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Chapter 1

Introduction

1.1 Motivation

Dynamic decision making under uncertainty forms the core of such seemingly diverse activities as parameter
estimation [1], filtering [2], testing of hypothesis [3], pattern recognition [4], advising [5], fault detection [6],
feedback control [7, 8] etc. Practical needs and increasing computing power make designers to address problems
of permanently increasing complexity. This successful trend reveals inherent limitations of the available tools
and stimulates attempts to overcome them.

One of the potential application of this work is the urban traffic control systems. The fact, that the
traffic control tools are significantly limited, surprises nobody: modern, powerful cars have to move slowly and
inefficiently through towns within permanently extending peak hours. Adequate extension of traffic network is
expensive and often impossible, especially in historical towns. Thus, it calls for exploiting all available means
starting from economical pressure, various regulative measures up to exploitation of modern, ideally adaptive,
feedback control.

1.2 Addressed Problem and Layout

One of the main controlled variables in traffic systems is a queue length, which expresses the optimality of a
traffic network most adequately. It is directly unobserved and, therefore, has to be estimated. At the same
time, other state variables are of a discrete-valued nature. Thus, estimation of mixed-type data (continuous and
discrete valued) models is highly desirable. A potential solution to this problem calls for a factorized version of
the state estimation, which allows to model the entries of the state individually. In this way, the task how to
obtain the estimates of the individual time-varying state factors is addressed in the paper.

The layout of the paper is the following one. The subsequent section is devoted to the state of the art of the
problem. The Chapter 2 provides the necessary basic facts, including the notations, used throughout the text,
the models and describes the general form of the prediction and filtering. The Chapter 3 offers the factorized
version of the prediction and filtering and demonstrates the example with Gaussian single output system. The
remarks close the paper.

1.3 State of the Art

In Bayesian methodology, adopted in the work, the factorized version of the filter is obtained by applying chain
rule to the state-space model. The problem was already solved for a degenerate case of time-invariant state,
which coincides with parameter estimation [5]. The obtained results indicated a chance to update posterior
probability density functions in the entry-wise manner.

The state of the art of the problem includes a series of research in the field. Most works found are devoted
to factorization of well-known Kalman filter [9]. Despite the variety of the research at this area, the global
aim of majority of these works is reduction of the computational complexity with the help of lesser rank of the
covariance matrix, but not the obtaining of the estimates of the individual state entries, which is the aim of
the present work. For example, the work [10] deals with factorization of the covariance matrix in Kalman filter,
where the covariance matrix was decomposed with the help of square root factorization. The QR-factorized
filter and smoother algorithms for use on linear time-varying discrete-time problems, that can handle the general
case of a singular state transition matrix, are discussed in [11]. The UD-factorization of Kalman filter for the
multi-sensor data fusion is presented in [12]. Another work, devoted to the UD-factorized covariance filter
application, is concerned with development of a connected element interferometer [13]. The method for particle
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6 CHAPTER 1. INTRODUCTION

filtering, which factorizes the likelihood, was proposed in [14]. It considers the problem, when the state space
can be partitioned in groups of random variables, whose likelihood can be independently evaluated.

As regards the nonlinear estimation, the following research works should be noted here. The square root
form of unscented Kalman filter (UKF) for the state and parameter estimation, which, in its turn, was proposed
as an alternative to the extended Kalman filter, used for nonlinear estimation, is described in [15]. This square-
root UKF has better numerical properties and guarantees positive semi-definiteness of the underlying state
covariance.

The factorization of the covariance matrices is also used in problems of systems classification, dealing with
multivariate Gaussian random field [16].

The problem of filtering with Gaussian models can be also considered with the help of dynamic Bayesian
networks [17]. Within this framework the problem of joint state-parameter estimation is often met.

The work [18] was directed exactly at the estimation of the individual state factors, and it proposed the
recursive algorithm of factorized filtering, requiring a special, reduced, form of the state-space model. The
present paper offers the solution without such a restriction.

Moreover, the overview of the problem showed the results mostly with Gaussian models. The general
solution, based on the Bayesian framework, can be potentially helpful in the case of other models.



Chapter 2

Preliminaries

2.1 General Conventions

The notations listed here are mostly followed in this work. If some exception is necessary it is introduced at
the place of its validity. If some verbal notions are introduced within Propositions, Remarks, etc., then they
are emphasized .

