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OPTIMUM DAMPING DESIGN
FOR AN ABSTRACT WAVE EQUATION

Fariba Fahroo and Kazufumi Ito

In this paper we address the question of “optimal” damping design in an abstract
setting and precisely define and analyze various design criteria which are of importance in
applications. We formulate two abstract optimization problems and discuss the necessary
optimality conditions for the problems. We will further illustrate our results in application
to a one-dimensional damped wave equation, and will present numerical results for different
damping designs for this example.

1. INTRODUCTION

In recent years stabilization of flexible structures through active or passive feed-
back techniques has received much attention. In this regard, analysis of damping to
achieve stabilization of these systems is highly important. In mathematical litera-
ture where PDE models of flexible structures are used, damping terms are introduced
either in the equations (distributed damping), or in the boundary conditions (bound-
ary damping). In formulation of these models, one is faced with the daunting task
of proper mathematical definition of the damping operator in order to achieve the
“appropriate” notion of stability for the motion of the system. For infinite time hori-
zon Linear Quadratic Regulator problems applied to distributed parameter systems,
uniform exponential stability or stabilizability of the system is essential. In [11] and
[3] the authors have demonstrated the viability of feedback stabilization of the wave
equation through dissipative boundary conditions. In some recent research effort
(see [4], [5], [6]), the authors have considered a variable coefficient viscous damping
term in the wave equation and have proposed a set of sufficient conditions on the
damping term in order to achieve uniform exponential decay of energy.

Motivated by these efforts, our goal in this work is to go one step beyond and
consider ‘optimum” designs for the damping operator to not only achieve exponential
stability but moreover obtain better and faster rates of decay for the energy of
the system. This effort can be of special value in applications where the damping
mechanism is not given or modeled a priori, and the issue of choosing the best design
in order to obtain a desired specific response from the system is a pertinent one. From
another point of view, the problem of optimum damping design is closely related to
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the design of active controls, where such design parameters such as location, mass,
or number of these controls are to be decided in an optimal way.

Our goal in this study is to formulate an abstract and general framework for
study of these different design problems applied to an abstract second order wave
equation and consider important issues such as possible choices of the cost criteria
for performing the optimization task, and well-posedness of the mathematical model
and the optimization problem. In order to illustrate the theoretical issues, one could
consider two specific, simple flexible structures such as the following one-dimensional
wave equation with viscous damping on the interval (−1, 1),

∂2u(t, x)
∂t2

− ∂2u(t, x)
∂x2

+ a(x)
∂u(t, x)
∂t

= 0, −1 < x < 1, t > 0,

with u(−1, t) = u(1, t) = 0,

and initial conditions u(0) = u0,
∂u

∂t
(0) = u1,

and the one dimensional Euler–Bernoulli beam with damping

∂2

∂t2
y(t, x) +

∂2

∂x2

(
∂2

∂x2
y(t, x) + d(x)

∂2

∂t∂x2
y(t, x)

)
= 0, 0 < x < 1, t > 0,

with boundary conditions at x = 0, 1, and initial conditions at t = 0.

In this work, we will concentrate on the one dimensional wave equation and will
pursue the possible extension of the theory to the beam or the two-dimensional
example of a plate in future work. In the ensuing sections, first we present the
general framework of the abstract second order damped wave equation, and then
discuss the possible design criteria for finding the optimum damping design. For
the optimization problem we will present results regarding existence of a minimizer,
necessary optimality conditions and the sensitivity equations for both the abstract
formulation and the more specific example of the wave equation. In the last section,
we will illustrate our theoretical results by numerical examples of different damping
designs for the wave equation.

