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Abstract

A framework for detecting nonlinear oscillatory activity in broadband time series is presented.

First, a narrow-band oscillatory mode is extracted from a broadband background. Second, it is

tested whether the extracted mode is significantly different from linearly filtered noise, modelled as

a linear stochastic process possibly passed through a static nonlinear transformation. If a nonlinear

oscillatory mode is positively detected, it can be further analyzed using nonlinear approaches such

as the phase synchronization analysis. For linear processes standard approaches, such as the

coherence analysis, are more appropriate. The method is illustrated in a numerical example and

applied to analyze experimentally obtained human EEG time series from a sleeping subject.
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Many recent scientific efforts focus on the importance of oscillatory activity in

biological and physical systems especially in the context of phase dynamics and

phase synchronization. For instance, oscillations in various frequency bands of

the electroencephalogram have become important in understanding the function

of the central nervous system. Typical approaches to analyzing data involve

applying Fourier decomposition, wavelet transform or the newer empirical mode

decomposition to a time series to extract a set of modes or time series confined

within a certain frequency band. These methods themselves, however, do not

address the question of what character is the content of the extracted mode.

In order to satisfy further data processing based on nonlinear approaches such

as phase synchronization analysis one should provide sufficient evidence that

the obtained signal can be interpreted as oscillatory activity of a self-sustained,

nonlinear dynamical system.

I. INTRODUCTION

The search for repetitive patterns in erratic, seemingly random dynamical behavior is an

important way how to understand, model and predict complex phenomena. Cyclic, oscilla-

tory phenomena are sought in complex dynamics observed in diverse fields from physics and

technology, through meteorology and climatology to neurophysiology. In cortical networks

oscillatory phenomena are observed which span five orders of magnitude in frequency [1].

These oscillations are phylogenetically preserved, suggesting that they are functionally rele-

vant. Among the well-known neural oscillatory phenomena the δ, θ, α, β and γ−waves can

be observed in the scalp EEG. The electroencephalogram, EEG, is a record of the oscillations

of brain electric potentials registered from electrodes attached to the human scalp, reveal-

ing synaptic action that is moderately to strongly correlated with brain states. Oscillatory

phenomena in the brain electrical activity and their synchronization are related to cognitive

processes [2] and their dynamical and synchronization properties change under cognitive

disorders such as Alzheimer disease, schizophrenia, bipolar disorder or attention-deficit hy-

peractivity disorder [3]. It is understandable that the detection and characterization of

oscillatory phenomena in the brain activity are subjects of intensive research.

Besides the Fourier spectral analysis, typical approaches to study brain waves involve
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applying wavelet decomposition or, more recently, empirical mode decomposition (EMD)

and other filtering techniques to a time series to extract a set of modes or time series which

contain a part of the original signal confined within a certain frequency band. The extracted

narrow-band modes are frequently further analyzed using modern nonlinear methods, such

as the synchronization analysis, in order to infer possible cooperative behavior of distant

parts of the human brain. For such synchronization [4] or directionality (causality) analy-

ses [5] the extracted oscillatory modes are used to compute so-called instantaneous phase,

a characteristic variable of self-sustained, nonlinear oscillatory dynamical systems. Thus

it is desirable to provide arguments that the observed oscillatory phenomena come from

self-sustained nonlinear dynamical systems; in order to avoid applications of nonlinear ap-

proaches to linearly filtered noise. The above mentioned filtration methods themselves do

not address the question of what character is the content of the extracted mode. More

intricate procedures such as singular spectrum analysis (SSA), used especially in the field

of climatology and meteorology [6], perform a principal components analysis in the time

domain and test whether variance of each candidate mode is significantly higher than noise

background. In a sophisticated procedure known as the Monte Carlo SSA [7], the existence

of oscillatory modes is tested by means of computing the variance (energy content) of each

mode and verifying if it is outside the expected range for a particular background process,

such as a red noise process. Recently, the method has been modified to test the dynam-

ics of the candidate mode [8]. While the standard Monte Carlo SSA [7] discerns any kind

of oscillatory activity different from a filtered red noise considering the process covariance

structure, Paluš and Novotná [8] identify the modes with dynamics which is more regular and

