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Introduction

This article deals with the numerical solution of compressible turbulent flows in aerodynamics.
Compressible turbulent flow is described by the system of Favre averaged Navier-Stokes equa-
tions, which are closed by the explicit algebraic Reynolds stress model (EARSM) of Wallin and
Johansson. The averaged Navier-Stokes equations together with EARSM model of turbulence
are discretized by the finite volume method based on HLLC Riemann solver with piecewise lin-
ear WENO reconstruction and explicit two-stage TVD Runge-Kutta method. Source terms in
transport equations of turbulence model are treated by point implicit method for better stability
of explicit scheme. The numerical method is validated by comparison to theoretical results for
the subsonic flow around the flat plate and experimental results for the transonic flow around
the RAE 2822 airfoil.

1. Governing equations

The most general model of compressible turbulent flow is system of Navier-Stokes equations
[2]. Solving this system with proper initial and boundary conditions leads to the Direct Numer-
ical Simulation (DNS). Unfortunately, for applications of our interest this is impossible due to
high Reynolds numbers and consequently small scales of turbulence which must be modelled.
Mathematical model used in this work is based on decomposition of instantaneous variables to
the averaged part and fluctuating part:

• Classical time averaging (Reynolds averaging) for density and pressure

Φ = lim
T→∞

1

T

ˆ t+T

t

Φ(τ)dτ (1)

Φ = Φ + Φ′ (2)

• Density weighted time averaging (Favre averaging) for components of velocity vector and
total energy

Φ̃ =
1

ρ
lim

T→∞

1

T

ˆ t+T

t

ρ(τ)Φ(τ)dτ (3)

Φ = Φ̃ + Φ′′ (4)

WhereΦ is some instantaneous variable andΦ′ andΦ′′ are fluctuating parts for Reynolds av-
eraging and Favre averaging respectively. Substituting decomposed variables into the system
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of Navier-Stokes equations and performing the density weighted averaging, we obtain Favre
averaged Navier-Stokes equations:

∂ρ

∂t
+

∂(ρũj)

∂xj

= 0 (5)

∂(ρũi)

∂t
+

∂(ρũiũj)

∂xj

+
∂p

∂xi

=
∂

∂xj

(
τij − ρu′′i u

′′
j

)
(6)

∂ẽ

∂t
+

∂

∂xj

[
(ẽ+p)ũj

]
=

∂

∂xj

[(
τij−ρu′′i u

′′
j

)
ũi

]
− ∂

∂xj

[
qj +ρu′′j h

′′− τiju′′i +ρu′′j
1

2
u′′i u

′′
i

]
(7)

Whereτij andqj are given by:

τij = 2µSij, µ = µref

(
ρref

pref

p

ρ

) 3
4

, Sij =
1

2

(
∂ũi

∂xj

+
∂ũj

∂xi

− 2

3
δij

∂ũk

∂xk

)
(8)

qj = − κ

κ− 1

µ

Pr

(
p

ρ

)
(9)

To close this system is also necessary to specify equation of state. Assuming a calorically
perfect gas and following the same procedure as in the case of Navier-Stokes equation, we
derive relation:

p = (κ− 1)

[
ẽ− 1

2
ρũjũj − ρk

]
(10)

Where k is turbulent kinetic energy defined as

k =
1

2
u′′i u

′′
i (11)

2. Model of turbulence and closure approximations

Favre averaged Navier-Stokes equations form an open set of partial differential equations. To
close this system, we must introduce some suitable approximations of terms with fluctuations.
For Reynolds stress tensorτ t

ij = −ρu′′i u
′′
j can be derived transport equation [7]. An alterna-

tive to using Reynolds stress transport equation is to reformulate the equation in terms of the
Reynolds stress anisotropy and the turbulent kinetic energy [6]. After this reformulation we
obtain transport equation for the Reynolds stress anisotropy in following symbolic form

TR(aij) = fij(akl, Ω
∗
kl, S

∗
kl) (12)

WhereTR(aij) represents the advection and diffusion of the Reynolds stress anisotropy andfij

the production, dissipation and redistribution terms [6]. In flows where the anisotropy varies
slowly in time and space, the transport equation is reduced to an implicit algebraic relation1 in
form

0 = fij(akl, Ω
∗
kl, S

∗
kl) (13)

1In many flows of engineering interest the flow is steady and advection and diffusion can be neglected.
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WhereΩ∗
kl andS∗kl are normalized tensors of rotation and strain-rate defined as