2. MATHEMATICAL MODEL

The equations of motion of many examples of flexible structures such as the one
dimensional wave equation or the Euler–Bernoulli beam as presented in the previous
section can be formulated as the following second order abstract wave equation

Mü+Dau̇+A0u = 0 (1)

in a Hilbert space H where A0 is an elliptic operator and M and Da represent the
mass and damping operators, respectively. To cast the problem in the weak form
we will follow the theoretical framework as outlined in [2], and assume a Hilbert
space V ⊂ H that is densely and continuously embedded in H. Define a bounded,
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symmetric sesquilinear form σ1(u, û) : V × V → C which is continuous and coercive
on V . This sesquilinear form defines a densely defined operator, the stiffness operator
A0, in H where

σ1(u, û) = 〈A0u, û〉H
for u ∈ dom (A0), and û ∈ V. Similarly, we can define the following bounded sym-
metric sesquilinear forms on H, ρ(u, û) = 〈Mu, û〉H and µa(u, û) = 〈Dau, û〉H . In
order to insure uniform exponential stability of the system, we take the operator Da

to consist of two parts:
Da = D0 + D̂a.

The first operator, D0, can be either of the form γA0, Kelvin-Voigt damping, or of
the form γA

1/2
0 , the structural damping. Operator D̂a is the damping operator that

is to be designed.
In order to write equation (1) in the first order weak form, we define the following

product spaces, H = V × H with product norm ‖.‖H and V = V × V , and a
sesquilinear σ : V → C in the following way:

σ((u, û), (φ, φ̂)) = −〈û, φ〉V + σ1(u, φ̂) + µa(û, φ̂).

Define w = (u, û), χ = (φ, φ̂) ∈ V , and write equation (1) in the weak form as

〈ẇ(t), χ〉H + σ(w(t), χ) = 0.

The above weak form gives rise to the following first order state equation in H
ẇ(t) = Aaw(t)

where

Aa =
[

0 I
−M−1A0 −M−1Da

]

with its domain defined as

dom (Aa) = {(φ, ψ) ∈ H : ψ ∈ V and A0φ+Daψ ∈ H}.
By Lumer–Phillips theorem, one can show that Aa generates a C0 semigroup,

Sa(t), in the state space H = V × H if D is a bounded self-adjoint, and non-
negative operator on V . If in addition, Da satisfies the following condition, (H
semi-coercivity)

〈Daφ, φ〉H ≥ b|φ|2H for some b > 0,

then one can show that Sa(t) is also uniformly exponentially stable, i. e.,

‖Sa(t)‖H ≤Me−ωt for some M ≥ 1, ω > 0, ∀ t ≥ 0.

It can be shown that the two possible choices for D0 do satisfy the semi-coercivity
condition, which means in the presence of additional internal damping, D̂a, exponen-
tial stability of the system is guaranteed. If D0 = 0, then the design goal is to model
Da which is dependent on the design parameter(s) a ∈ (Qad = the Design Space)
in such a way so that the norm of the semigroup solution of the equation above
decays to zero in a desired manner.
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3. DESIGN CRITERIA

To formulate a performance index that is based on the dynamical behavior of the
solutions one can consider the following three possibilities.

The first one is based on minimizing ‖Sa(τ)‖H, given τ > 0. While this criterion
is useful in many applications where the performance measure is based on a decay
factor for a desired time interval, mathematical characterization of this problem does
not yield an easily implementable performance index.

A second frequently used criterion in the engineering literature is maximization
of decay rates of solutions, i. e.,

min
a∈Qad

supRe σ(Aa)

where σ(Aa) is the spectrum of the operator Aa. While this criterion is widely used
in the finite dimensional models, its use for the infinite dimensional wave equation
presents us with several problems: The first problem is related to characterization
of σ(Aa), which is difficult to do in many cases, specially in higher dimensional
problems. But even in cases where σ(Aa) is easily defined, we still need to have the
spectrum determined growth condition satisfied, (see [13]):

inf ω = {‖Sa(t)‖ ≤Meωt ω ∈ R} = sup Re σ(Aa).

It has been shown (see [2]) that if the damping operator µa is uniformly coercive then
Sa(t) is an analytic semigroup and σ(Aa) is sectorial and the spectrum determined
growth condition is satisfied. But in general the vertical asymptote of σ(Aa) is
difficult to examine. Even in cases where the first two problems are circumvented,
maximization of the slowest decay rate which the criterion amounts to does not
result in overall reduction of the energy in a finite amount of time.