better predictable than a narrow-band oscillations obtained as linearly filtered noise. The

latter approach has been successfully applied to identify oscillatory phenomena in long-term

climate records and in geomagnetic activity [9]. In neurophysiology, oscillatory activity is

often extracted from time series using bandpass filtering, wavelet analysis or empirical mode

decomposition (EMD). A spectral peak is usually all the evidence considered for the exis-

tence of oscillatory activity. However, sufficiently narrow-band time series extracted from a

broadband process have an oscillatory waveform which is strongly constrained by the prop-

erties of the filter or the extraction method. Even a clear spectral peak may not be sufficient

to assume the existence of limit cycle dynamics of a self-sustained dynamical system as a

generator of the oscillatory activity. Phase derived from a time series has a clear physical
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meaning only if the generating system follows a trajectory with stable amplitude. It follows

that the generating system must be nonlinear to achieve limit cycle dynamics with a stable

amplitude [4]. In this work a method is proposed which is able to detect weak oscillatory

signals with dynamics different from that of filtered noise.

The paper continues with a description of the detection methods in Sec. II, with re-

sults obtained in numerical experiments and on actual data in Sec. III and finishes with a

discussion and conclusion in Sec. IV.

II. METHODS

Important parts of the proposed method are the procedure to generate the surrogate time

series, the mathematical objects that statistically capture required properties of analyzed

time series and the function which quantifies the difference between the dynamical structures

of two time series, namely the original and the surrogate one. Here the surrogate time series

are constructed so that their linear structure (autocorrelation structure) matches that of the

analyzed data. If at the same time the nonlinear structure of the data significantly deviates

from that of the surrogate time series, then it is inferred that a nonlinear process is involved

in the generation of the data.

The data is first preprocessed by an amplitude adjustment procedure the purpose of which

is to make the sample distribution of the analyzed data segment Gaussian. The samples

in the time series are ranked and an equally sized normally distributed set of samples is

created. The time series samples are replaced with samples of equal rank from the normally

distributed set. This step ensures that the influence of any bijective nonlinear measurement

function is excluded from the test for nonlinear structure. The original unadjusted time

series data is not used henceforth and any reference to original data refers to the amplitude-

adjusted version. The surrogate data set is generated by repeated runs of an autoregressive

model that has been fit to the time series. An autoregressive model to the time series is

powerful enough to represent any type of filtered noise. An AR model of order K is specified

as

x(t) =

K
∑

i=1

aix(t − i) + µ + σξ(t), (1)

where ai are the coefficients of the model, µ is the mean of the generated time series and σ

is the standard deviation of the uncorrelated Gaussian noise term ξ(t). The optimal order
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of the autoregressive model is unknown and a model selection method must be employed.

Here the Bayesian Information Criterion (BIC) [10] is used. The BIC is given by

BIC(K) = N log
( 1

N

N
∑

i=1

ǫ(i)2

)

+ (K + 2) log N, (2)

where ǫ(i) are the residuals of the best model fit to the original time series and N is the

number of points in the time series. The number of free parameters of the estimation is

K + 2 as besides the K model coefficients also the mean value and the standard deviation

of the input noise is estimated from the same dataset. A maximum admissible order is

specified before the fitting procedure begins and models of all smaller orders are fit using

least-squares to the time series. The BIC is computed for each fitted model and the model

with the smallest BIC value is selected. Surrogate data are generated by randomly shuffling

the residuals of the fit and feeding them back into the identified model as the source noise.

Using this procedure an arbitrary amount of surrogate time series can be generated.

The linear structure of a time series is characterized by linear regularity or predictability

measure which is based on the linear version of time delayed mutual information (“linear

redundancy” [11])

Ilin(X; Xτ) = −
1

2
log(1 − ρ2

τ ), (3)

where ρτ is the correlation coefficient of the time series of process X and a version of itself

shifted by τ samples Xτ . If the autoregressive model replicates the linear properties of the

analyzed data accurately then the sequence Ilin(X; Xτ ) for τ ∈ {1, 2, ..., τmax} will agree with

the corresponding linear regularity from the surrogates. Clearly the maximum lag τmax for

which the shapes of the linear redundancy sequence coincide with the surrogates must be

limited as the autoregressive model is only an approximation of the underlying generating

system. For further analysis a τmax should be selected such that linear regularity is well

matched between the data and the surrogate set. This must be confirmed by visual analysis

of the sequences. A quantitative test of the agreement of the sequences is also a part of the

method. However this is a supplementary test and is not a substitute for visual examination.

