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A NEW METHODOLOGY FOR THE DESIGN
OF ADAPTIVE CONTROLLERS USING
“STATE–STRICT PASSIVITY”: APPLICATION
TO NEURAL NETWORK CONTROLLERS

Sesh Commuri and Frank L. Lewis1

The notion of passivity has played an important role in extending stability results to
systems based on the input-output properties of the system. This approach was also util-
ized to study the stability properties of interconnected passive systems. In the control of
unknown nonlinear dynamical systems, however, passivity properties were studied only as
an off-shoot of the resulting controller. In this paper, it is shown that a stronger form
of passivity, namely state-strict passivity, is required to prove guaranteed tracking perfor-
mance and internal stability for a class of nonlinear systems without standard observability
(i. e. “persistence of excitation”) conditions. It is shown that this property can be made
a design objective in the design of neural network controllers for the control of unknown
nonlinear systems that satisfy certain assumptions on the system structure. This yields
“robust” neural network controllers that do not require persistency of excitation or the
often tedious computations of the regression vector.

1. INTRODUCTION

Real-time control of nonlinear plants with unknown dynamics remains a very chal-
lenging area of research. Traditionally, the plant dynamics were first modeled and
verified through off-line experimentation. The control was then designed using linear
system design techniques or geometric techniques with linear analogues. Thus, feed-
back linearization is a first step in controls design for nonlinear systems. The dis-
advantage, however, is that the method is suitable only for systems described by
an accurate model. The results for systems with unknown dynamics were at first
limited by-and-large to ad hoc techniques and simulations involving assumptions
such as certainty equivalence. These approaches are limited by the complexity of
the model and cannot accommodate the variation of system parameters. This has
resulted in the development of controllers that can learn the process dynamics, as
well as, adapt to parametric changes in the system. Adaptive feedback linearization
plays a very important role in the control of unknown nonlinear systems that are
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feedback linearizable [1, 9]. Since the plant inputs and outputs are used to tune the
adaptation parameters, a lot of research was directed towards the study of the con-
vergence of adaptive algorithms based on the input-output properties of the system
[1, 8, 9, 17]. In this context, Passivity properties of the resulting controller were used
to show the convergence of the adaptation algorithm [7, 11, 12]. In this paper, it is
shown that if the system and the adaptive network satisfy a stronger condition than
passivity, namely state-strict passivity, then this guarantees the internal stability
of the overall system. This is the first work to our knowledge that brings out this
important relationship between the input-out properties and the internal stability of
the interconnected system. This result is shown to be of fundamental importance in
the development of a new methodology for designing adaptive feedback-linearizing
controllers for a class of nonlinear systems. In fact, it allows the design of controllers
that do not require persistence of excitation (e. g. “observability”) conditions.

The remainder of the paper is organized as follows. A brief background on non-
linear dynamical systems is given in Section 2, In Section 3, results from literature
on passivity are presented and sufficient conditions derived to prove the stability
of the closed-loop system. In Section 4, the formulation of Section 2 is shown to
satisfy the “state-strict passivity” property, and examples presented on designing
adaptive controllers and controllers based on neural networks. The performance of
these controllers is demonstrated through simulation examples in Section 5 and the
results are summarized in Section 6.

2. BACKGROUND ON NONLINEAR DYNAMICAL SYSTEMS

Consider the multi-input multi-output system whose state-space representation is
given in the Brunovský canonical form as

ẋ1 = x2

ẋ2 = x3
...
ẋn1 = f1(x) + u1 + d1

ẋn1+1 = xn1+2

ẋn1+2 = xn1+3
...
ẋn1+n2 = f2(x) + u2 + d2

ẋn1+n2+···+nm−1+1 = xn1+n2+···+nm−1+2

ẋn1+n2+···+nm−1+2 = xn1+n2+···+nm−1+3
...
ẋn = fm(x) + um + dm

(1)

with the output equation given as

y =




x1

xn1+1
...

xn1+n2+···+nm−1+1


 . (2)
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It is assumed that d = [ d1, d2, . . . , dm ]T is an unknown disturbance with known up-
per bound so that ‖d‖ < bd, x = [ x1, x2, . . . , xn ]T ∈ Rn, and f = [ f1, f2, . . . , fm ]T :
Rn → Rm is a smooth vector function.