The third criterion which is based on minimizing the total energy of the system
over a long time interval is more easily characterized and realized in actual physical
systems than the other two criteria. This criterion for our problem can be defined
as

min
a∈Qad

∫ ∞

0

‖R1/2Sa(t)u‖2H dt,

where R is a coercive, self-adjoint operator on H. Minimization of the total energy is
realized by the characterization of the Datko Lemma [7], [12] which basically states
that if Aa is exponentially stable on H then the minimum of the total energy is
given in terms of the solution to a Lyapunov equation. In other words the following
are equivalent:

– Aa is exponentially stable on H.

–
∫∞
0
‖Sa(t)u‖2 dt is finite for all u ∈ H.

– There exists a bounded nonnegative, and self-adjoint operator
Πa ∈ L(dom (Aa), dom (A∗a)) such that it satisfies the following Lyapunov
equation

(A∗aΠa + ΠaAa +R)u = 0 (2)

for all u ∈ dom (Aa).
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Then we have ∫ ∞

0

‖R1/2Sa(t)u‖2H dt = 〈Πau, u〉H.

In order to develop a criterion that is independent of the state vector u, we consider
the following performance measures that are based on minimizing the total energy

min
a∈Qad

‖Πa‖ = sup
|u|=1

〈Πau, u〉H, (3)

and
min

a∈Qad

tr ΠaQ = E(Πau, u). (4)

For criterion (4), we assume that the initial data u is a random vector with normal
distribution of zero mean and covariance Q, a nuclear operator, and E denotes the
expectation over the initial condition. In general Πa is not compact in H, therefore
it is not always possible to define the trace norm of Πa. In this sense, the second
criterion is the weighted trace norm of Πa with respect to Q, which in engineering
applications is chosen to be the subspace spanned by the dominant eigenfunctions for
the nominal plant. If Πa is compact, then the first criterion amounts to minimizing
the L∞ norm of Πa, and the second criterion is equivalent to minimizing L1 norm
of Πa.

Our goal is to solve the optimization problems based on (3) and (4) subject to
some constraints on the parameter a. In the following section we consider a specific
example and will present the optimization problems in the context of the example.

4. A ONE DIMENSIONAL DAMPED WARE EQUATION

In this section we consider the following one dimensional wave equation on the
interval (−1, 1)

utt = uxx − a(x)ut with u(−1, t) = u(1, t) = 0. (5)

The underlying Hilbert space for the abstract formulation is H = H1
0 (−1, 1) ×

L2(−1, 1), with the inner-product
〈[

w1

w2

] [
v1
v2

]〉

H
=

∫ 1

−1

(w′1v̄1
′ + w2v̄2) dx.

The first order form of equation (5) is given by

ẏ = Aay, where

Aa =
[

0 I
∂2

x −a(x)
]
, y =

[
u
ut

]
.

For this problem we are interested in finding the optimal spatial distribution of
damping subject to some constraints on the distribution as well as on the total
amount of damping material available. One can consider the following two possible
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formulations where in both cases f(a) denotes the desired performance index for
optimal design. The non-parametric formulation can be stated as

minimize f(a) over a(x) ∈ BV (−1, 1), (6)

where BV (−1, 1) denotes the space of functions of bounded variations on (−1, 1),
and a(x) satisfies the additional constraints

{
a(x) ≥ 0,

∫ 1

−1

a(x) dx = atot = Total Mass, |a|BV ≤ γ

}
. (7)

For the parametrized optimization problem, we consider the following finite di-
mensional parameterization. If one models a(x) as a piecewise constant function
over ns number of subintervals

a(x) =
ns∑

i=1

aiχ[xi−xi−1](x)

−1 = x0 < x1 < . . . < xns = 1

where ai represents the amount of damping distribution over the ith subinterval
(xi−1, xi), then the goal is to find the optimal values for ai ≥ 0 subject to the
constraint ∫ 1

−1

a(x) dx = atot = Total Mass.

In both of these formulations, we take the expressions used in Section 3 for f(a):

f(a) = ‖Πa‖ = sup
|u|=1

〈Πau, u〉H, or

f(a) = tr ΠaQ = E(Πau, u).