The nonlinear structure is captured by nonlinear regularity [11] which is defined analog-

ically to linear regularity. Nonlinear regularity is the mutual information between a time

series and its shifted version. In this work equiquantal binning is first applied to assign

the time series samples to a discrete set of bins ξ ∈ Ξ. Mutual information may then be

5



estimated as

I(X; Xτ ) =
∑

ξ1,ξ2∈Ξ

p(ξ1, ξ2) log
p(ξ1, ξ2)

p(ξ1)p(ξ2)
, (4)

where p(ξ1) is the probability with which the symbol ξ1 appears in the time series and

p(ξ1, ξ2) is the estimated probability that symbols ξ1 and ξ2 occur at the same point in the

original and shifted version of the time series.

A function that estimates the similarity of two sequences is necessary to compare the

linear and nonlinear structures of time series. A signed version of the l2 metric

l±
2
(x(n), y(n)) =

1

τmax

τmax
∑

i=1

sgn(x(i) − y(i))(x(i) − y(i))2, (5)

where τmax is the maximum lag, is used to quantitatively estimate how much two sequences

match. The sign of l±
2
(·, ·) is positive if the first sequence lies mainly above the second

sequence and negative if the opposite is true. If the points of the sequences are close

together then the absolute value of the function is close to zero. If the second sequence y(n)

is fixed, then the function has only one free parameter x(n) and computes how close the

given sequence is to the reference sequence y(n).

The method proceeds by performing two hypothesis tests. The first test checks if the

linear structure of the surrogates matches that of the data and the second does the same

for the nonlinear structure. Each test is prepared in an identical fashion: the regularities

are computed for lags τ ∈ {1, 2, ..., τmax} for the data time series and for a chosen number

of surrogate time series. A reference sequence m(n) is constructed by averaging all the

regularity sequences from the surrogate time series. This reference sequence is set as the

second argument of (5). A set of indices may now be computed using the function l±
2
(·, m(n))

for each regularity sequence of the surrogate time series and for the data. Note that the

above is done separately for linear and nonlinear regularities.

In the test for the match of linear structures, a two sided hypothesis test is constructed

which will indicate if the index l±
2
(x(n), m(n)) computed on the data significantly devi-

ates from the distribution of the same index on the surrogates. For the test at a nominal

significance level α it is checked if

l±
2
(x(n), m(n)) < qα

2
or

l±
2
(x(n), m(n)) > q1−

α

2
,

(6)
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where x(n) is the linear regularity sequence of the original data and qβ is the β quantile of

the distribution of l±
2
(·, m(n)) estimated from the the surrogate linear regularity sequences.

A two-sided test ensures that the linear regularity of the data does not significantly deviate

in either direction, above or below, from the mean of the linear regularity sequence of the

surrogate time series.

The purpose of the nonlinear structure test is to verify whether the nonlinear regularity

sequence computed from the original data is significantly greater than the mean nonlinear

regularity sequence computed from the surrogate time series. The test statistic is again

the l±
2
(·, m(n)), where the reference sequence m(n) is the mean of the nonlinear regularity

sequences from the surrogate time series. The test can be denoted as

l±
2
(x(n), m(n)) > q1−α, (7)

where x(n) is the nonlinear regularity sequence of the original data and qβ is the β quan-

tile of the distribution of l±
2
(·, m(n)) estimated from the the surrogate nonlinear regularity

sequences. The test is one sided as only those time series the regularity of which is higher

than that of the surrogates are of interest. These time series exhibit a higher amount of

regularity than filtered noise.

In case of a broadband signal no constraint is placed on the extraction procedure of a

candidate narrow-band mode. Simple bandpass filtering (Butterworth 4th order zero phase

shift filtering) is used in the numerical example and in the analysis of experimentally obtained

EEG data. Wavelet extraction, empirical mode decomposition (EMD) or singular-system

analysis (SSA)-based decomposition can be applied equally well.