≡ means the equality by definition.

f (| ) is the letter reserved for conditional probability (density) functions (p(d)f).

The meaning of the p(d)f is given through the name of its argument. When the argument x coincides
with realization of the corresponding random variable then it is made bold, i.e. f (x).

x∗ denotes the range of x, x ∈ x∗.

x̊ denotes the number of members in the countable set x∗ or the number of entries in the vector x.

xt is a quantity x at the discrete time instant labelled by t ∈ t∗ ≡ {1, . . . , t̊}.

t̊ ≤ ∞ is called (decision, learning, prediction, control, advising) horizon.

xi
t is an ith entry of the array x at time t.

The subscript symbol is a time index.

xk:l denotes the sequence xk, . . . , xl.

xl:k is an empty sequence and reflects just the prior information if l < k.

supp [ f (x)] is the support of the pdf f () : x∗ → [0,∞], i.e., the subset of x∗ on which f (x) > 0.

2.2 Models

Here, general basis of Bayesian learning is summarized.

Agreement 2.2.1 (Models in DM)
The model of observation

f
(
yt

∣∣ut, d
1:t−1, xt

)
, t ∈ t∗, (2.1)

relates outputs yt to the current actions ut, the past data d1:t−1, and current state xt.
The model of evolution

f
(
xt

∣∣ut, d
1:t−1, xt−1

)
, t ∈ t∗, (2.2)

describes time evolution of the state xt.
The model of strategy

f
(
ut

∣∣d1:t−1, xt

)
, t ∈ t∗, (2.3)

describes, generally randomized, generating of actions ut based on d1:t−1, xt.
By definition, admissible strategies cannot exploit directly unobserved state, i.e., they have to meet so called

natural conditions of DM (NCDM)

f
(
ut

∣∣d1:t−1, xt

)
= f

(
ut

∣∣d1:t−1
)
, t ∈ t∗. (2.4)
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8 CHAPTER 2. PRELIMINARIES

2.3 Prediction and Filtering

Proposition 2.3.1 (Prediction and filtering) Under natural conditions of control, the predictor f
(
yt

∣∣ut, d
1:t−1

)
is given by the formula

f
(
yt

∣∣ut, d
1:t−1

)
=
∫

f
(
yt

∣∣ut, d
1:t−1, xt

)
f
(
xt

∣∣ut, d
1:t−1

)
dxt. (2.5)

The pdf f
(
xt

∣∣ut, d
1:t−1

)
estimating the state xt evolves according the following coupled formulas.

Data updating

f
(
xt

∣∣d1:t
)

=
f
(
yt

∣∣ut, d
1:t−1, xt

)
f
(
xt

∣∣ut, d
1:t−1

)
f
(
yt

∣∣ut, d1:t−1
)

∝ f
(
yt

∣∣ut, d
1:t−1, xt

)
f
(
xt

∣∣ut, d
1:t−1

)
(2.6)

that incorporates the experience contained in the data record dt consisting of the output yt and the input ut.
Time updating

f
(
xt+1

∣∣ut+1, d
1:t
)
∝
∫

f
(
xt+1

∣∣ut+1, d
1:t, xt

)
f
(
xt

∣∣d1:t
)

dxt. (2.7)

The recursions start from the prior pdf f (x1|u1) that expresses the subjective prior knowledge on the initial
state x1.

Proof: Implied by marginalization and the chain rule.



Chapter 3

Factorized Filtering

3.1 Factorized Version of Prediction and Filtering

Proposition 3.1.1 (Factorized prediction and filtering) Under natural conditions of control, the predic-
tor f

(
yt

∣∣ut, d
1:t−1

)
is the last pdf of the sequence of the partially conditioned predictors

f
(
yt

∣∣ut, d
1:t−1, xi+1:̊x

t

)
=
∫

f
(
yt

∣∣ut, d
1:t−1, xi:̊x

t

)
f
(
xi

t

∣∣ut, d
1:t−1, xi+1:̊x

t

)
dxi

t. (3.1)

The pdfs f
(
xi

t

∣∣ut, d
1:t−1, xi+1:̊x

t

)
, i = 1, . . . , x̊, determining the state estimate through the chain rule f

(
xt

∣∣ut, d
1:t−1

)
=∏x̊

i=1 f
(
xi

t

∣∣ut, d
1:t−1, xi+1:̊x

t

)
evolve according the following coupled formulas.