In this paper we concentrate on the parametric formulation, and will present results
regarding the non-parametric formulation which involves nonsmooth optimization
techniques in a forthcoming paper, [9].

5. NECESSARY OPTIMALITY CONDITIONS

In order to show that the optimization problems discussed in the previous section
are well-posed, we need to show for each criterion the existence of an optimal param-
eter and discuss the necessary optimality conditions that characterize the optimal
solutions.

We consider the following general constrained optimization problem

Minimize f(a) over a ∈ Qad, (8)

where Qad, the admissible design space, is assumed to be a weakly sequentially
compact set in X, a normed space for the design parameters with norm ‖ · ‖X , and
f is a convex functional. To prove existence of a minimizer, we will refer to the
following well-known result, (see [8]):
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Theorem 5.1. Let f : X → R1 be a weakly sequentially lower semicontinuous
functional on M , a weakly compact subset of the normed linear space X, i. e., for
every u0 ∈ M, and for any sequence {un}∞n=1 in M such that un converges weakly
to u0

f(u0) ≤ lim infn→∞f(un),

then ∃u∗ ∈M such that
f(u∗) = min

u∈M
f(u).

5.1. The first criterion

For criterion (3)

min
a∈Qad

f(a) = ‖Πa‖ = sup
|u|=1

〈Πau, u〉H, over a ∈ Qad,

we need to establish weakly lower semicontinuity of f(a) which by the following
theorem is contingent upon pointwise continuity of Πa in a sense that will be made
precise below.

Theorem 5.2. The functional f(a) = ‖Πa‖ is weakly sequentially lower semi-
continuous if for any sequence an converging weakly to â ∈ Qad in X, the following
convergence condition holds:

〈Πanu, u〉 → 〈Πâu, u〉 for each u ∈ H.

P r o o f . From definition of the operator norm, for any given ε > 0 we have

‖Πan‖ − ε < 〈Πanxε, xε〉, for xε ∈ H with ‖xε‖H = 1.

Similarly, we have

‖Πâ‖ − ε < 〈Πâxε, xε〉, for xε ∈ H with ‖xε‖H = 1.

Note that in these inequalities xε depends on an in general. From the above we
obtain the following

‖Πâ‖ < ε+ 〈Πâxε, xε〉 − 〈Πanxε, xε〉+ 〈Πanxε, xε〉
< ε+ 〈(Πâ −Πan)xε, xε〉+ ‖Πan‖.

The second term on the right hand side of the inequality goes to zero as an converges
weakly to â in Qad by the assumption of the theorem. Therefore, we have

‖Πâ‖ < ε+ lim inf ‖Πan‖
which for arbitrary ε gives us the weakly lower semicontinuity of ‖Πa‖. 2

The pointwise convergence of operator Πa with respect to a can be verified for a
general class of problems, and the results will be presented in [9]. But here, we can
prove Lipschitz continuity of Πa with respect to parameter a:
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Theorem 5.3. Suppose dom (Aa) and dom (A∗a) are independent of a ∈ Qad, a
compact set, and δAa = Aa −Aâ satisfies

‖(Aa −Aâ)x‖ ≤ K‖a− â‖X ‖x‖H, for all x ∈ dom (Aa), and a, â ∈ Qad. (9)

Then we have
‖Πa −Πâ‖L(H,H) ≤M‖a− â‖X (10)

where the constant M > 0, and Πa is the solution of the Lyapunov equation

A∗aΠa + ΠaAa +R = 0.

P r o o f . Consider Πa and Πâ which are solutions of the following Lyapunov equa-
tions:

(A∗aΠa + ΠaAa +R) x = 0, for all x ∈ dom (Aa),

(A∗âΠâ + ΠâAâ +R) x = 0, for all x ∈ dom (Aâ).