Definition 1. The solution of the system (1) and (2) is said to be uniformly
ultimately bounded (UUB) if for any compact subset U ⊂ Rn, there exists a domain
of attraction U0 ⊂ U , a constant ε > 0 and a number T (ε, x0) such that for all
x(t0) ∈ U0, x(t) ∈ U ∀ t, and ‖x(t)‖ < ε for all t ≥ t1 + T .

2.1. Output tracking problem

Given the system (1) and (2), it is required to manufacture a bounded control input
u(t) = [ u1, u2, . . . , um ]T such that the output y(t) of the system tracks a specified
desired output yd(t) = [ yd1(t), yd2(t), . . . , ydm

(t) ]T while ensuring that the states
x(t) are bounded. It is assumed that the desired output is smooth so that derivatives
of all orders exist and the desired output and all its derivatives are bounded by a
known constant γ, that is ∥∥∥∥∥∥∥∥∥




yd

ẏd...
(n−1)
yd




∥∥∥∥∥∥∥∥∥
≤ γ, (3)

where
(n−1)
yd denotes the (n− 1)-st derivative of yd.

Define the tracking error as e = y − yd, that is

e1 = x1 − yd1

e2 = xn1+1 − yd2...
em = xn1+n2+···+nm−1+1 − ydm .

(4)

Then using (1), the error dynamics in (4) can be expressed as

(n1)
e1 = f1(x) + d1 + u1−

(n1)
yd1

(n2)
e2 = f2(x) + d2 + u2−

(n2)
yd2...

(nm)
em = fm(x) + dm + um−

(nm)
ydm .

(5)

Define the filtered tracking error r(t) with components

ri =
(ni−1)

ci +λi,1
(ni−2)

ei + · · ·+ λi,ni−1 ei, 1 ≤ i ≤ m. (6)

Selecting now the control inputs as

ui = −f̂i(x)−Kνiri −
[
λi,ni−1ei + λi,ni−2 ėi + · · ·+ λi,1

(ni−1)
ei

]
+

(ni)
ydi ,

for 1 ≤ i ≤ m (7)
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the filtered error system can be expressed in the form

ṙi = −Kνi
ri + f̃i(x) + di, 1 ≤ i ≤ m. (8)

In (7), f̂i(x) denotes an estimate of fi(x), to be subsequently provided by a
Adaptive network. The functional estimation error is f̃i(x) = fi(x) − f̂i(x). The
coefficients λi,j in (7) are selected such that

λi,ni−1ei + λi,ni−2ėi + · · ·+ λi,1
(ni−1)

ei = 0 (9)

is Hurwitz, that is all the roots of (9) have negative real parts. Then, the controller
designed in (6), (7) ensures that the filtered tracking error system (8) is stable. This
then implies that the tracking error e(t) remains bounded for all time.

In the implementation of the controller (6), (7) it is assumed that an estimate
f̂(·) of the function f(·) is available. This estimate is manufactured by an Adaptive
Network that can approximate the nonlinear function to any desired degree of ac-
curacy. However, for such a network to ensure small tracking error in closed-loop
control, it is necessary to learn the nonlinear function on-line. The proposed control
scheme (7) is shown in Figure 1. Note that the structure has a nonlinear adaptive
inner loop plus a linear outer tracking loop.

Fig. 1. Control of an unknown nonlinear system using adaptive network.

