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Introduction
This paper presents some of the results of numerical simulation of flow and pollution dispersion
in the proximity of significant terrain obstacles. The mathematical model is based on Reynolds
averaged Navier-Stokes equations for incompressible flows. Turbulent closure of the model is
obtained by simple algebraic turbulence model. The numerical solution is carried out by the
semi-implicit finite-difference scheme. The results of simple tests are presented and summa-
rized. Model sensitivity has been studied with respect to simulated obstacle size and shape.

This study has been motivated by the request to evaluate the possible effect of downwind
obstacles on the deposition of wind drifted coal dust. In the presented part of this project we
have concentrated our attention to the detailed computation of flow field characteristics in the
vicinity of large terrain obstacles. Special attempt has been made to localize the places where
the flow is decelerating or recirculating. These flow regimes areas could be critical from the
point of view of surface particle deposition.

The complex terrain profile used in this study represents a part of the opencast coal mine
where is placed a coal storage. This storage acts as a source of coal dust which is drifted by
the wind. The detailed orography profile was obtained by a combination of data from several
geographical resources. In order to get maximum of realistic details a laser scan of the terrain
was performed and included into the orography profile. The aim of this study is to give both
qualitative and quantitative guidelines for the evaluation of the environmental impact of artificial
obstacles placed downwind from the coal storage.

Mathematical Model
The flow in atmospheric boundary is turbulent in most simulations. The fluid motion can be thus
described by the Reynolds averaged Navier-Stokes equations (RANS). The non-conservative
form of the RANS system is represented by the following equations:

ux + vy + wz = 0 (1)

Vt + uVx + vVy + wVz = −∇p

ρ
+ [KVx]x + [KVy]y + [KVz]z (2)

Here V = col(u, v, w) is the velocity vector, p is pressure, ρ is density.
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The same form as the momentum equations take also the transport equations for concentra-
tion of passive pollutants.
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(3)

Here Ci is the concentration of i-th pollutant and σ denotes the turbulent Prandtl’s number.
The turbulence model is based on the Boussinesq hypothesis on the turbulent diffusion co-

efficient K = ν + νT which is expressed as a sum of molecular and eddy viscosity. Finally the
following algebraic turbulence model was used to complete the governing system:

K = ν + νT where νT = `2
[(∂u

∂z

)2

+
(∂v

∂z

)2]1/2

(4)

The mixing length ` is computed according to the following formula:

` =
κ(z + z0)

1 + κ (z+z0)
`∞

where `∞ =
27 |VG| 10−5

fc

(5)

Here fc = 1.1 · 10−4ms denotes the Coriolis parameter and VG is the geostrophic wind velocity
at the upper boundary of domain.

Numerical Solution

Finite-difference discretization

To discretize the governing system we have constructed the non-orthogonal structured boundary
(i.e. terrain) following mesh. Because of the mesh non-orthogonality we have to transform the
equations from the x− y − z coordinates to the mesh-wise directional local coordinate system
s1 − s2 − z :

α

x

z

s1

∂
∂x

= 1
cos α

(
∂

∂s1
− ∂

∂z
sin α

)
β

z

s2

y

∂
∂y

= 1
cos β

(
∂

∂s2
− ∂

∂z
sin β

)
Figure 1: Local coordinate transformation

To simplify notation of discretized equations we introduce operators of differences. The
symbol δs denotes the central difference with respect to direction s. Similarly the

−→
δs ,
←−
δs denote

the forward and backward differences.
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Figure 2: Finite-difference mesh

←−
δs =

Vi − Vi−1

∆s−

−→
δs =

Vi+1 − Vi

∆s+

δs =
1

2
(
←−
δs +

−→
δs )

Semi-implicit finite-difference scheme
The system of governing equations (1),(2) written here with the additional assumption ρ0 =
const for simplicity:

ux + vy + wz = 0 (6)

Vt + uVx + vVy + wVz = −∇p

ρ0

+ [KVx]x + [KVy]y + [KVz]z︸ ︷︷ ︸
=RHS

(7)