Ω∗
kl = τΩkl, S∗kl = τSkl (14)

andτ is turbulent time scale. System of algebraic equation (13) not include any diffusion or
damping and therefore, it is very difficult to solve numerically. Computational efforts has been
found to be so excessively large, that advantages of using algebraic Reynolds stress model
instead of differential Reynolds stress transport model are lost. For that reason, the work in the
area of algebraic Reynolds stress modelling has been focused on finding explicit expressions.
In our case, we had chosen explicit algebraic Reynolds stress model (EARSM) of Wallin and
Johansson [6]. Reynolds stress tensor is given by

τ t
ij = −ρu′′i u

′′
j = 2µT Sij −

2

3
δijρk − ρka

(ex)
ij (15)

Where turbulent viscosityµT is defined as

µT = −1

2
β1ρkτ (16)

and extra anisotropya(ex)
ij as:

a
(ex)
ij = β4(S

∗
ikΩ

∗
kj − Ω∗

ikS
∗
kj) (17)

Coefficientsβ1 andβ4 are given by relations

β1 = −6

5

N

N2 − 2II Ω

, β4 = −6

5

1

N2 − II Ω

(18)

ParameterN is defined as:

N =


C′

1

3
+

(
P1 +

√
P2

) 1
3 + sign

(
P1 −

√
P2

)∣∣(P1 −
√

P2

∣∣ 1
3 pro P2 ≥ 0

C′
1

3
+ 2

(
P 2

1 − P2

) 1
6 cos

[
1
3
arccos

(
P1√

P 2
1−P2

)]
pro P2 < 0

(19)

WhereP1 andP2 are given by relations:

P1 =

(
C ′2

1

27
+

9

20
II S −

2

3
II Ω

)
C ′

1 (20)

P1 = P 2
1 −

(
C ′2

1

9
+

9

10
II S +

2

3
II Ω

)3

(21)

InvariantsII S a II Ω are given by relations

II S = tr{S∗ikS∗kj}, II Ω = tr{Ω∗
ikΩ

∗
kj} (22)

Turbulent time scaleτ is defined as

τ = max

(
1

β∗ω
, Cτ

√
µ

β∗ρkω

)
(23)
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Constants of turbulence model areC ′
1 = 1.8 a Cτ = 6. This version of EARSM is based on

transport equations of Kok’s TNTk − ω model of turbulence:

∂(ρk)

∂t
+

∂(ρkũj)

∂xj

= P − β∗ρkω +
∂

∂xj

[(
µ + σ∗µT

) ∂k

∂xj

]
(24)

∂(ρω)

∂t
+

∂(ρωũj)

∂xj

= α
ω

k
P − βρω2 +

∂

∂xj

[(
µ + σµT

) ∂ω

∂xj

]
+ CD (25)

Where productionP and cross diffusionCD are defined as

P = −ρu′′i u
′′
j

∂ũi

∂xj

= τ t
ij

∂ũi

∂xj

, CD =
1

2

ρ

ω
max

(
∂k

∂xj

∂ω

∂xj

, 0

)
(26)

Constants of TNT model of turbulence are:

α = 0.553, β∗ = 0.09, β = 0.075, σ∗ =
2

3
, σ = 0.5 (27)

It is also necessary to approximate rest of the unknown correlations in equation (7). Correlation
betweenu′′j andh′′ is turbulent transport of heat

qt
j = ρu′′j h

′′ =
µT

Prt

Pr

µ
qj (28)

WherePrt is turbulent Prandtl number, which can be chosen asPrt = 0.91. Finally, last two
correlations in equation (7) are turbulent transport and molecular diffusion of turbulent energy.
This terms are approximated as

dt
j = τiju′′i − ρu′′j

1

2
u′′i u

′′
i =

(
µ + σ∗µT

) ∂k

∂xj

(29)

3. Numerical solution

We consider only two-dimensional flow in this work. System of Favre averaged Navier-Stokes
equations with transport equations for turbulent kinetic energyk (24) and specific dissipation
rateω (25) can be rewritten in a vector form:

∂W

∂t
+

∂F

∂x
+

∂G

∂y
=

∂R

∂x
+

∂S

∂y
+ Q (30)

W = (ρ, ρu, ρv, e, ρk, ρω)T

F =
(
ρu, ρu2 + p, ρuv, (e + p)u, ρuk, ρuω

)T
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G =
(
ρv, ρuv, ρv2 + p, (e + p)v, ρvk, ρvω