Data updating

f
(
xi

t

∣∣d1:t, xi+1:̊x
t

)
=

f
(
yt

∣∣ut, d
1:t−1, xi:̊x

t

)
f
(
xi

t

∣∣ut, d
1:t−1, xi+1:̊x

t

)
f
(
yt

∣∣ut, d1:t−1, xi+1:̊x
t

)
∝ f

(
yt

∣∣ut, d
1:t−1, xi:̊x

t

)
f
(
xi

t

∣∣ut, d
1:t−1, xi+1:̊x

t

)
(3.2)

that incorporates the experience contained in the data record dt consisting of the output yt and the input ut.
Time updating
The pdf f

(
xt+1

∣∣ut+1, d
1:t
)

is the last member of the sequence of the partially conditioned state estimates indexed
by j = 1, . . . , x̊

f
(
xt+1

∣∣∣ut+1, d
1:t, xj+1:̊x

t

)
(3.3)

∝
∫

f
(
xt+1

∣∣∣ut+1, d
1:t, xj :̊x

t

)
f
(
xj

t

∣∣∣d1:t, xj+1:̊x
t

)
dxj

t .

The recursions start from the prior pdfs f (x1|u1) that expresses the subjective prior knowledge on the initial
sequence of internal quantities.

The factorized version of the state estimate after time-updating is obtained by straightforward application of
the chain rule for pdfs.

Proof: Evaluations follows Proposition 2.3.1 and use Fubini theorem on multiple integration [19]. Let us demonstrate
its application on evaluation of the predictor.

f
(
yt

∣∣ut, d
1:t−1

)
=
∫

f
(
yt

∣∣ut, d
1:t−1, xt

)
f
(
xt

∣∣ut, d
1:t−1

)
dxt

=
∫

. . .

∫
. . .

∫
f
(
yt

∣∣ut, d
1:t−1, xt

)
f
(
x1

t

∣∣ut, d
1:t−1, x2:̊x

t

)
dx1

t︸ ︷︷ ︸
f(yt|ut,d1:t−1,x2:x̊

t )

. . . f
(
xi

t

∣∣ut, d
1:t−1, xi+1:̊x

t

)
dxi

t

︸ ︷︷ ︸
f(yt|ut,d1:t−1,xi+1:x̊

t )

× f
(
xi+1

t

∣∣ut, d
1:t−1, xi+2:̊x

t

)
. . .× f

(
xx̊

t

∣∣ut, d
1:t−1

)
dxx̊

t

Data updating (3.2) is just application of Bayes rule. Time updating of pdfs (3.3) conditioned by entries of the
older states is direct application of the general time-updating. Similarly as for prediction, jth evaluation provides the
needed transition kernel for next evaluation.
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10 CHAPTER 3. FACTORIZED FILTERING

Remark 3.1.1

1. The proposed factorization can be made even more extensive by factorizing the observation model. This
line will not be followed here to simplify the presentation. But practical algorithms should deal with such
a factorization, too.

3.2 Factorized Kalman filtering for single output system

Here, we apply Proposition 3.1.1 to linear Gaussian state space model with Gaussian prior on initial state. This
state estimation is known to be described by Kalman filter [2].

Throughout, we use repeatedly the following simple proposition.

Proposition 3.2.1 (Square completion and integration of Gaussian pdf) For real scalars x, α, β, γ and
positive scalars r, p, it holds

h(x) ≡ exp
{
− (β − γx)2

2r
− (x− α)2

2p

}
= exp

{
− (x− x̂)2

2R
− λ

2

}
with (3.4)

R =
rp

r + γ2p
, x̂ =

αr + βγp

r + γ2p
, λ =

(β − αγ)2

r + γ2p∫
h(x) dx =

√
2πR exp

{
−λ

2

}
.

Proof: By a direct comparison of quadratic forms in x in both exponents and by noticing that x-dependent factor of
h(x) is non-normalized Gaussian pdf.