3. PASSIVITY PROPERTIES AND IMPLICATIONS FOR STABILITY

There are a number of approaches determining the stability of the adaptive control
scheme (7), (8). A widely used approach would involve breaking down the system
into a number of subsystems and finding a Lyapunov function for each. The gains in
(7) and the adaptation scheme can then be selected to ensure stability. This approach
has been utilized to control unknown systems of the form (1) and (2) using adaptive,
neural, and fuzzy logic controllers. The procedure, however, is cumbersome and
depends on finding a suitable Laypunov function that results in tractable adaptation
laws. While these results enable exact calculation of the ultimate bounds on the
states of the system, it is illuminating to study the passivity properties of the closed-
loop system and its relation to the overall internal stability. Given the controller
structure (7), it is natural to view the closed-loop system as an interconnection of
the filtered tracking error system and the Adaptive network as shown in Figure 2.
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Fig. 2. Interconnected feedback structure of the adaptive controller.

In the following section, we show the relationship between the passivity properties
of the interconnected system and the overall internal stability, using this to define
a suitable adaptive network. To our knowledge, this is the first time that controller
design has been attempted using passivity properties exclusively.

3.1. Background on passivity

The relationship between the input-output properties of a system and its stability
has been extensively studied using the theory of dissipative systems. Here a few
results from literature [3, 4, 5, 6, 13, 14] are first presented, and the results extended
to derive conditions for nonlinear systems subjected to bounded disturbances. The
relevance is that the Adaptive network used for control purposes herein will be
constructed to have an important dissipativity property that makes them robust to
disturbances and unmodeled dynamics.

Assumption 1. [5, 13] Let the system in (1), (2) satisfy

(i) f(0) = y(0) = 0.

(ii) The system is completely reachable, that is, for a given xf and tf there exists
a t0 ≤ tf and a locally square integrable u(t) such that the state can be driven
from x(t0) = 0 to x(tf ) = xf .

(iii) σ(t) is an energy supply rate associated with this system such that

σ(t) = yT Qy + 2yT Su + uT Ru (10)

where Q, R are constant matrices with Q and R symmetric.

Definition 2. [5, 13] The system (1), (2) with supply rate (10) is said to be
dissipative if for all locally square integrable inputs u(t) and for all tf > t0

∫ tf

t0

σ(t) dt ≥ 0 (11)

with x(t0) = 0 and σ(t) evaluated along the trajectory of (1), (2).
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Lemma 1. [5, 13] The system (1), (2) is dissipative with respect to the supply
function (10) if and only if there exist real function Ψ(·), `(·) and W (·) satisfying
Ψ(x) > 0 ∀x 6= 0, Ψ(0) = 0, and

Ψ̇(x) = σ(t)− [`(x) + W (x)u]T [`(x) + W (x)u] (12)

along the trajectories of (1), (2).

The function Ψ(·) is known as the storage function for the system (1), (2).

3.2. Stability properties of interconnected systems based on passivity

While dissipativity property is a convenient tool for generating Lyapunov functions
for autonomous systems, it is not possible to study the internal stability of feedback
systems subject to exogenous inputs without stronger conditions on the system like
complete state observability. It has been observed only recently [10] that using a
stronger version of passivity namely, state-strict passivity can overcome this limita-
tion. In this subsection, this novel concept is first defined and its use in analyzing
internal stability of interconnected systems demonstrated.

Definition 3. The system (1), (2) is passive if it is dissipative with respect to the
supply rate (10) with R = 0 and Q = 0. A passive system is state strict passive if it
is dissipative with respect to the supply function

σ(t) = yt u− εxT x, ε > 0 (13)

where x is the state of the system. From Lemma 1, it is clear that any system
verifying (13) with σ(t) = y′u is passive. Under these conditions, that is σ(t) = y′u,
(13) is said to be in power form.

Theorem 2. Consider the system of the form shown in Figure 3. Suppose the
subsystems H1 and H2 are state-strict passive with respect to the supply rates

σ1(t) = yT
1 u1 − ε1‖x1‖2

σ2(t) = yT
2 u2 − ε2‖x2‖2

and
‖y1‖ ≤ α‖x1‖, α > 0. (14)

Then the feedback system is UUB for all bounded inputs ξ(t).