)T

R =
(
0, τxx + τ t

xx, τxy + τ t
xy, u(τxx + τ t

xx) + v(τxy + τ t
xy)− qx − qt

x + dt
x, d

t
x, o

t
x

)T

S =
(
0, τyx + τ t

yx, τyy + τ t
yy, u(τyx + τ t

yx) + v(τyy + τ t
yy)− qy − qt

y + dt
y, d

t
y, o

t
y

)T

Q = (0, 0, 0, 0, P − β∗ρkω, α
ω

k
P − βρω2 + CD)T

For simplicity were omitted strips marking averaged variables. The numerical solution can be
obtained by finite volume method in semi-discrete form

dWij(t)

dt
= − 1

|Ωij|

4∑
k=1

F̂k∆Sk +
1

|Ωij|

4∑
k=1

(Rnx + Sny)k∆Sk + Qij (31)

F̂ = Fnx + Gny (32)

WhereWij(t) is the averaged solution over a cellΩij, ~n = (nx, ny) is the outer unit normal
vector and∆S is the size of interface.R andS are viscous numerical fluxes, which are always
approximated by central differencing [3].Qij is vector of source terms, which is evaluated
directly from known values ofWij. F̂ is the inviscid numerical flux. In our case, we use HLLC
Riemann solver numerical flux:

F̂HLLC
k =


FL proSL > 0
F (W ∗

L) proSL ≤ 0 < SM

F (W ∗
R) proSM ≤ 0 ≤ SR

FR proSR < 0

(33)

Where:

FL =


ρLũL

ρLuLũL + pLnx

ρLvLũL + pLny

(eL + pL)ũL

 FR =


ρRũR

ρRuRũR + pRnx

ρRvRũR + pRny

(eR + pR)ũR

 (34)

F (W ∗
L) =


ρ∗LSM

(ρu)∗LSM + p∗nx

(ρv)∗LSM + p∗ny

(e∗L + p∗)SM

 F (W ∗
R) =


ρ∗RSM

(ρu)∗RSM + p∗nx

(ρv)∗RSM + p∗ny

(e∗R + p∗)SM

 (35)

W ∗
L =


ρ∗L

(ρu)∗L
(ρv)∗L
e∗L

 = ΩL


ρL(SL − ũL)

(SL − ũL)(ρu)L + (p∗ − PL)nx

(SL − ũL)(ρv)L + (p∗ − PL)ny

(SL − ũL)eL − pLũL + p∗SM

 (36)

W ∗
R =


ρ∗R

(ρu)∗R
(ρv)∗R
e∗R

 = ΩR


ρR(SR − ũR)

(SR − ũR)(ρu)R + (p∗ − PR)nx

(SR − ũR)(ρv)R + (p∗ − PR)ny

(SR − ũR)eR − pRũR + p∗SM

 (37)
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ΩL =
1

SL − SM

ΩR =
1

SR − SM

(38)

p∗ = ρL(ũL − SL)(ũL − SM) + pL = ρR(ũR − SR)(ũR − SM) + pR (39)

Wave speedSM is taken form Batten [1]:

SM =
ρRũR(SR − ũR)− ρLũL(SL − ũL) + pL − pR

ρR(SR − ũR)− ρL(SL − ũL)
(40)

andSL andSR are taken from Einfeldt [1]:

SL = min
[
λ1(WL), λ1(W

Roe)
]

(41)

SR = max
[
λm(WR), λm(WRoe)

]
(42)

Whereλ1(WL) andλm(WR) are the smallest and largest eigenvalues eigenvalues of the Jacobi
matrix of inviscid flux andλ1(W

Roe) andλm(WRoe) are the smallest and largest eigenvalues of
the Roe matrix [3]. Because basic method suffers from strong artificial dissipation, the higher
order method is needed. Second order accuracy in space is archived by the WENO piecewise
linear reconstruction [3].
The resulting system of ordinary differential equations is then solved by the explicit two-stage
TVD Runge-Kutta method [3] with local time-step. It is a bit difficult to solve turbulence
equations by the explicit method (especially with local time-step), because they are very stiff
and thus they are very sensitive to small disturbances, which usually leads to instability and
rapid divergence. Therefore, it is reasonable to use point implicit method for discretization of
source terms. It is well known, that implicit method is unconditionally stable in linear case and
in non-linear case allows to use very high values of CFL. Let us start from semi-discrete form
of finite volume method

dW

dt
= R(W ) + Q(W ), W = (ρk, ρω)T (43)

WhereR(W ) contains convective and viscous terms andQ(W ) contains source terms. Con-
vective and viscous part is discretized by explicit method and part with source terms by implicit
method

W n+1 −W n

∆t
= R(W n) + Q(W n+1) (44)