The state estimate is assumed in the form

f
(
xi

t

∣∣ut, d
1:t−1, xi+1:̊x

t

)
= Nxi

t

(
µ̂t|t−1;i +

x̊∑
k=i+1

gt|t−1;ikxt;k, pt|t−1;i

)
, (3.5)

where µ̂t|t−1;i is the term depending on the data ut, d
1:t−1 only, gt|t−1;ik are coefficients, which are data and

state independent similarly as the variance pt|t−1;i > 0.
For presentation simplicity, single output case, ẙ is considered. This helps us to avoid consequences of the

incomplete factorization, cf. Remark 3.1.1. Thus, we assume

f
(
yt

∣∣ut, d
1:t−1, xt

)
= Nyt

(
ρt +

x̊∑
k=1

ct;kxt;k, rt

)
, (3.6)

where the offset ρt, coefficients ct;k, k = 1, . . . , x̊, and variance rt are assumed to be known functions of ut, d
1:t−1.

Proposition 3.2.2 (Partially conditioned Gaussian observation models) For the Gaussian factors of
the state estimate (3.5) and the observation model (3.6), it holds

f
(
yt

∣∣ut, d
1:t−1, xi:̊x

t

)
= Nyt

(
ρt;i +

x̊∑
k=i

ct;ikxt;k, rt;i

)
, (3.7)

where the state independent offsets ρt;i, coefficients ct;ik, k = i, . . . , x̊, evolve according to the following recur-
sions, for i = 1, . . . , x̊

ρt;i+1 = ρt;i + ct;iiµ̂t|t−1;i (3.8)
ct;(i+1)k = ct;ik + ct;iigt|t−1;ik, for k > i

rt;i+1 = rt;i + pt|t−1;ic
2
t;ii.

The recursions start from ρt;1 = ρt, ct;1k = ct;k and rt;1 = rt.

Proof: For i = 1, the assumed form coincides with the observation model (3.6). This verifies the first inductive step
and determines initial conditions of the recursion. In the ith induction step, we use identity (3.1), the state estimate
(3.5) and the observation model (3.6)

f
(
yt

∣∣ut, d
1:t−1, xi+1:̊x

t

)
=
∫

f
(
yt

∣∣ut, d
1:t−1, xi:̊x

t

)
f
(
xi

t

∣∣ut, d
1:t−1, xi+1:̊x

t

)
dxi

t

∝
∫

exp

−
(
yt − ρt;i −

∑x̊
k=i ct;ikxt;k

)2

2rt;i
−

(
xt;i − µ̂t|t−1;i −

∑x̊
k=i+1 gt|t−1;ikxt;k

)2

2pt|t−1;i

 dxi
t.
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The integrand has the form (3.4) with the correspondence

α ≡ µ̂t|t−1;i +
x̊∑

k=i+1

gt|t−1;ikxt;k, p ≡ pt|t−1;i, r ≡ rt;i

β ≡ yt − ρt;i −
x̊∑

k=i+1

ct;ikxt;k, γ ≡ ct;ii, x ≡ xt;i.

Proposition 3.2.1 gives the value of integral in the Gaussian form with the corresponding λ in exponent. The claimed
recursions are then implied by a trivial re-arrangement of arguments in it.

Remark 3.2.1

1. The recursions contain no numerically dangerous operation.

Proposition 3.2.3 (Factorized data updating) The functional form of the state estimate (3.5) preserves
in data updating. Specifically, after data updating

f
(
xi

t

∣∣d1:t, xi+1:̊x
t

)
= Nxt;i

(
µ̂t|t;i +

x̊∑
k=i+1

gt|t;ikxt;k, pt|t;i

)
, (3.9)

with

Kt|t;i ≡ ct;iipt;i

rt;i+1
(3.10)

µ̂t|t;i = µ̂t|t−1;i + Kt|t;i(yt − ρt;i − ct;iiµ̂t|t−1;i)
gt|t;ik = gt|t−1;ik −Kt|t;i(ct;ik + ct;iigt|t−1;ik) for k > i

pt|t;i =
rt;i

rt;i+1
pt|t−1;i

Proof: Data updating essentially completes evaluations used in proof of Proposition 3.2.2. Proposition 3.1.1, (3.2)
applied to the partial observation models (3.8) and assumed form of the state estimate (3.5) implies

f
(
xi

t

∣∣d1:t, xi+1:̊x
t

)
=

f
(
yt

∣∣ut, d
1:t−1, xi:̊x

t

)
f
(
xi

t

∣∣ut, d
1:t−1, xi+1:̊x

t

)
f
(
yt

∣∣ut, d1:t−1, xi+1:̊x
t

)
∝︸︷︷︸

(3.7)

exp

−
(
yt − ρt;i −

∑x̊
k=i ct;ikxt;k

)2

rt;i
−

(
xt;i − µ̂t|t−1;i −

∑x̊
k=i+1 gt|t−1;ikxt;k

)2

pt|t−1;i

 .