Fig. 3. Interconnection of two subsystems in feedback configuration.
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Remark. No observability or persistence of excitation conditions are required on
subsystem H2.

P r o o f . Since H1 and H2 are state-strict passive, there exist storage functions
Ψ1(x1) and Ψ2(x2) satisfying Lemma 1. Taking the Lyapunov function

Ψ(x1, x2) = Ψ1(x1) + Ψ2(x2),

we have

Ψ̇(x1, x2) ≤ σ1(t) + σ2(t) ≤ y′1u1 − ε1‖x1‖2 + y′2u2 − ε2‖x2‖2.
Substituting (14) and using (12), (13)

Ψ̇(x1, x2) ≤ α‖ξ‖ ‖x1‖ − ε1‖x1‖2 − ε2‖x2‖2.
Thus, for all bounded inputs the states x1 and x2 are bounded for all time or the
states of the system are UUB. 2

4. DESIGN OF ADAPTIVE CONTROLLERS

In Section 2 it was shown that the proposed controller (7) could be interpreted as
having two parts – a nonlinear adaptive inner loop and a linear outer tracking loop.
The results of Section 3 suggest that the stability of the system (1), (2) under the
controller (7) can be concluded if the system is state-strict passive and the adaptive
network is designed to be state-strict passive. The design of the controller is therefore
carried out in two stages. First the dynamics of the filtered error system (8) are
shown to be state-strict passive and satisfy condition (14). Then, the adaptation
laws for the adaptive network are chosen to make it state-strict passive. The stability
of the interconnected system can then be concluded using Theorem 2.

Define ξ(t) = f̂(t) + d. Then the filtered error system (8) can be expressed in
vector notations as

ṙ(t) = −Kν r(t) + ξ(t). (15)

Lemma 3. The dynamics (15) from ξ(t) to r(t) are a state-strict passive system.

P r o o f . Consider the Lyapunov function

V = 1
2 rT r.

Differentiating both sides, and substituting (15) results in

V̇ = −rT Kν r + rT ξ. (16)

(16) is in power-form (13) with the supply function rT ξ − rT Kν r. From Lemma 1
and Definition 3, it follows that the dynamics (15) from ξ(t) to r(t) are a state-strict
passive system. 2

In the implementation of the controller (7), the estimate of the nonlinearity f̂(·)
was assumed to be manufactured by an adaptive network to a specified degree of
accuracy. Several techniques are now given for selecting the state-strict passive
adaptive network.
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4.1. Functional estimation using CMAC neural networks

Consider a CMAC Neural Network [2] with input r(t) and output f̂(·). The output
of the neural network can be expressed as

f̂(x) = ŵT ϕ(x) (17)

where ϕ(·) is a vector of activation functions and ŵ is a matrix of the weights
associated with each node. The activation functions ϕ(·) form a basis set for a class
of functions. That is, there exists a set of ideal weights w such that any function
belonging to this class can be expressed as wT ϕ(·) + ε, where ε is the function
reconstruction error. The error in the function estimate is then given by

f̃(x) = w̃ ϕ(x) + ε, (18)

where w̃ = w − ŵ [2].

Let the weight update for the Neural Network be given by

˙̂w = −κ‖r‖F ŵ + F r ϕT (x) (19)

where F is a symmetric positive definite matrix.

Lemma 4. The weight update law (19) guarantees the neural network to be state-
strict passive from input r(t) to w̃T ϕ(x).

P r o o f . Take the nonnegative function

V = tr(w̃T F−1 w̃).