Now we split system (44) by introducing new variableW ∗, tn < t∗ < tn+1:

W n+1 + W ∗ −W ∗ −W n

∆t
−R(W n) = Q(W n+1) (45)

W ∗ −W n

∆t
−R(W n) = 0 ⇒ W ∗ −W n

∆t
= R(W n) (46)

W n+1 −W ∗

∆t
= Q(W n+1) (47)

System (46) is solved by forward Euler method in form

W ∗ = W n + ∆tR(W n) (48)
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In system (47) is used linearization in form

Q(W n+1) ≈ Q(W ∗) +
∂Q

∂W

(
W n+1 −W ∗) (49)

After substituting relation (49) to system (47) and some calculation, we obtain(
I

∆t
− ∂Q

∂W

)(
W n+1 −W ∗) = Q(W ∗) (50)

Considering that we are interested in the stationary solution, we can use approximation of ja-
cobian ∂Q

∂W
in form of another, ”similar” matrix. In our case, we use approximation by jacobian

∂Q
∂W

−
from negative source terms, and we are neglecting off-diagonal elements. This matrix

takes following form for TNT model of turbulence

∂Q

∂W

−
=

(
−β∗ω 0

0 −2βω − CD/ρω

)
(51)

After some calculations, we obtain

W n+1 = W ∗ +
∆t

1−∆tA
Q(W ∗) (52)

WhereA is vector given by

A = (−β∗ω,−2βω − CD/ρω)T (53)

From linear analysis resulting, that method will be positive and stable if we use explicit method
in the case of positive eigenvalues of matrix (51) and implicit method in the case of negative
eigenvalues of matrix (51). For that reason, relation (53) is reformulated to final form

W n+1 = W ∗ +
∆t

1−∆t min(A, 0)
Q(W ∗) (54)

Resulting scheme is two-stage explicit method:

W ∗ = W n + ∆tR(W n)

W n+1 = W ∗ +
∆t

1−∆t min(A, 0)
Q(W ∗) (55)

After substituting first step to second and some calculation, we obtain

dW (., tn)

dt
=

W n+1 −W n

∆t
+O(∆t) = R(W n)+Q(W n+∆tR(W n))

1

1−∆t min(A, 0)
(56)

For∆t → 0, we obtain original equation (43). That means, that this method is first order accu-
rate.
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4. Validation and results

Validation of numerical method is done by comparison to the theoretical results for the sub-
sonic flow around the flat plate. Here, we compare profiles of velocity and distributions of
friction coefficient.
Problem was solved on computational domain (fig. 1) covered by structured H-type mesh with
110x80 cells with flow specificationsM∞ = 0.2, α∞ = 0◦, Re = 8 · 105.

X

Y

0 5 10 15
0

Figure 1: Computational domain and mesh for the flow around the flat plate

(a) Profiles of velocity atx = 12.68 (b) Distributions of friction coefficient

Figure 2: Subsonic turbulent flow around the flat plate

Next case is well known transonic flow around the RAE 2822 airfoil. We consider case 9
(M∞ = 0.734, α∞ = 2.54◦, Re = 6.5 · 106), where no separation occurs downstream of the
shockwave position and case 10 (M∞ = 0.754, α∞ = 2.57◦, Re = 6.2 ·106), where shockwave-
boundary-layer interaction induces massive separation of boundary layer. Problem was solved
on computational domain (fig. 3) covered by structured C-type mesh with 300x70 cells with
∆y1 = 5 · 10−6.
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(a) Computational domain and
mesh

(b) Detail of mesh in the area of
profile

Figure 3: Computational domain and mesh for the flow around the RAE 2822 airfoil

(a) Distributions of pressure coefficient (b) Distributions of friction coefficient

Figure 4: Transonic flow around the RAE 2822 airfoil, case 9

(a) Distributions of pressure coefficient (b) Distributions of friction coefficient

Figure 5: Transonic flow around the RAE 2822 airfoil, case 10
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5. Conclusion and remarks

We described mathematical model based on Favre averaged Navier-Stokes equations and ex-
plicit algebraic Reynolds stress model of turbulence. From test cases is clear, that EARSM
model improve prediction accuracy in comparison to the two equation eddy-viscosity models.
EARSM model archived similar results as Kok’s TNT model in case 9 (flow around the RAE
2822), but in the case 10, where separation of boundary layer occurs, EARSM model predicted
much better shockwave position then TNT model. Also in case of the flow around the flat
plate both models archived similar results, but EARSM model predicted much better transition
between laminar and turbulent flow regime. Quality of transition position is now under investi-
gation.
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