III. RESULTS

In this section the method is first tested on a synthetic dataset and then the method

is applied to sleep EEG from an entire night. The results are compared to the changes in

relative power in the analyzed frequency band.

A. Numerical example

In the numerical example it is shown how nonlinear oscillatory dynamics of the Lorenz

system (which does not produce any peak in the power spectrum) is detected in a mix-
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FIG. 1: A sample of the analyzed time series. The curves from top to bottom: the AR(5) process,

the x-coordinate of the Lorenz oscillator and the mixed signal. Clearly the Lorenz signal is not

introducing any clear oscillatory activity into the linear autoregressive process.

ture with the 5th order autoregressive process. The Lorenz system is a chaotic nonlinear

dynamical system exhibiting complex behavior and given by the equations

ẋ = σ(y − x)

ẏ = x(ρ − z) − y

ż = xy − βz

, (8)

where σ = 10 is the Prandtl number, ρ = 28 is the Rayleigh number and β = 8/3. The dif-

ferential equations were integrated with the 4th order Runge-Kutta scheme with a timestep

of dt = 0.005 and subsampled by a factor of 10. The resulting time series was normalized to

zero mean and unit variance and added to a similarly normalized series of the AR(5) process

x(t) = 0.4x(t − 1) − 0.05x(t − 2) − 0.1x(t − 3)

− 0.01x(t − 4) + 0.6x(t − 5) + 0.6ξ(t),
(9)

where ξ(t) is a white normally distributed noise input. A sample of the analyzed time

series is shown in Fig. 1. The Lorenz system has not introduced a clear oscillatory activity

into the autoregressive process. The spectrum of the time series estimated using the Welch

periodogram method is shown in Fig. 2. Its examination confirms that no clear oscillatory

peaks have arisen through the mixing process although significant power has been added by

the Lorenz oscillator to lower frequencies. In the following analysis the low frequency region

(0.05 − 1.05) is tested and the dominant peak at frequency 1.2 − 2.2 is tested as a control.
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FIG. 2: Spectrum of AR(5) process (grey line) and of the AR(5) process with the Lorenz oscillator

activity added (black line). The curves agree beyond frequency ≈ 1.5. Although the Lorenz

oscillator adds broadband power in the lower frequencies, no clear oscillatory peak can be identified

in the spectrum.

The mode extraction was accomplished using simple bandpass filtering with a 2nd order

Butterworth FIR filter (forward/backward strategy equivalent to a 4th order filter with zero

phase shift). The surrogate dataset consisted of 200 realizations of the identified AR(5)

process constructed by shuffling the residuals. For each maximum lag 200 repetitions of

the experiment were performed and the number of experiment realizations in which the test

positively detects the presence of a nonlinear component was expressed as the ”detection

rate” (the ratio of significant to total number of realizations).

The results for the detection of the Lorenz activity in the band (0.05 − 1.05) are sum-

marized in Fig. 3 which shows how the detection statistics vary with the number of points

per period of the central frequency (0.55). The plot results indicate that a sampling rate of

5 points per period of the central frequency does not facilitate a sensitive detection. Better

results are obtained for 10 or 20 points per periods.

As a control, the strong peak at frequency around 1.7 was also tested with the same

bandwidth as the Lorenz activity. The edge frequencies of the Butterworth filters were

set to (1.2 − 2.2). Positive detections lie always under 1% for both linear and nonlinear

redundancy up to a maximum lag of 60 (results not shown).

Although there is a strong peak in the power spectrum of the signal at the frequency 1.7

and none where the Lorenz activity is concentrated, the proposed method has been able to
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FIG. 3: Detection rates of nonlinear Lorenz activity in an AR(5) process (cf. Figs. 1, 2) obtained

from 200 realizations for different sampling rates: triangles represent detections for 5 points per

period, squares for 10 points per period and crosses for 20 points per period. In the bottom plot

showing positive detections from the linear redundancy statistic indicates at which maximum lag

the surrogates definitely cannot be used. Positive detections using nonlinear redundancy (top)

show the true positives detected. At 5 points per period, the detection rate does not reach above

80%, for 10 points per period, the optimal lag seems to be 24 or 26 and for 20 points per period,

maximum lags 50-58 seem to offer the highest sensitivity.

discriminate between these two cases perfectly by confirming the nonlinear activity in the

band 0.05 – 1.05, and rejecting nonlinear oscillations in the band tailored to the spectral

peak 1.2 – 2.2.

