, ξ) is stochastically increasing then p = Pr{T (X, x, ξ) >
T (x, x, ξ)|θ = θ0} and this p-value is computable, since it is free of the nuisance
parameter ϑ. If T (X, x, ξ) is stochastically decreasing then the p-value is p =
Pr{T (X,x, ξ) ≤ T (x, x, ξ)|θ = θ0}.

If the null hypothesis is right-sided, then the generalized p-value for testing H0 is
p = Pr{T (X,x, ξ) ≤ T (x, x, ξ)|θ = θ0}, if T (X, x, ξ) is stochastically increasing, or
p = Pr{T (X,x, ξ) > T (x, x, ξ)|θ = θ0}, if T (X, x, ξ) is stochastically decreasing.

4.2. The Behrens–Fisher problem

Let X = (X1, . . . , Xm) ∼ N(µ1, σ
2
1) and Y = (Y1, . . . , Yn) ∼ N(µ2, σ

2
2) be two

independent random samples from two normal populations characterized by pa-
rameters µ1, µ2, σ2

1 , and σ2
2 . Let X̄ = 1

m

∑
Xk, Ȳ = 1

n

∑
Yk denote the sample

means and S2
1 = 1

m

∑
(Xk − X̄)2, S2

2 = 1
n

∑
(Yk − Ȳ )2 denote the sample variances.

(X̄, Ȳ , S2
1 , S2

2) consist a sufficient statistic for the parameters of the distribution.
Notice that

X̄ ∼ N

(
µ1,

σ2
1

m

)
and Ȳ ∼ N

(
µ2,

σ2
2

n

)
, (33)

m

σ2
1

S2
1 ∼ χ2

m−1 and
n

σ2
2

S2
2 ∼ χ2

n−1, (34)

are mutually independent random variables.
Let θ = µ1 − µ2 and ϑ = (σ2

1 , σ2
2). The hypothesis of interest is

H0 : θ = θ0 vs. H1 : θ 6= θ0. (35)
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In this testing problem the parameter of interest is θ and ϑ is the vector of nuisance
parameters.

Let x = (x1, . . . , xm) be observed X and y = (y1, . . . , yn) be observed Y . For
testing H0 and interval estimation of θ we shall define a generalized test variable

T (X, Y, x, y, θ, ϑ) =
(X̄ − Ȳ − θ)2(

σ2
1

m + σ2
2

n

)
(

σ2
1

m

s2
1

S2
1

+
σ2

2

n

s2
2

S2
2

)
. (36)

Notice that for any given θ = θ0, tobs = (x̄− ȳ−θ0)2 does not depend on unknown
parameters and under H0 denote T0 = T (X, Y, x, y, θ0, ϑ). Then the distribution of
T0 is

T0 ∼ χ2
1

(
s2
1

χ2
m−1

+
s2
2

χ2
n−1

)
, (37)

where χ2
1, χ2

m−1 and χ2
n−1 symbolically denote independent random variables with

chi-squared distribution with 1, m − 1 and n − 1 degrees of freedom. For fixed x,
y, and ϑ = (σ2

1 , σ2
2), T is stochastically decreasing for θ > x̄ − ȳ and stochastically

increasing for θ < x̄− ȳ.
For any θ the generalized p-value is defined as p(θ) = Pr {T > tobs|θ}. The

significance test of the hypothesis H0 is based on p(θ0):

p(θ0) = Pr
{

s2
1

χ2
m−1

+
s2
2

χ2
n−1

− (x̄− ȳ − θ0)2

χ2
1

> 0
}

. (38)

We reject H0 if the p-value is small (smaller than chosen critical p-value, say pcrit =
0.05).

The 100(1− pcrit)% generalized p-value interval estimator of θ is

(x̄− ȳ)± δcrit (39)

where the δcrit is given by the following identity:

pcrit = Pr
{

s2
1

χ2
m−1

+
s2
2

χ2
n−1

− δ2
crit

χ2
1

> 0
}

. (40)

Example. We have generated two random samples Xi ∼ N(3, 4), i = 1, . . . , 7, and
Yj ∼ N(5, 9), j = 1, . . . , 10, and observed x̄ = 2.871, ȳ = 5.8685, s2

1 = 4.1014, and
s2
2 = 7.5135.

Then according to (38) the p-value for significance testing of the hypothesis H0 :
θ = 0 against H1 : θ 6= 0 is

p = Pr
{

4.1014
χ2

6

+
7.5135

χ2
9

− (−2.9975)2

χ2
1

> 0
}

= 0.0424, (41)

so, for pcrit = 0.05, we reject the null hypothesis that θ = 0. According to
(39) and (40) the generalized p-value 95 % interval estimate of θ = µ1 − µ2 is
(−5.8732;−0.1218).
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4.3. Variance components in balanced mixed linear model

Zhou and Mathew, [13], considered a problem that deals with hypothesis testing
for variance components in balanced mixed linear model where exact F -tests do
not exist. Satterthwaite’s approximation of the distribution of the test statistic is a
standard solution to the problem. The other possibility is the test using generalized
p-values.