By subtracting one equation from the other and adding and subtracting A∗âΠa and
ΠaAâ, we obtain the following equation:

[A∗â(Πa −Πâ) + (Πa −Πâ)Aâ + (A∗a −A∗â)Πa + Πa(Aa −Aâ)]x = 0 (11)

for all x ∈ dom (Aa) = dom (Aâ). The equation above is a well-defined Lyapunov
equation since Aâ is exponentially stable. Therefore, we have the following integral
representation for the operator Πa −Πâ:

(Πa −Πâ)x =
∫ ∞

0

S∗â(t) [(A∗a −A∗â) Πa + Πa(Aa −Aâ)]Sâ(t)x dt

where Sâ(t) is the C0 semigroup generated by Aâ and satisfies the following expo-
nential stability condition:

‖Sâ(t)‖ ≤M1e
−ω1t for some M1 ≥ 1, ω1 ≥ 0, ∀ t ≥ 0.

Now, we have

〈(Πa −Πâ)x, x〉 ≤ M2
1

2ω1
‖(A∗a −A∗â)Πa + Πa(Aa −Aâ)‖ ‖x‖2. (12)

From boundedness of ‖Πa‖, and condition (9) we conclude that

‖Πa −Πâ‖ ≤ C‖(A∗a −A∗â)Πa + Πa(Aa −Aâ)‖ ≤M‖a− â‖X . (13)

2

We can immediately obtain the following continuity result.
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Corollary 5.4. Suppose dom (Aa) and dom (A∗a) are independent of a ∈ Qad, a
compact set, and δAa = Aa −Aâ satisfies

‖δAa‖L(H,H) → 0 as a→ â strongly in Qad, (14)

then
‖Πa −Πâ‖L(H,H) → 0 as a→ â strongly in Qad.

For the specific example of the one dimensional wave equation we have:

Example 5.1. For the wave equation (5), the operator Πa is Lipschitz continuous
with respect to parameter a in the following sense:

‖Πa −Πâ‖ ≤ C|a− â|∞ (15)

where

(Aa −Aâ)
[
u
v

]
=

[
0

(a− â)v

]
. (16)

Note: In this example, X = L∞(−1, 1).

The following theorem characterizes the equation that the Fréchet derivative, Σ,
of the mapping a ∈ X → Πa ∈ L(H) of Πa satisfies:

Theorem 5.5. The sensitivity operator Σ satisfies

A∗âΣ(h) + Σ(h)Aâ + δA∗aΠâ + ΠâδAa = 0, (17)

where δAa = Aa −Aâ satisfies

‖δAa‖L(H,H) → 0 as a→ â strongly in Qad, (18)

and h(x) = a(x)− â(x) ∈ Qad.

P r o o f . We need to show that Σ is indeed the Fréchet derivative of Πa, i. e.,

‖Πa −Πâ − Σ(h)‖L(H)
‖h‖X

→ 0 as ‖h‖X → 0 in Qad.

By subtracting equation (17) from (11), we obtain:

A∗â∆ + ∆Aâ + δA∗a(Πa −Πâ) + (Πa −Πâ)δAa = 0,

where ∆ = Πa − Πâ − Σ(h). By arguments similar to the ones in Theorem 5.3, we
have the following bound on ‖∆‖:

‖∆‖ ≤ C‖ δAa‖ ‖Πa −Πâ‖.
From conditions on operators Aa and Πa, the right hand side of the inequality goes
to zero as a converges strongly to â in Qad. 2

Again we can immediately obtain the following result for the specific case of the
wave equation:
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Example 5.2. For the wave equation, (5), the sensitivity operator Σ satisfies

A∗âΣ(h) + Σ(h)Aâ + δA∗aΠâ + ΠâδAa = 0. (19)

where δAa = Aa −Aâ satisfies

(Aa −Aâ)
[
u
v

]
=

[
0
hv

]
, and h(x) = a(x)− â(x) ∈ L∞. (20)

P r o o f . The arguments are basically the same as the ones in Theorem 5.5, and
we have the following estimate on the norm of ∆

‖∆‖ ≤ C‖ δAa‖ ‖Πa −Πâ‖ ≤ M̂ |a− â|2∞ = M̂ |h|2∞. 2

5.2. The second criterion

For the second criterion
min
a∈Qa

f(a) = min
a∈Qad

tr ΠaQ

we take Q to be a nuclear operator such that it is a compact self-adjoint operator
on the Hilbert space H, whose eigenvalues are summable. In fact, in most practical
applications Q can be taken to be a self-adjoint finite rank operator. Having defined
Q more specifically, we can now proceed to show that f(a) = tr ΠaQ is indeed
continuous with respect to the parameter a. Therefore, by compactness of Qad, we
can show the existence of a minimizer for the criterion.