Using the local coordinate transformation described on figure 1 we can rewrite this system so
that the continuity equation (6) will take the form:

us1

cos α
+

vs2

cos β
+ wz − uz tan α− vz tan β = 0 (8)

The momentum equations will then be modified to the following form 1:

Vt + ũVs1 + ṽVs2 + w̃Vz = R̃HS (9)

The modified coefficients are defined as follows:

ũ =
u

cos α
ṽ =

v

cos β
w̃ = w − u tan α− v tan β

The right-hand side is transformed in a similar way. The left-hand side of momentum equations
is discretized by the following way :

Vt ∼
−→
δt V

n
i,j,k

ũVs1 ∼
1

2

(
ũn

i+1/2

−→
δs1V

n
i,j,k + ũn

i−1/2

←−
δs1V

n+1
i,j,k

)
1The R̃HS and RHS are the modified right-hand sides
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ṽVs2 ∼
1

2
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2
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w̃Vz ∼

1
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δz Vi,j,k + w̃n

k−1/2

←−
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)n+1}
The coefficients ũ, ṽ, w̃ are fixed at the time-level n in order to linearize locally the system to
obtain Oseen-like iterative solver. The combination of different asymmetric space discretization
at time levels n and n+1 allows us to construct finally the numerical scheme that is centered and
second order in both space and time. The computational stencil is different for discretization at
time level n and n + 1.
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Figure 3: Computational stencil for semi-implicit FD scheme

The dissipative terms on right-hand side are approximated in the same manner. By this
discretization we obtain in each column of grid-points the system of linear algebraic equations
of the following type:

a1V
n+1
i,j+1,k + a2V

n+1
i,j,k + a3V

n+1
i,j−1,k + a4V

n+1
i,j,k+1 + a5V

n+1
i,j,k−1 = RHS (10)

This system is solved iteratively in vertical plane i = const. So the five-diagonal system is
converted into three-diagonal.

a5V
η+1
i,j,k−1 + a2V

η+1
i,j,k + a4V

η+1
i,j,k+1 = RHS − a1V

η
i,j+1,k − a3V

η+1
i,j−1,k (11)

The η denotes here the iterative index. Usually after 3 ÷ 5 iterations we know the values of
V = (u, v, w)T with sufficient accuracy. Exactly the same solution scheme can also be used for
the scalar transport equations

In the steady (or quasi steady) problems the artificial compressibility method can be used
and in such a case the pressure is updated from the modified continuity equation.

pt = −(ux + vy + wz) (12)
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Also here the above described semi-implicit discretization is used to keep the consistency with
the momentum equations solver.

In order to improve the convergency of this method for high Reynolds numbers we add the
artificial viscosity terms DVn

i,j,k. Then we skip to (n + 1)-th time level and repeat the cycle.

Artificial viscosity
The combination of artificial dissipation of second and fourth order is used.

DVn
i = D2Vn

i + D4Vn
i

D2Vn
i = ε̃2∆x3 ∂

∂x
|Vx|Vx = ε̃2∆x2(εi+1/2Vx − εi−1/2Vx)

εi+1/2 =
{ |Vi+1 − Vi| for |Vi+1 − Vi| < K

10

K
10

for |Vi+1 − Vk| ≥ K
10

D4Vn
i = ε̃4∆x4Vxxxx = ε̃4

(
Vn

i−2 − 4Vn
i−1 + 6Vn

i − 4Vn
i+1 + Vn

i+2

)
The K = ν + νt is coefficient of turbulent diffusion. The coefficients ε̃2, ε̃4 ∈ R are constants
of order ∆x2 respectively ∆x4.

Numerical results
Numerical experiments were performed in a 3D domain of the size 500×250×400 meters. The
bottom boundary represents a complex terrain orography. The contours of terrain elevation are
shown in the following figure 4.
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Figure 4: Terrain elevation contours.

The height difference between highest and lowest point of the terrain profile is about 70 me-
ters. The coal storage is represented by a rectangular surface source of pollution. The dimension
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of this source is about 40×20 meters and is centered at position x=125, y=120. Its location is
visible in the figure 5. The wind flow in the model domain is forced by the prescribed velocity
profile at the inlet (x=0). The maximum velocity 10m/s is achieved at the upper boundary of
the domain.

