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Introduction
The subject of this paper is the numerical simulation of miscincompressible flow in two-
dimensional channels with moving walls. The Navier-Stad@sations and the continuity equa-
tion are written in the ALE (Arbitrary Lagrangian-Eulerjaform and discretized in space by
conforming finite elements satisfying the Bdka-Brezzi condition and in time by the second
order backward difference formula (BDF). The applicabitfithe developed method is proved
by the solution of a test problem of flow in a channel with a wadiving in a prescribed way.

1. Formulation of the problem
We consider the flow in a bounded 2D dom&independing on time with boundaryof), =
I'p UTp U T'y,, wherel', represents inlet or parts of imepermeable fixed wallsjs outlet
andl'yy, represents moving impermeable walls.

The dependence of the domain on time is taken into accouhttiadt aid of a regular ALE
mappingA; : Qy — Q, i.e. X — x = x(X, t). Further, we define the ALE velocity¥(X,t) =
Ix(X,t) = ZA(X), W(x,t) = W(/gl(x),t), t € [0,7], x € Q; and the ALE derivative of a
fUﬂCtiOﬂf = f(X,t): %[:f(X,t) = %(X7t)‘X:A_1(I)’ WhGFEf(X,t) = f(AtO()v t)? X e QO'

The Navier-Stokes system attains the folfowing ALE form:

A

divu =0, —
1V s Dt

u+ ((u—w)-V)u+Vp—rvAu=0. 1)

Hereu is the fluid velocity,p is the pressure and is the kinematic viscosity. System (1) is
equipped with the following initial and boundary conditgon

U(X, 0) = Uo(X), X e QOv (2)

U\er(o,T) = Up, U\Fwtx(o,T) = W‘Fwt,x(O,T)a ©))
ou

—pn + 1/% = —presn ONLp x (0,7), 4)

wherep,.; is a given reference pressure.

Now we describe the construction of the ALE mapping. We asstimt the inlet and
outlet are straight segments given by the conditidhs= a and X; = b, respectively, where
a, b € R, a < band the walls are represented by the graphs of smooth funsctio
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Ty = ¢(X1,t), X1 € [a,b],t € [0, T] (upper wall),

Ty = o(X1,t), X1 € [a,b],t €[0,T] (lower wall),
wherep(Xy,t) > p(Xy,t) forall X; € [a,b], t € [0,T]. The ALE mapping is given by the

relations
XQ—QO(XMO)
- X X, t) = p(Xq,t
T 1, 22(X,t) = (X1, )+¢(X1,O)—<,0<X1,O>

(p(X1,t) — (X1, 1)). ©))

2. Discretization
For the time discretization we introduce a time partitipn= k7, k = 0,1,..., 7 > 0. We use
the definition of the ALE derivative, put

Xn—l—1 = ’Atn+1 (X), X" = Atn (X)7 Xn_1 = Atnil(X), X e Qo
and use the approximations
W~ W(tn), p* =~ p(ty), U" = U(ty), (6)

Then the second order backward difference formula leadedapproximation of the ALE
derivative in the form

DA . 3un+1 Xn—l—l — 4un(X") + un—l Xn—l
S ) & L 27( Jrur ) ()
Substituting in the system (1), we get the system for the awkrnfunctionsu** ap™+!:
3un+1 Xn+1 — AU (x® un—l Xn—l
( ) ( >+ ( ) _ VAUn+l(Xn+1)—|—
27
+ <<un+1(xn+l> _ Wn+1(xn+1)) . V) un+1(xn+1) + vpn+1(xn+1) =0, (8)

If we define the function
tn+1

ﬂi(xn—H) _ uz‘ (AtL <A_1 (Xn-l—l)) 7 Xn+1 c Qtha

we can formulate the problem to find the functiafis* : Q,,,, — R*ap"™ : Q;, ., — R
satisfying inQ), ., the equations

3untl — 40" + 0"t
2T

+ (Ut —w ) V) Ut 4 v —vAuTt =0, (9)

divu"™ =0 (10)

and the Dirichlet boundary conditions (3) considered aetira ¢,, ;.

The space discretization is carried out by the finite elemsathod. It is based on a weak
formulation. In what follows, we shall carry out the spacecdetization of the problem to find
approximations of the functions := u"*! andp := p"*! defined in the domaify, . ,, satisfy-
ing system (9) and the boundary conditions (3) — (4). To thi eve reformulate this problem
in a weak sense. Let us set= ), ,, and define the velocity spacés = (H'(Q2))*, X =
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{v € W;v|r,ary,, = 0} and the pressure spadé = L3(Q) = {q € L*(Q); [,qdz = 0}.
Then it is easy to find that the solutiéh= (u, p) of our problem satisfies the identity

a(U,U, V) = f(V), VYV =(v,q) € (X,M). (12)
Here
a(U*,U, V) = 237 (u,v)+v(Vu,Vv) + (((u* — "t V) u,v)
—(p,V'V)+(V"U,,(]), (12)
f(v)y = 217 (417," — a”*l,v) - /FO Drefv - 0dS,

U=(u,p), V=(v,q), U = (u"p),

where by(-, -) denotes the scalar product Ir¥(€2). Moreover, we require that satisfies the
Dirichlet boundary conditions (3). The couple, p) represents the solution on the time level
tpyr, €. u™ = andp™t! = p.