Theorem 5.6. For the criterion f(a) = tr ΠaQ, where Q is a nuclear operator,
if for any weakly convergent sequence an converging to â ∈ Qad, the operator Πa

satisfies
〈Πanu, u〉 → 〈Πâu, u〉 for each u ∈ H (21)

then we have the following

f(an) → f(â) as an → â weakly in Qad.

P r o o f . From definition of Q and the trace class to which the bounded linear op-
erator ΠaQ belongs, for φi, a complete orthonormal set of eigenfunctions of operator
Q, we have

f(an) = tr ΠanQ =
∑

i

〈Qφi,Πanφi〉 =
∑

i

〈λiφi,Πanφi〉

where λiQ = Qφi. Now by taking the limit as an → â, from (21) we have

f(an) =
∑

i

〈λiφi,Πanφi〉 −→
∑

i

〈λiφi,Πâφi〉 = f(â). 2

Now we can prove the following result for the differentiability of the cost function
f(a) = tr ΠaQ.
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Theorem 5.7. Suppose there exists δAa ∈ L(H,H) such that

‖Aa+h −Aa − δAa‖L(H,H)
‖h‖X

→ 0 as ‖h‖X → 0, in Qad

and dom (Aa) and dom (Aa
∗) are independent of a ∈ Qad, a compact set . Then

f ′(a) (h) = tr (((δAa)∗Πa + Πa(δAa))Λ) , (22)

where δAa = A′ah, and the Lagrange multiplier Λ to the constraint

A∗aΠa + ΠaAa +R = 0

satisfies the adjoint equation

AaΛ + ΛA∗a +Q = 0. (23)

P r o o f . By differentiability of Πa from Theorem 5.5, we have

f ′(a) (h) = tr ΣQ,

where Σ satisfies:

(A∗âΣ(h) + Σ(h)Aâ + δA∗aΠâ + ΠâδAa)x = 0, for all x ∈ dom (Aa).

From definition of operators of trace class, for φi, an arbitrary complete orthonormal
system of H, we can write

f ′(a) (h) = tr ΣQ =
∑

i

〈Σφi, Qφi〉.

From (23), we have

∑

i

〈Σφi, Qφi〉 = −
∑

i

〈Σφi,AaΛφi + ΛA∗aφi〉

= −
∑

i

〈A∗aΣφi + ΣAaφi,Λφi〉

=
∑

i

〈((δA∗a)Πa + Πa(δAa))φi,Λφi〉

= tr (((δAa)∗Πa + Πa(δAa))Λ) .

Note: For the wave equation (5), all the above results are valid by taking into account
that convergence of the parameters in Qad is in the sense of the L∞ norm.
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6. FINITE DIMENSIONAL APPROXIMATIONS

In this section, we carry out numerical approximations for solving the parametric
optimization problem as suggested in Section (4) for the following one dimensional
wave equation:

utt = uxx − a(x)ut with u(−1, t) = u(1, t) = 0,

where the damping term a(x) is modeled as a piecewise constant function over ns
number of subintervals

a(x) =
ns∑

i=1

aiχ[xi−xi−1] (x)

−1 = x0 < x1 < . . . < xns = 1

with ai representing the amount of damping distribution over the ith subinterval.
For performing the numerical approximations, we employ the Legendre–Tau method

which is a variation of the well-known Galerkin technique. In this method the ap-
proximate solution is expanded in terms of the Legendre polynomials, Ln(x), which
are orthogonal with respect to the L2(−1, 1) norm. These basis elements do not
individually satisfy the boundary conditions as in Galerkin method. The boundary
conditions are imposed on the approximate solution by use of a non-orthogonal pro-
jection operator. For more details on implementations of the Legendre-tau method
to the wave equation, see [1], [10].