Let σ2
l , l = 1, . . . , r denote the variance components in balanced mixed model

that has r random effects. Denote θ = σ2
1 . The generalized testing problem is

H0 : θ ≤ θ0 vs. H1 : θ > θ0, (42)

where θ0 is a given constant. Let SSk, k = 1, . . . , m, denote the required analysis of
variance sum of squares such that

SS1 ∼ (EMS1)χ2
ν1

, SSk ∼ (EMSk)χ2
νk

, k = 2, . . . ,m, (43)

where EMS1 =
(
a1θ +

∑r
l=2 alσ

2
l

)
and EMSk =

(∑r
l=2 bklσ

2
l

)
, al and bkl are known

nonnegative scalars, and χ2
νk

, k = 1, . . . , m are independent central χ2 random
variables with νk, k = 1, . . . , m, degrees of freedom. We shall suppose that the
variables SSk, k = 2, . . . , m, are sorted and denoted such that the unbiased analysis
of variance estimator of θ could be expressed as

θ̂ =
1
a1


SS1

ν1
+

q∑

k=2

SSk

νk
−

m∑

k=q+1

SSk

νk


 . (44)

Let ssk be the observed values of SSk. Denote SS = (SS1, . . . SSm), ss = (ss1, . . . ssm),
and ϑ = (σ2

2 , . . . , σ2
r). Then, the random variable

T (SS, ss, θ, ϑ) =
a1θ +

∑m
k=q+1(EMSk) ssk

SSk∑q
k=1(EMSk) ssk

SSk

(45)

is the generalized test variable for testing H0 against H1.
Notice, that tobs = 1, so it does not depend on the unknown parameters, and

that the distribution of T does not depend on the nuisance parameters σ2
2 , . . . , σ2

r ,
as

T (SS, ss, θ, ϑ) ∼
a1θ +

∑m
k=q+1

ssk

χ2
νk∑q

k=1
ssk

χ2
νk

. (46)

Finally, since θ appears with a positive coefficient in the numerator of T , it is clear
that T satisfies the condition 3, and T is stochastically increasing in θ.

For any θ the test variable T is used to derive the generalized p-value

p(θ) = Pr {T > 1|θ} = Pr





1
a1




q∑

k=1

ssk

χ2
νk

−
m∑

k=q+1

ssk

χ2
νk


 < θ



 (47)



Computing the Distribution of a Linear Combination of Inverted Gamma Variables 89

Table 2. A study of the efficiency of workers in assembly lines in

several plants. The sum of squares, degrees of freedom, and the ex-

pected values of the mean sum of squares obtained by applying Khuri’s

transformation.

Sum of squares DF Expected mean squares
SSα = 1265.96 2 12σ2

α + 3σ2
β + 4σ2

γ + σ2
βγ + σ2

SSβ = 332.313 9 3σ2
β + σ2

βγ + σ2

SSγ = 733.949 6 4σ2
γ + σ2

βγ + σ2

SSβγ = 668.634 18 σ2
βγ + σ2

SSε = 246.245 47 σ2

For significance testing of H0 we use p(θ0). We reject H0 if the p-value is small
(smaller than chosen critical p-value, say pcrit = 0.05).

The 100(1− pcrit)% generalized p-value interval estimator of θ is

(θL; θU ) ∩ (0;∞), (48)

where the lower and upper bound are given by the following identities:

p1 = Pr





1
a1




q∑

k=1

ssk

χ2
νk

−
m∑

k=q+1

ssk

χ2
νk


 < θU





1− p2 = Pr





1
a1




q∑

k=1

ssk

χ2
νk

−
m∑

k=q+1

ssk

χ2
νk


 < θL



 , (49)

for given p1 and p2, such that p1 + p2 = pcrit, pcrit ∈ (0; 0.5).

Example. A problem that deals with a study of the efficiency of workers in assem-
bly lines in several plants was considered in [13]. The original data were unbalanced,
with unequal cell frequencies in the last stage, however, by using the transformation
given by Khuri, see [6], the exact F -test can be constructed for testing the signifi-
cance of all the variance components except σ2

α. Table 2 gives the sum of squares
and the expected values of the mean sum of squares obtained by applying Khuri’s
transformation.

The generalized p-value for testing H0 : σ2
α =0 against the alternative H1 : σ2

α >0
is according to (47) equal to p = Pr{−X9 < 0} = 0.0534, X9 is given in Table 1.
Thus, comparing with pcrit = 0.05, the data do not provide strong evidence against
H0. Choosing p1 = p2 = 0.025, and according to (48) and (49), the generalized
p-value 95 % interval estimate of σ2

α is (0; 2067.8).
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