In order to apply the Galerkin FEM, we shall restrict the wéaknulation from the spaces
W, X, M to approximate spacés),, X, M, h € (0, hg), ho > 0, X, = {vy, € Wy Vi|rpory, =
0}. Hence, we want to find/,, = (up,pn) € Wy x M, such thatu,, satisfies approximately
conditions (3) and

a(Up, Un, Vi) = f(Vh), V Vi, = (Vi qn) € Xp X My, (13)

The couple( X}, M) of the finite element spaces should satisfy Behiska—Brezzi (BB)
condition which guarantees the stability of the scheme: there existhstant > 0 such that

sup (p, V- w)

> CHp”LQ(Q), Vp € Mh, h e (O, ho) (14)
WeXy, |'w’H1(Q)

We proceed in the following way. Assuming thiais polygonal, by7Z,, we denote a triangu-
lation of 2 with standard properties from the FEM. The pressure spacethen approximated
by the space of piecewise polynomial functions of degtele

prp, € My={qge MNC(Q);q|x € P"(K),VK € T;,} (15)

and the velocity spac@®” and X are approximated by the spaces of piecewise polynomial
functions of degree k£ + 1:

uxw, €W, = {veWn (C@) ;vlx e (P*(K)) VK eT)  (16)
X, = WynW.

This couple( X, M) satisfies the BB condition.
In practical computations we use the Taylor-Hded P, elements.

2. Stabilization of the FEM
The standard Galerkin discretization (13) may produce @pprate solutions suffering
from spurious oscillations for high Reynolds numbers. Ineortb avoid this drawback, we



Colloguium FLUID DYNAMICS 2007
p. Institute of Thermomechanics AS CR, Prague. October 24 - 26, 2007

apply the stabilization via streamline-diffusion/Pet@alerkin technique (see, e.g., [2], [3]).
We define the stabilization terms

L,(UUV) = > 5K(iu—l/Au—|—(W-V)u—i—Vp,(W-V)v)K,
KeT, 27
1 ~n ~n— —
F(V) = % 5K(§ (4a" —a" 1) (W - V)v) (17)
KeT,

U= (u>p)7 V= (VaCI)a U = (u*,p),

where the functiom stands for the transport velociy = u* —w™ ™, (-, -) x denotes the scalar
product inL?(K) anddx > 0 are suitable parameters. Moreover, we introduce the preessu
stabilization terms

Pu(U, V) = Z x(V-u,V-V)g, U= (u,p), V=(v,q), (18)

KeTy,

with suitable parameters; > 0.

Thestabilized discrete problereads: FindJ,, = (uy, pr) € W, x M), such thatu, satisfies
approximately conditions (3) and

a(Un, Up, Vi) + L, (Un, Up, Vi) + Pr(Un, Vi) = f(Vi) + Fr(Va), (19)
YV, € X, x M,
The parameted is defined by
S = 0*h3., (20)
whereh is the size of the elemeiif measured in the direction &f. The parameter* € (0, 1]
is an additional free parameter. Further, we put
Tk =71° € (0,1]. (21)

The nonlinear problem (19) is (on each time level) solvedatieely. Starting from an
initial approximationU}(Lo) and assuming that already iterﬁﬁ) has been computed, we define
Ut e Wy, x M, by

a(UP, U vy + (0, U v (22)
FPLUSY V) = F(Va) + Fu(Va),
YV, € X3, X M,,.
For each time level, . ; we set
Ul = @a" — 4" pr). (23)

As numerical experiments show, only a few iterations (22)eht@ be computed on each time
level.
Obviously, problem (22) is linear. It is equivalent to thedar algebraic system
Su+27(B+ C)p = f, BTu =0, (24)
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Figure 1: Velocity vectors at= 1.7 andt = 3.3

wherew € R™ andp € R™ are vectors whose components represent degrees of freedom
defining the velocityu and the pressurg respectivelyS is a nonsingularn,; x n, matrix and

B andC aren;, x m; matrices. The solution of this system was realized by thectisolvers
UMFPACK ([1]), which works sufficiently fast for systems witlp to10° equations.

4. Test problem

In the test problem we considered the following data:= —2, b = 2, p(X;,t) =
sint (cos(mX1)+1) /4, X3 €[-1,1], p(X1,t) =0, X; € [-2,1)U(-1,2], ¢(X1,t) =
1, X €[-22], te[0,T)] Further, we seb,.r = 0, up = (1,0),up = (1,0) at the inlet,
otherwiseup = (0,0), 7 = 0.01,» = 0.001.

Figure 1 shows the velocity field at tinie= 1.7 andt = 3.3.
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