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Introduction

Various types of oscillating structures have been important for probing the hydrodynamic
properties of quantum fluids since the discovery of superfluidity. The famous Andronikashvili
experiment, the basis for the two fluid model, was a measurement of the torsional oscillations of
a pile of closely spaced discs and provided the first direct determination of the densities of the
normal (p,) and superfluid (p;) fractions in He II. It was soon realized that the ideal picture —
according to which the normal fluid is dragged along with the discs because of its finite viscosity
while the inviscid superfluid remains stationary and does not participate in the flow — can only
hold at sufficiently low oscillation amplitudes. Both the classical viscous boundary layer flows
and the quantum flows due to oscillating objects display transitions from laminar to turbulent
drag regime. It is interesting to compare classical and quantum cases.

Experimental results and discussion

Experimentally, it is best to use a tool capable of probing both classical and quantum flow
that can be changed at will in sifru. Such a tool indeed exists — the quartz tuning fork. The
flow due to its oscillatory motion and transition to turbulent drag regime in classical fluids
(cryogenic helium gas and normal liquid helium) has been investigated by our group [1] and
some aspects of it were reported at this workshop last year [2]. Based on measurements of the
velocity versus the driving force, it has been found that in viscous flow the critical velocity for
the crossover from laminar to turbulent drag in the limit U/w < £ > § scales as U, < /vw
over at least two decades of kinematic viscosity v. Here U is the peak velocity of the fork,
¢ its characteristic size, and w denotes the angular frequency of the fork. The validity of this
scaling was recently tested further by performing measurements with forks of various sizes and
oscillating at different frequencies. The scaling can be explained qualitatively by equating the
linear and the turbulent drag forces at U,,, using the approach described in Ref. [1].

The experiments and analysis has been recently extended from the classical viscous He I to
He II (a preliminary report is Ref. [2]). The left panel of Fig. 1 shows no appreciable quali-
tative change in the character of the dependence of the velocity versus the driving force when
crossing 7. On decreasing the temperature of He II along the saturated vapor pressure curve
further, however, the crossover from laminar to turbulent flow becomes gradually sharper and
the character of the curve above the critical velocity changes. This change is seen more clearly
in the right panel of Fig. 1, where the drag coefficient Cy is plotted for three different temper-
atures. Cy is defined from the equation [’ = %C’dpAU 2, where p is the fluid density and A
is the projected area of one prong of the fork on a plane normal to the bulk flow. For laminar
viscous flow the drag is approximately proportional to U, so that Cy ~ U~!. We see that in
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Figure 1: (Left) Transition from laminar to turbulent drag regime in “He, measured with a tuning
fork in normal liquid He I and superfluid He II at three temperatures. At low drive level (in the
laminar regime) the measured velocity is a linear function of the applied drive; around its critical
value the crossover to the turbulent regime occurs, characterized by a driving force proportional
to the square of the velocity. The dashed lines indicate the slopes U < F and U o V/F. (Right)
A plot of the drag coefficient Cy versus the velocity of the fork shows that in a classical fluid
(He I) there is a gradual change towards a constant value well above the transition to turbulence;
while in He II there is a sharp transition at a critical velocity US. of the superfluid.

classical viscous He 1, in the vicinity of U.,, the measured dependence Cq(U) gradually levels
off and Cy4 acquires an approximately constant value of order unity. In He II well below T
C4(U) behaves differently. It displays the laminar part, where the drag is due to the viscous
normal fluid only, and then, beyond a sharp minimum, Cy4(U) increases again and displays a
broad maximum above which it gradually becomes constant as in the classical case.

This behavior of the drag coefficient Cy(U) can be understood in the framework of the two-
fluid model. The superfluid fraction produces the sharp minimum where the turbulent drag sets
in, which is identified as its critical velocity US. It was found, at least approximately, frequency
independent, in contrast with the behaviour of classical fluid where the critical velocity was
found o /w. The phenomenological theoretical model has been developed in collaboration
with W.F. Vinen (University of Birmingham, UK); the details will be published shortly.
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