
Scheduling of iterative algorithms on FPGA with pipelined
arithmetic unit

Přemysl Š̊ucha1, Zdeněk Pohl2 and Zdeněk Hanzálek1

1Department of Control Engineering, Faculty of Electrical Engineering
Czech Technical University in Prague

{suchap,hanzalek}@fel.cvut.cz

2 Department of Signal Processing, Institute of Information Theory and Automation
xpohl@utia.cas.cz

Abstract

This paper presents a scheduling tech-
nique for library of arithmetic logarithmic
modules for FPGA illustrated on RLS
filter for active noise cancellation. The
problem under assumption is to find an
optimal periodic cyclic schedule satisfying
the timing constraints. The approach
is based on transformation to monopro-
cessor cyclic scheduling with precedence
delays. We prove that this problem is NP-
hard and we suggest solution using Inte-
ger Linear Programming where moreover
iteration overlapping or Cmax can be min-
imized. Results of optimized application
show the utility of this approach.

Keywords: Cyclic scheduling, monopro-
cessor, iterative algorithms, integer linear
programming, FPGA.

1 Introduction

This paper deals with automatic parallelisation of
algorithms typically found in control and signal
processing applications. Dynamic properties of
these applications are characterized by their time
constants. Due to Shanon’s theorem the length of
the sampling period needs to be at maximum a
half of the shortest time constant of the system
under control. These applications have natural
real-time requirements since the algorithm release
date is at the beginning of the sampling period
and the deadline is at the end of the sampling
period. Advanced applications usually require
quite complex algorithms typically given by the
set of recurrent equations (e.g. Recursive Least
Squares identification used for adaptive control and
filtering).

Such algorithm can be implemented as a com-
putation loop performing an identical set of op-
erations repeatedly. Each repetition of the loop
is called iteration. A parallel implementation of

the loop implies that each operation of the loop is
mapped on a hardware unit at a given time instant,
therefore the scheduling theory can be used to find
start times of these operations.

Cyclic scheduling deals with a set of operations
(generic tasks) that have to be performed infinitely
often [12]. This approach is also applicable if
number of repetition of loop is large enough. A
schedule is called nonoverlapped if all operations
belonging to the same iteration have to finish
before the next operations of the next iteration can
start. If operations belonging to different iterations
can execute simultaneously, the schedule is called
overlapped [23]. Overlapped schedule can be more
effective especially if hardware units are pipelined.
The periodic schedule is a schedule of one iteration
is repeated with a fixed time interval called period.
The aim is then to find a periodic schedule with
minimum period [12, 20, 8, 11, 21].

If the number of processors is not limited, a
periodic schedule can be build in polynomial time
[12, 8]. It is proven that for fixed number of
processors the problem becomes NP-hard. [20]
Anyhow if all tasks have unit processing times, sev-
eral special cases with polynomial time complexity
are available [20]. Another approaches are based
on heuristiques [11, 12, 7] or approximation list
scheduling algorithms [5, 6]. Some solutions are
based on branch and bound techniques or integer
linear programming [11, 15, 3, 23, 4, 22].

The hardware architecture under considera-
tion is based on library of arithmetic logarith-
mic modules implemented in FPGA. This library
contains pipelined addition/subtraction unit which
is usually present only once on contrary to ar-
bitrary number of multiplication/division/square
root units. Therefore our scheduling problem is
different from the ones presented above.

In this paper we propose an optimal cyclic
scheduling method based on integer linear pro-
gramming (ILP). Presented solution is based on
property of logarithmic arithmetic library allow-

1

ing to formulate monoprocessor (pipelined addi-
tion/subtraction unit) cyclic scheduling problem
for the set of tasks constrained by the precedence

delays (representing pipelining and processing time
of tasks executed on unlimited number of multi-
plication/division/square root units). Unlike the
most frequent ILP models we suggest the model
where the number of variables does not depend on
the period length.

From the time complexity point of view pre-
sented scheduling problem is NP-hard that is shown
in chapter 4.