B. Experimental data analysis

Two nights of sleep EEG were analyzed from one healthy subject to show how the method

works on an experimentally obtained dataset. The EEG was measured within the framework

of the European Commission funded Siesta program. The sampling frequency was 256 Hz

and the measured signal was filtered by a high-pass filter with frequency 0.1Hz and a low

pass filter with frequency of 75Hz. The recording was split into 30s segments which have

been classified into sleep stages according to the standard Rechtschaffen & Kales [12] criteria.

In this work sigma band and alpha band activity were analyzed in the EEG obtained

from the electrode C3 with a contralateral reference on the right mastoid. Both activities
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FIG. 4: Linear redundancy curves for data (thick black line) and for 50surrogates. The redundancy

curve for the data segment matches the shape of the surrogate curves up to maximum lag of about

60 in this example.

were extracted using bandpass filtering in the same manner as in the numerical example:

using a backward/forward filtering strategy with a 2nd order Butterworth filter to nullify

the phase shift. The filter edge frequencies were set to 11Hz and 17Hz for the sigma band

and to 8Hz and 12Hz for the alpha band.

The time series was subsampled so that ≈ 9 points per period(at the center frequency

14Hz) were available for the analysis of sigma band activity. Fig. 4 shows the linear redun-

dancies for a sample 30s segment of the EEG filtered in the sigma band. The surrogates

replicate the linear structure accurately at least until lag 61 in the given example, which was

selected as the maximum lag for the data analysis in this work. Upon the examination of the

linear redundancy curves of several random segments it was ascertained that maximum lags

between 60 and 100 were adequate. The following analysis has been repeated for maximum

lags of 100 and the results were practically identical.

The detection results (number of segments with positively detected nonlinear oscillatory

activity relative to the total number of segments of a particular sleep stage) for the first

night are shown in Figs. 5 and 6. The nonlinear oscillatory activity in the sigma band was

detected only in the 2nd sleep stage using the proposed method. The relative power of

the sigma band seems to agree well with these results. In the alpha band, the proposed

detection method has not indicated any nonlinear oscillation, whereas the relative power

statistic clearly supports the claim that strong alpha band activity exists in the second sleep
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FIG. 5: Detection of nonlinear oscillations in the sigma band during the first recording night

(left). The proposed method indicates the existence of nonlinear oscillations in the sigma band

in the second sleep stage exclusively. Relative power of the sigma band (right) suggests a similar

relationship in this example.
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FIG. 6: Detection of nonlinear oscillations in the alpha band during the first recording night (left).

The proposed method does not suggest any nonlinear oscillation in the alpha band exists during

any of the sleep cycles. The relative power (right) however suggests that alpha activity is increased

in sleep stage 2 and in REM sleep.

stage and in REM sleep (stage 5). Figs. 7 and 8 show the results for the second analyzed

night of the same person. The proposed method has identified clear nonlinear oscillations in

the sigma band in the second sleep stage. Additionally in the first sleep stage, some segments

have been marked as containing nonlinear sigma band activity. The portion of significant

windows is very low (≈ 7.5%) compared to the nominal significance level of the test (5%).

The detected segments could be a result of a statistical fluctuation or could indicate that
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FIG. 7: Detection of nonlinear oscillations in the sigma band during the second recording night

(left) and related relative power in the sigma band (right).
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FIG. 8: Detection of nonlinear oscillations in the alpha band during the second recording night

(left); and related relative power in the alpha band (right).

a small amount of segments contain low amplitude sigma spindles not visually perceptible

in the broadband signal. The relative power plot seems to indicate that sigma activity

should be expected in the second sleep stage. For the alpha band the previous situation is

reiterated: the proposed method does not give any indication of nonlinear oscillations in the

alpha band in any sleep stage but relative power statistics indicate a proliferation of alpha

band activity in multiple stages (sleep stage 1, 2 and REM sleep).