Differentiating both sides, and substituting (19)

V̇ = tr(w̃T ϕ(x) rT ) + tr(κ w̃T ‖r‖ ŵ)
= rT (w̃T ϕ(x)) + κ‖r‖ tr(w̃T ŵ)
≤ rT (w̃T ϕ(x))− κ‖r‖ (‖w̃‖2 − wmax‖w̃‖

)
,

where max(w) = wmax.
Since the derivative of V is in the power form, from Lemma 1 and Definition 3 it

follows that the neural network is state-strict passive from input r(t) to w̃T ϕ(x).2

4.2. Functional estimation using multi–layer neural networks

The output of a multi-layer neural network can be expressed in the form

yi =
N2∑

j=1

[
wij σj

(
N1∑

k=1

νik xk + θνk

)
+ θwj

]
; i = 1, . . . , N3 (20)

with σj(·) the activation functions, νjk the first-to-second layer interconnection
weights, and wjk are second-to-third layer interconnection weights. θi’s are the
threshold offsets and Ni the number of nodes in layer i [11].
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Lemma 5. Let the weight tuning for the neural network in (20) be selected as

˙̂
W = F σ̂ rT − F σ̂ V̂ T x rT − κ F‖r‖ Ŵ ,

˙̂
V = Gx

(
σ̂′T Ŵ r

)T

− κG‖r‖ V̂ , (21)

where W and V are the weight matrices augmented by the thresholds, F, G are
positive-definite symmetric matrices, and κ a positive design parameter.

Then, the weight update law (21) guarantees the neural network to be state-strict
passive from input r(t) to w̃T ϕ(x).

P r o o f . See [11]. 2

The structure of the neural network (19), (21) is obtained using a filtered er-
ror/passivity approach. This method has several advantages over conventional neu-
ral networks based on gradient laws and backpropagation algorithms. Standard
backpropagation tuning can result in unbounded weights in the neural network if
(a) the network cannot exactly reconstruct a certain required nonlinear function, or
(b) there are bounded unknown disturbances in the system dynamics. The novel
weight update laws (19) do not require a learning phase. The stability of the closed-
loop system can be established without requiring strong observability conditions
or persistence of excitation. The algorithm includes correction terms to the back-
propagation, plus an additional robustifying signal that guarantees tracking as well
as bounded weights.

4.3. Functional estimation using adaptive networks

The neural network can estimate the unknown function as the activation functions
ϕ(·) form a basis set and it is assumed that the nonlinear function can be expressed
as a weighted linear sum of the elements of the basis set to the specified degree
of accuracy. For the adaptive estimation of the function however, it is required
to compute a regression matrix [16]. Let the regression matrix be W (x) and the
parameter vector be given by Ξ. If Ξ is known then the function can be constructed
exactly as

f(x) = ΞT W (x). (22)

Since Ξ is unknown, let the estimate of Ξ be denoted by Ξ̂. Then the functional
estimate error is given by

f̃(x) = Ξ̃T W (x), (23)

where Ξ̃ is the error in the parameter estimates.

Lemma 6. The adaptive update law given by

˙̃Ξ = − ˙̂Ξ = −Γ r WT (x) + κ‖r‖Γ Ξ̂, (24)

where Γ is a positive definite matrix makes the map from r to Ξ̃T W (x) state-strict
passive.



A New Methodology for the Design of Adaptive Controllers Using “State–Strict Passivity” . . . 11

P r o o f . Take the nonnegative function

V = tr
(
Ξ̃T Γ−1 Ξ̃

)
.

Differentiating both the sides, and substituting (24)

V̇ = tr
(
Ξ̃T W (x) rT

)
+ tr

(
κ Ξ̃T ‖r‖ Ξ̂

)

= rT
(
Ξ̃T W (x)

)
+ κ‖r‖ tr

(
Ξ̃T Ξ̂

)

≤ rT
(
Ξ̃T W (x)

)
− κ‖r‖

(
‖Ξ̃‖2 − Ξmax‖Ξ̃‖

)
,

where max(Ξ) = Ξmax.
From Lemma 1 and Definition 3 it follows that the adaptive network is state-strict

passive from input r(t) to Ξ̃T W (x). 2

Lemmas 4, 5, 6 satisfy the conditions of Theorem 2, and hence the closed-loop
system is Uniformly Ultimately Bounded when the approximating network satisfies
(19), (20) or (24).