For a second order wave equation we seek an approximate solution in the form

un(t, x) =
n∑

j=0

ξj(t)Lj(x).

The vector ξ(t) = (ξ0, ξ1, . . . , ξn−2) satisfies

Mnξ̈(t) +Dnξ̇(t) +Knξ(t) = 0 (24)

and ξn−1 and , ξn are determined as linear combinations of ξ0, ξ1, . . . , ξn−2 by ap-
plying the boundary conditions on the solution un. The mass matrix Mn, damping
matrix Dn, and the stiffness matrix Kn are given by

(Mn)i,j = 〈Li, Lj〉L2(−1,1) =
2

2i+ 1
δij ,

(Dn)i,j =
ns∑

k=1

∫ xk

xk−1

akLiLj dx,

(Kn)i,j = ((Hn)T MnHn)i,j .

In the expression forKn, Hn is the matrix representation of the first order differential
operator with respect to the Legendre polynomials which also imposes the Dirichlet
boundary conditions at the two ends on the approximate solution.
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The first order form of (24) for η = [ξ, ξ̇]T is

η̇ = Anη

where

An =
[

0n−1×n−1 In−1×n−1

−M−nKn −M−nDn

]
.

In the above, M−n denotes the inverse of the mass matrix Mn. For approximat-
ing the total energy we take R in (2) to be the identity, and we write its matrix
representation as

Rn =
[

Kn 0n−1×n−1

0n−1×n−1 Mn

]
.

Assuming (An,Rn) is detectable, then the total energy in the finite dimensional
space is given by

En(u) =
∫ ∞

0

ηTRnη dt = ηT
0 Πnη0 η(0) = η0

where Πn is the matrix representation of the finite-dimensional approximation to Π
and is equal to R−nΠ̃n where Π̃n satisfies the following Lyapunov equation

(An)T Π̃n + Π̃nAn +Rn = 0.

The finite dimensional approximation of the first performance index (3) can be
written as

min
a∈Qad

max eig (R−nΠ̃n). (25)

To calculate the approximate performance index (4), we consider operator Q to be
the projection onto a space spanned by the m dominant undamped eigenfunctions of
the equation. If Φmn denotes the matrix representation of the orthogonal projection
that projects the finite-dimensional solution space to the m-dimensional space of
range of Q, then the matrix representation of the finite-dimensional performance
index becomes:

min
a∈Qad

tr
(
(ΦmnRnΦT

mn)−1(ΦmnΠ̃nΦT
mn)

)
. (26)

7. NUMERICAL RESULTS

To perform numerical experiments for various damping designs, we took the num-
ber of Legendre polynomials in our approximations to be 20, and the number of
subdivisions for distribution of the damping material to be 40. Also, to calculate
the second performance criterion, we took m, the number of undamped dominant
modes to be 7. We first experimented with a few damping designs and calculated
the value of performance indices (25) and (26) in each case. The following figures
demonstrate the distribution of ai’s over the (−1, 1) interval for these examples:
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Fig. 1. Uniform distribution.

Fig. 2. Center distribution.
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Fig. 3. Corner distribution.

Fig. 4. First optimal distribution with minmax eig (Πn) = 1.2959.
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Fig. 5. Second optimal distribution with min tr = 12.3611.

The following table compares the different designs and the corresponding values
of the two performance indices.

Table 1. Comparison of different designs.

Damping designs Min(max(eig)) Min (tr)
Uniform Distribution 1.4354 14.3064
Center Distribution 499.1038 15.3697
Corner Distribution 3.2690 18.6927
Optimal Distribution 1 1.2959 14.6744
Optimal Distribution 2 9.3611 12.6311

From this table, one can see that different performance criteria yield different
optimal damping designs, and a design that performs well with respect to one cri-
terion, may perform poorly with respect to the others, (compare the results for the
center and corner distributions). But overall, the uniform damping design seems to
perform quite well with respect to either criterion. The results also indicate that
much is to be gained by performing the optimization. From these results one can
observe that the key point in optimizing damping designs is to carefully choose the
performance criterion that is most suited to the problem in hand. Practical and
theoretical considerations should both be taken into account in choosing the proper
criterion. For example, depending on the amount of information on the physical
modeling of the initial state vector or the number of dominant vibrational modes
that need to be suppressed one may choose the criterion that fits the requirements
of the problem.