The figure 5 shows the concentration contours and wind flow streamlines at near-ground
level for the basic variant with no obstacles. This variant is used for reference and comparison
because it represents the actual state.
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Figure 5: Concentration contours and wind flow streamlines at the near-ground level for the
case without obstacles.

In order to slow down and deflect the flow we have placed different obstacles downwind
from the simulated source of pollution. The obstacles differ in their shape and size. The first
serie of experiments uses an obstacle formed by a block with horizontal projection of the size
10×60 meters which is rotated by 45 degrees with respect to mainstream direction. The height
of the obstacles varies between 3 and 12 meters. The results of simulations for flow and pol-
lution dispersion for obstacles with heights 3, 6, 9 and 12 meters are shown in the following
figures.
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Figure 6: Concentration contours and wind flow streamlines at the near-ground level for the
case with obstacle of height 3 meters.
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Figure 7: Concentration contours and wind flow streamlines at the near-ground level for the
case with obstacle of height 6 meters.
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Figure 8: Concentration contours and wind flow streamlines at the near-ground level for the
case with obstacle of height 9 meters.
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Figure 9: Concentration contours and wind flow streamlines at the near-ground level for the
case with obstacle of height 12 meters.

Two other variants have been tested as an attempt to increase the pollution plume deflection.
Two obstacles of smaller size and different configuration have been used. In both cases the
height of obstacles was 9 meters.
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Figure 10: Concentration contours and wind flow streamlines at the near-ground level for the
case with two parallel obstacles of height 9 meters.
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Figure 11: Concentration contours and wind flow streamlines at the near-ground level for the
case with two obstacles of height 9 meters.

The simulation results have shown, that the obstacles placed in the proximity of the pollution
source have only local impact at both flow field and pollution concentrations. It is necessary to
keep in mind that this is only valid for passive pollutant without sedimentation. In order to give
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some idea for evaluation of sedimentation we have compared the above mentioned variants of
obstacles from the point of view flow speed-up/slow-down at the near-ground level. As the flow
slows down, the sedimentation of wind driven particles becomes more significant and thus it is
of essential importance to find the regions of decelerated flow. All the variants are compared
with the basic variant without obstacles. This allows us to separate the effect of obstacles on
flow deceleration.
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Figure 12: Contours of near-ground wind sped-down for the case of obstacle with height 3
meters with respect to variant with no obstacles.
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Figure 13: Contours of near-ground wind sped-down for the case of obstacle with height 6
meters with respect to variant with no obstacles.



Colloquium FLUID DYNAMICS 2007
Institute of Thermomechanics AS CR, Prague. October 24 - 26, 2007 p.

x

y

0 100 200 300 400 500
0

50

100

150

200

Figure 14: Contours of near-ground wind sped-down for the case of obstacle with height 9
meters with respect to variant with no obstacles.
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Figure 15: Contours of near-ground wind sped-down for the case of obstacle with height 12
meters with respect to variant with no obstacles.
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Figure 16: Contours of near-ground wind sped-down for the case of two parallel obstacles with
height 9 meters with respect to variant with no obstacles.
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Figure 17: Contours of near-ground wind sped-down for the case of two obstacles with height
9 meters with respect to variant with no obstacles.

Conclusions, remarks

From the presented tests it is possible to draw the following conclusions:

• The selected mathematical model is able to describe properly the pollution dispersion
problems in complex terrain.
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• The numerical method used to solve the set of governing equations seems to be suffi-
ciently robust and efficient for the appropriate resolution of given class of problems.

• The presented numerical simulations have shown that the effect of simulated obstacles on
the flow and pollution dispersion has only local impact on both velocity and concentra-
tion field. This is caused mainly by the complexity of the terrain, where the orography
profile involves height changes with scales much larger than the maximum height of the
simulated obstacles. Thus the orography effect is dominant in this case.

• More detailed study of dust sedimentation should be performed in order to quantify the
effects of obstacles on deposition of particles of different sizes.
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