This paper is organized as follows. Section
2 describes motivation application (RLS filter for
active noise cancellation) implemented on FPGA
using HSLA (High-Speed Logarithmic Arithmetic).
In section 3 Basic Cyclic Scheduling (BCS) problem
is explained assuming unlimited number of proces-
sors. It can be skipped by the reader familiar with
this concept. Next section presents our original
contribution - formulation of the scheduling prob-
lem suited for applications using HSLA. It is shown
that the problem is NP-hard. Optimal solution of
this problem using iterative calls of ILP is presented
in section 5. Efficiency of this solution is based
on calculation of BCS finding lower and upper
bound of the schedule period. Section 6 presents
the results - RLS filter automatic parallelisation
is derived as one instance of formulated schedul-
ing problem (monoprocessor cyclic scheduling with
precedence delays). This chapter includes also
resulting filter parameters, so that our solution is
comparable to other technologies (e.g. DSPs).

2 RLS filter - motivation example

The studied problem is motivated by application
of RLS (Recursive Least Squares) filter for active
noise cancellation [13] (illustrated in Figure 1). The
filter uses HSLA (High-Speed Logarithmic Arith-
metics), library of arithmetic logarithmic modules
for FPGA [18]. The logarithmic number system
arithmetic is an alternative approach to floating-
point arithmetic. A real number is represented
as the fixed point value of logarithm to base 2 of
its absolute value. An additional bit indicates the
sign. Multiplication, division and square root are
implemented as fixed-point addition, subtraction
and right shift therefore they are executed very
fast on a few gates. Contrariwise addition and
subtraction require more complicated evaluation
using look-up table with second order interpola-
tion. Addition and subtraction require more hard-
ware elements on FPGA, hence only one pipelined
addition/subtraction unit is usually available for a
given application. On the other hand the number
of multiplication, division and square roots units
can be nearly by arbitrary.

RLS filter’s algorithm is a set of equations (see
inner loop in Figure 11) solved in an inner and
outer loop. The outer loop is repeated for each
input data sample each 1/44100 seconds. The inner
loop iteratively processes the sample up to the N -th
iteration (N is the filer order). Quality of filtering
increases with increasing filter order. N iterations
of inner loop need to be finished before the end of
the sampling period when output data sample is
generated and new input data sample starts to be
processed.

The scheduling method shown below applies for
cyclic scheduling on the architectures consisting of
one dedicated processor (like one pipelined addi-
tion/subtraction unit in HSLA) performing a given
set of tasks and arbitrary number of processors per-
forming disjunctive set of tasks (like multiplication,
division and square root simply implemented on
separate gates in HSLA). The tasks are constrained
by precedence relations corresponding to the al-
gorithm data dependencies. The optimization
criterion is related to the minimization of the cyclic
scheduling period w (like in RLS filter application
the execution of the maximum number of inner
loop periods w within the given sampling period
increases the filter quality).

Figure 1: Illustration of active noise cancellation -
adaptive RLS filter estimates parameters of chang-
ing channel in order to reconstruct original clear
sound.

3 Basic Cyclic Scheduling

Operations in a computation loop can be consid-
ered as a set of n generic tasks T = {T1, T2, ..., Tn}
to be performed N times where N is usually very
large. Each performance of T marked with integer
index k ≥ 1 is called iteration. Let us denote by
〈i, k〉 the kth occurrence of the generic task Ti,
which corresponds to the execution of statement
i in iteration k. The scheduling problem is to find
a start time si(k) of every occurrence 〈i, k〉 [12].
Figure 2 shows example of simple computation loop
with corresponding times of operations.

for k=1 to N do

y(k) = (x(k − 3) + 1)2 + a
x(k) = y(k) + b
z(k) = (z(k − 2) − 2)3 + d

end

operation (task) proc. time p
+,− 9

∗, /,2 ,
√

2

Figure 2: Example of a recurrent loop and corre-
sponding processing times.

Data dependencies of this problem can be mod-
eled by a directed graph G. Edges eij from the node
i to j is weighted by couple of integer constants lij
and hij . Length lij is equal to pi, the processing
time of task Ti. In fact lij represents minimal
distance in clock cycles from start time of task Ti to
start time of Tj and it is always greater than zero.
On the other hand the height hij specifies a shift
of the iteration index related to the data produced
by Ti and consumed by Tj . Therefore each edge eij

represents the set of N relation constraints of the
type:

si(k) + lij ≤ sj(k + hij), ∀k ∈ 〈1, N〉 (1)

Figure 3 shows data dependences graph of a
computation loop shown in Figure 2.