The application of Proposition 3.2.1 with the correspondence

α ≡ µ̂t|t−1;i +
x̊∑

k=i+1

gt|t−1;ikxt;k, p ≡ pt|t−1;i, r ≡ rt;i

β ≡ yt − ρt;i −
x̊∑

k=i+1

ct;ikxt;k, γ ≡ ct;ii, x ≡ xt;i.

gives the Gaussian form. The rest is again based on re-arrangement and definition of rt;i+1 (3.8). In the re-
arrangement based terms µ̂t|t−1;i, gt|t−1;i are added and subtracted, respectively, in order to get usual forms of
recursions.

For time updating, we have to evaluate partially conditioned linear Gaussian time-evolution model. The
chain rule implies that the fully conditioned model can be always given the form

f
(
xt+1

∣∣ut+1, d
1:t, xt

)
=

x̊∏
i=1

f
(
xi

t+1

∣∣xi+1:̊x
t+1 , ut+1, d

1:t, xt

)
(3.11)

=
x̊∏

i=1

Nxi
t+1

(
ζt+1;i +

x̊∑
k=i+1

αt+1;ikxt+1;ik +
x̊∑

k=1

βt+1;ikxt;k, Rt+1;i

)
,

where for all i ∈ {1, . . . , x̊} the offset ζt+1;i, coefficients αt+1;ik, k = i + 1, . . . , x̊, βt+1;ik, k = 1, . . . , x̊ and
variances Rt+1;i are assumed to be known functions of ut+1, d

1:t.
The scalar variable xj

t to be integrated out occurs now in all factors in (3.11). Thus, we need a “vector”
version of Proposition 3.2.1.
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Proposition 3.2.4 (Integration of a product of Gaussian pdfs) For real scalar x, vectors β ≡ [β1, . . . , ββ̊ ]′,

γ ≡ [γ1, . . . , γβ̊ ]′ and diagonal precision matrix ω ≡ diag
[
r−1
1 , . . . , r−1

β̊

]
, it holds

∫
h(x) dx ≡

∫
exp

−
β̊∑

i=1

(βi − γix)2

2ri

 dx ∝ exp
{
−λ

2

}
with (3.12)

λ ≡ β′
(

ω − ωγγ′ω

γ′ωγ

)
β ≡

β̊−1∑
l=1

(∑β̊
i=l Uliβi

)2

pl
, where

the upper triangular (β̊ − 1, β̊) matrix U with unit diagonal is found via U ′DU decomposition

U ′diag
[
p−1
1 , . . . , p−1

β̊

]
U = ω − ωγγ′ω

γ′ωγ
. (3.13)

Proof: By completion of squares with respect to the scalar x and integration of univariate Gaussian pdf. The generic
rank-one deficit follows from the projector type form of right-hand side in (3.13).

Remark 3.2.2

1. The mentioned matrix decomposition can be performed similarly to the algorithm REFIL [1].

Proposition 3.2.5 (Partially conditioned Gaussian time-evolution models, Factorized time-updating)
For the Gaussian factors of the state estimate (3.9) and the time-evolution model (3.11), it holds

f
(
xt+1;i

∣∣∣xi+1:̊x
t+1 , ut+1, d

1:t, xj+1:̊x
t

)
(3.14)

= Nxt+1;i

µ̂t+1|t;ij +
x̊∑

k=i+1

gt+1|t;ikjxt+1;k +
x̊∑

k=j+1

βikjxt;k, pt+1|t;ij

 ,

where for i ∈ {1, . . . , x̊} offsets µ̂t+1|t;ij, coefficients gt+1|t;ikj, k = i + 1, . . . , x̊, βikj, k = j + 1, . . . , x̊ and
variances pt+1|t;ij > 0 are the state independent. The following recursions over j = 1, . . . , x̊ hold

µ̂t+1|t;i(j+1) = µ̂t+1|t;ij +
x̊∑

l=i+1

Uilµ̂t+1|t;lj − Ui(̊x+1)µ̂t|t;j (3.15)

gt+1|t;ik(j+1) = gt+1|t;ikj +
x̊∑

l=i−1

Uilgt+1|t;lkj −
x̊∑

l=i+1

Uil

βik(j+1) = βikj +
x̊∑

l=i+1

Uilβlkj − Ui(̊x+1)gt|t;jk, k > j. (3.16)