It is seen that state-strict passivity is needed to ensure boundedness of all states
when the closed-loop system is subjected to bounded disturbances. The choice of
the adaptation laws for the network is crucial as this guarantees boundedness of the
signals without the requirement of the persistency of excitation (PE) [15] condition
required in most adaptive control techniques.

5. SIMULATION EXAMPLE

As an example the controller proposed in Sections 3, 4 is tested on the system given
by the following set of equations

ẋ1 = x2 + u1,

ẋ2 = −x1 + 2e−(x2
1+x2

2) x2 − 0.1x2 + u2. (25)

The system outputs are

y1 = x1

y2 = x2. (26)

The control inputs u1 and u2 are to be selected so that y1 tracks a square signal and
y2 tracks a sinusoidal signal of period 2 seconds.

5.1. CMAC controller

The receptive fields for the CMAC NN are selected to cover the input space {[−2, 2]×
[−2, 2]} with knot points at intervals of 0.25 along each input dimension. The initial
conditions for both states x1 and x2 are taken to be zero. Figures 4 and 5 show
the desired and actual the MIMO system (25), (26) using the CMAC NN controller
(7), (19). It is seen that although 578 weights are needed to define the output (22),
only 8 (2× 22) weights are updated at any given instant.
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5.2. Multi–layer neural network controller

A three layer neural network is selected with 5 nodes in the hidden layer. A Sigmoid
function is selected as activation function for each node and the weight updates are
performed according to tuning law (21). Figures 6 and 7 show the desired and the
actual outputs for the MIMO system given by equations (25), (26) using the neural
controller (21), (22).

Fig. 4. Actual and desired output y1 with CMAC controller.

Fig. 5. Actual and desired output y2 with CMAC controller.
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Fig. 6. Response of the system with multi-layer neural network controller – output y1.

Fig. 7. Response of the system with multi-layer neural network controller – output y2.

5.3. Adaptive controller

It is clearly seen that the performance of CMAC NN is excellent despite the fact
that the dynamics are unknown. For comparison, a standard adaptive controller [16]
is implemented assuming that the only unknowns are the coefficients of the terms
on the right-hand-side on (25). The regression vector of the given system is W =
[x1 x2 e−(x2

1−x2
2) x2 ]. The outputs for the adaptive case are shown by ‘−.’ in Figures 8

and 9. It is to be noted that to obtain good performance, the regression vector
must be exactly known. Inaccuracy in the knowledge of the unmodeled dynamics
can result in inaccurate regression vector which leads to rapid degradation of the
performance. To demonstrate this, the regression vector is assumed to be W =
[ 0 x2 e− (x2

1 + x2
2)x2 ]. From the response shown in Figures 8 and 9 it is seen that

this inaccurate regression vector leads to poor tracking of x2.
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5.4. Exact computed torque controller

Finally, a comparison is made to compare the performance of the CMAC controller
with that of a computed-torque controller where all the nonlinearities are known.
Figure 10 shows the output y1 for both the cases. It can be seen that the CMAC is
able to match the performance of the computed-torque controller even though the
CMAC controller knows none of the dynamics a priori.

6. CONCLUSIONS

A new methodology for the design of stabilizing controllers for a class of unknown
nonlinear systems is presented. It is shown that designing the controller in two stages
significantly simplifies the overall implementation. The resultant controller has two
components: an outer tracking-loop and an inner-loop consisting of an adaptive
network for manufacturing the nonlinear elements in the dynamics. It is shown that
choosing an adaptation law that makes the network state-strict passive is sufficient
to guarantee the closed-loop stability of the overall system. The result is a “robust”

Fig. 8. Response of the system with adaptive controller – output y1.

Fig. 9. Response of the system with adaptive controller – output y2.
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Fig. 10. Comparison of CMAC controller with a computer-torque controller.

neural network controller that does not require persistence of excitation and learns
the nonlinear function on-line.

(Received February 16, 1996.)
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