One last important observation in these numerical experiments is the issue of con-
vergence of the optimal design with respect to the number of mesh points. In order to
investigate dependence of these designs on ns the number of damping subintervals,
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we carried out the optimization for both criterion for ns = 80.

Fig. 6. First optimal distribution with minmax eig (Πn) = 1.2922, ns = 80.

Fig. 7. Second optimal distribution with min tr = 12.5661, ns = 80.

Comparing these graphs to the ones obtained for ns = 40, we see that the damping
designs do not converge for increasing number of damping subintervals. Therefore,
we need to pursue another formulation for the optimization where this convergence
can be obtained. Consideration of BV-regularization or the nonparametric formula-
tion as stated in Section 4 is one avenue for resolution of this problem. The numerical
results we have presented here are only preliminary efforts in optimizing damping
designs and our future efforts will address numerous issues concerning the numerical
and theoretical optimization of these designs and their extensions to the beam and
plate equations.

(Received February 14, 1996.)



574 F. FAHROO AND K. ITO

REFE REN CES

[1] H.T. Banks and F. Fahroo: Legendre–Tau approximations for LQR feedback control
of acoustic pressure fields. J. Math. Systems Estimation Control 5 (1995), 2, 271–274.

[2] H.T. Banks and K. Ito: A unified framework for approximations in inverse problems
for distributed parameter systems. Control Theory Adv. Tech. 4 (1988), 73–90.

[3] G. Chen: A note on the boundary stabilization of the wave equation. SIAM J. Control
Optim. 19 (1981), 106–113.

[4] G. Chen, S. A. Fulling, F. J. Narcowich and S. Sun: Exponential decay of energy of
evolution equations with locally distributed damping. SIAM J. Appl. Math. 51 (1991),
266–301.

[5] G. Chen, S. A. Fulling, F. J. Narcowich and C. Qi: An average asymptotic decay rate
for the wave equation with variable coefficient viscous damping. SIAM J. Appl. Math.
49 (1990), 1341–1347.

[6] G. Chen and J. Zhou: Vibration and Damping in Distributed Parameter Systems.
Vol 1. CRC Press, Boca Raton, Fl 1993.

[7] R. Datko: Extending a theorem of A.M. Liapunov to Hilbert space. J. Math. Anal.
Appl. 32 (1970), 610–616.

[8] I. Ekeland and R. Temam: Convex Analysis and Variational Problems. North Holland,
Amsterdam 1976.

[9] F. Fahroo and K. Ito: Variational formulation of optimal damping designs. In prepa-
ration.

[10] K. Ito: The application of Legendre–Tau approximations to parameter identification
for delay and partial differential equations. In: Proc. 22nd IEEE Conf. on Decision
and Control, December 1983, pp. 33–37.

[11] J. E. Lagnese: Decay of solutions of the wave equation in a bounded region with
boundary dissipation. J. Differential Equations 50 (1983), 163–182.

[12] A. Pazy: Semigroups of Linear Operators and Applications to Partial Differential
Equations. Springer–Verlag, New York 1983.

[13] R. Triggiani: On the stabilizability problem in Banach space. J. Math. Anal. Appl. 52
(1975), 383–403.

Prof. Dr. Fariba Fahroo, Naval Postgraduate School, Mathematics Department, Code

Ma/Ff, Monterey, CA 93943. U. S.A.

Prof. Dr. Kazufumi Ito, Center for Research in Scientific Computation, North Carolina

State University, Raleigh, NC 27695-8205. U. S.A.


	INTRODUCTION
	MATHEMATICAL MODEL
	DESIGN CRITERIA
	A ONE DIMENSIONAL DAMPED WARE EQUATION
	NECESSARY OPTIMALITY CONDITIONS
	The first criterion
	The second criterion

	FINITE DIMENSIONAL APPROXIMATIONS
	NUMERICAL RESULTS