IV. DISCUSSION AND CONCLUSION

The proposed method attempts to identify consistent nonlinear oscillatory activity inside

a part of a broadband signal. Frequently parts of broadband signal are extracted using
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several available methods such as bandpass filtering, wavelet convolution, EMD or SSA

decomposition. The focus of this work is a method to statistically test if such an extracted

mode can be assumed to have been generated by a nonlinear process. This is important

because even filtered noise seems to have an oscillatory character and it is often misleading

to suppose that the narrow-band signal is a result of an oscillatory activity generated by

some underlying dynamics. The test is constructed using the method of surrogate time series

which are generated using an autoregressive model fit to the data. A visual examination and

a linear redundancy index are employed to verify whether the surrogate time series match

the linear structure of the original data sufficiently well and under which conditions such

as sampling rate (points per period) and maximum lag. This information is then used to

construct a test for nonlinearity for a particular mode. If the nonlinear redundancy index

can be used to reject the hypothesis that the generating system is linear, then it is inferred

that a nonlinear process was involved in the generation of the analyzed activity and the

activity is consistent inside some analyzed time segment.

The motivation and purpose of the presented method is fundamentally different from

previously introduced method to detect particular activity types. The method introduced

by Olbrich and Achermann [13, 14] analyzes the shape of the broadband EEG signal (without

narrow-band filtering) and identifies short-lived activity by fitting an autoregressive model

to a short window and analyzing the model properties (frequency and damping). This

is an accurate determination of the existence of oscillatory activity. However the type of

oscillatory activity is not the main issue. Additionally short-lived activity such as clear sleep

spindles can be detected by the method.

Another approach advocated by Chavez et al. [15] is aimed at testing whether the

instantaneous phase extracted from a mode satisfies the conditions that are assumed to hold

for the phase. The authors use thresholds to determine whether the variations of amplitude

are slow enough with respect to the change of the phase. This method examines the inherent

variability in the phase and amplitude and is thus another approach different from both that

of Olbrich et al. and of the proposed method.

The method suggested in this work focuses on activity that has a longer duration but

may be difficult to detect without prior extraction but can be nevertheless attributed to a

source with nonlinear dynamics. A positive detection using our method supports further

analysis using phase dynamics. A negative statement can help identify signals where it
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might be futile to attempt to detect synchronization or directional influence using the phase

dynamics approach for lack of acceptable nonlinear oscillatory activity. In such cases the

standard linear coherence analysis is preferred.

The method has been shown to work on a numerical example which mixed the x-

component of the Lorenz oscillator with a 5th order autoregressive process. The method has

detected the nonlinear signal in the low frequency range. On the other hand, a clear peak

in the spectrum of the signal which arose by a filtering of white noise (by the autoregressive

process itself) has not been identified as having nonlinear content. This experiment has

shown that rather than being sensitive to the shape of the signal, the method is sensitive to

the type of dynamics that generated the signal.

Experimental data in the form of EEG from a sleeping subject is analyzed and the

findings are shown to conform to the expected results based on the Rechtschaffen & Kales

[12] criteria for sleep stage classification. The sleep stage 2, characterized by the sigma

spindles activity has been correctly identified as containing nonlinear oscillatory components.

Relative power also indicates a similar tendency for the sigma activity. In the alpha band, the

proposed method gives results consistent with the Rechtschaffen and Kales criteria stating

no oscillatory (spindle) phenomena in the alpha band during sleep, although the relative

power indicates alpha band activity in three of the five sleep stages.

The proposed method is promising for identification of nonlinear oscillatory processes

embedded or hidden in a broadband noisy background. Such problems frequently arise in

neurophysiology when analyzing signals recorded on various levels of organization of brain

tissues, as well as in other fields when possibly interacting and synchronizing oscillations

emerge in complex dynamical processes.

V. ACKNOWLEDGMENTS

The authors would like to acknowledge the Siesta Group Schlafanalyse GmbH as the

source of the sleep EEG and thank them for making their data available. We would also
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[9] M. Paluš and D. Novotná, Journal of Atmospheric and Solar-Terrestrial Physics 69, 2405

(2007).

[10] G. Schwarz, Annals of Statistics 6, 461 (1978).
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