The upper triangular (̊x, x̊ + 1) matrix U with unit diagonal as well as the positive scalars pt+1|t;i(j+1) are
obtained via the decomposition

ω − ωγγ′ω

γ′ωγ
≡ U ′diag

[
p−1

t+1|t;1(j+1), . . . , p
−1
t+1|t;̊x(j+1)

]
U with (3.17)

γ′ ≡ [β1jj , . . . , βx̊jj , 1]

ω ≡ diag
[
p−1

t+1|t;1j , . . . , p
−1
t+1|t;̊xj , p

−1
t|tj

]
.

The recursions start from µ̂t+1|t;i1 = ζt+1;i, and pt+1|t;i1 = Rt+1;i, gt+1|t;ik1 = αt+1;ik and βik1 = βt+1;ik .
The result obtained after the step x̊ provides parameters of the time-updated factors.

Proof: For j = 1, the partially conditioned time-evolution model coincides with the time-evolution model (3.11). Its
factorized form determines the initial conditions of the recursion over j. This verifies the first inductive step and
determines initial conditions of the recursion.
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In the jth induction step, we use identity (3.3), the updated state estimate (3.9) and the time-evolution model

(3.11). The symbols introduced via under-bracing refer to Proposition 3.2.4, β̊ = x̊ + 1.

f
(
xt+1

∣∣∣ut+1, d
1:t, xj+1:̊x

t

)

∝
∫ x̊∏

i=1

exp



−

xt+1;i − µ̂t+1|t;ij −
x̊∑

k=i+1

gt+1|t;ikjxt+1;k −
x̊∑

k=j+1

βikjxt;k︸ ︷︷ ︸
βi

− βijj︸︷︷︸
γi

xt;j


2

2 pt+1|t;ij︸ ︷︷ ︸
ri



× exp



−


µ̂t|t;j +

x̊∑
k=j+1

gt|t;jkxt;k


︸ ︷︷ ︸

βx̊+1

− 1︸︷︷︸
γx̊+1

× xt;j︸︷︷︸
x


2

2 pt|t;j︸︷︷︸
rx̊+1



dxt;j ∝ exp
{
−λ

2

}
, where λ =

x̊∑
i=1

[∑x̊
l=i Uil

(
xt+1;l − µ̂t+1|t;lj −

∑x̊
k=l+1 gt+1|t;lkjxt+1;k −

∑x̊
k=j+1 βlkjxt;k

)
+ Ui(̊x+1)

(
µ̂t|t;j +

∑x̊
k=j+1 gt|t;jkxt;k

)]2
pt+1|t;i(j+1)

=︸︷︷︸
Uii=1

[
xt+1;i − µ̂t+1|t;ij −

∑x̊
k=i+1 gt+1|t;ikjxt+1;k −

∑x̊
k=j+1 βikjxt;k

+
∑x̊

l=i+1 Uil

(
xt+1;l − µ̂t+1|t;lj −

∑x̊
k=l+1 gt+1|t;lkjxt+1;k −

∑x̊
k=j+1 βlkjxt;k

)
+ Ui,̊x+1

(
µ̂t|t;j +

∑x̊
k=j+1 gt|t;jkxt;k

)]2
pt+1|t;i(j+1)

.

Grouping the “constants and coefficients at xt+1;k and xt;k gives the claimed recursions. We have also used that
the overall expression is product of i-dependent quadratic forms. Here, the use of the adopted “U”-decomposition
pays back.

The last statement follows trivially from emptiness of the sum over the state entries with the time index t.

3.3 Conclusion

The work proposes solution to the factorized filtering, obtained by applying the chain rule to the state-space
models. Factorized filter provides the update of posterior probability density functions for the individual state
entries, that can be helpful for solution to the task of the joint modelling of the mixed-type data. The recursions
for calculating the factorized data updating and time updating are offered. The application of the solution is
shown at the example of the linear Gaussian single output system, which gives the factorized Kalman filtering.
For the factorized Kalman filtering the operations of completion of square and integration of non-normalized
Gaussian probability density functions are used.

Among the advantages of the proposed approach one may note, unlike the previous solution of the factorized
filtering, offered in [18], the present work does not require any restrictions for the state-space models. It should
be also noted, that the proposed recursions do not contain any numerically dangerous operations.
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