Purpose of Basic Cyclic Scheduling (BCS) [12]
is to find periodic schedule (with a period w) while
minimizing the Cmax of schedule. The problem
can be formulated as minimization of average cycle
time (Cmax divided by k, the number of iterations).
When assuming large number of iterations, the
average cycle time minimization can be formulated
as minimization of w, since:

w = lim
k→∞

maxTi∈T (si(k) + pi)

k
(2)

The scheduling problem is simply solved when
the number of processors is not limited, i.e. it is
sufficiently large. Thereafter the period w is given

Figure 3: Graph G, representing data of the com-
putation loop, contains three cycles c1, c2 and c3

with average cycles times {29/3, 22/2, 20/2}. With
respect to the critical circuit is c2 with w = 11.

by critical circuit c in the graph G. This is the
circuit c ∈ C(G) maximizing the ratio:

w(G) = max
c∈C(G)

∑

Ti∈c

lij

∑

Ti∈c

hij

(3)

Any schedule with shorter period can’t be fea-
sible assuming that the schedule of iterations is
identical. The start time of the tasks Ti in iteration
k is given as follows:

si(k) = si + w · (k − 1) (4)

where si denotes start time of the task Ti in the
first iteration, i.e. occurrence 〈i, 1〉. Using equation
(4), the set of N precedence constraint (1) can be
reformulated as one inequality:

sj − si ≥ lij − w · hij (5)

Since the tasks are repeated every w time units
the periodic schedule is entirely given by scalar
w and vector of start times in the first iteration
s = (s1, s2, ..., sn). An optimal periodic schedule
can be provided in polynomial time, since the time
complexity to find a critical circuits is O(n3. log(n))
and each task in the first iteration is allocated to
processors with respect to constraint (5). Figure 4
shows feasible periodic schedule for the recurrent
loop given in Figure 2 when N = 3. Three
iterations (each distinguished by a different hatch)
are executed in three periods and remaining time
33-51 corresponds to the schedul tail.

Please notice that the schedule shown in Figure
4 is optimal with respect to Cmax but not optimal
with respect to the number of processors (e.g. task
T5 can be scheduled on processor B together with
the task T2).

Figure 4: Feasible periodic schedule (w = 11)
optimal with respect to minmal w.

4 Dedicated processor

Basic cyclic scheduling problem, solved in polyno-
mial time, assumes that the number of processors is
not limited. When the number of processors is re-
stricted the problem becomes NP-hard (polynomial
algorithms are known [20, 8] only for some special
sub cases). The scheduling problem related to our
motivation example is even different since some
tasks run on one pipelined dedicated processor
and remaining tasks run on arbitrary number of
processors. This problem requires a different model
than the graph G in the previous chapter where
lij = pi, therefore we introduce the model based
on so called precedence delays.

In this new model the length of the edge eij is
greater or equal to the processing time pi assigned
to the node Ti. Therefore the processor is occupied
by the task Ti during processing time pi, but the
task Tj may start at least lij time units after
the start time of Ti. Therefore related length lij
specifies the precedence delay from the task Ti to
the task Tj .

The precedence delays are useful when we con-
sider pipelined processors. The processing time pi

represents the time to feed the processor and length
lij represents the time of computation. Therefore
the result of computation is available after lij time
units.

In the case of unlimited number of processors,
the problem with precedence delays is still solv-
able using polynomial BCS. But assumption of
unlimited number of processors is not satisfied for
our application where some tasks are running on
one dedicated processor (the addition/subtraction
unit of HSLA). This problem can be formulated
as monoprocessor cyclic scheduling with precedence

delays (in the end of this chapter we show that this
problem is NP-hard).

Suggested formulation is based on the following
reduction of the graph G to G′ while using calcula-
tion of the longest paths (solved e.g. by Floyd’s
algorithm). All nodes (tasks) except the ones
running on dedicated processor are eliminated.
Therefore tasks running on dedicated processor
constitute the nodes of G′. There is e′ij (the edge
from Ti to Tj in G′) of height h′

ij if and only if there
is the path from Ti to Tj in G of height h′

ij such
that this path goes only through eliminated nodes
(taks scheduled on arbitrary number of processors).
The value of length l′ij is the longest path from Ti

to Tj in G of height h′
ij .

Such reduction allows to find the schedule
for our application by solving the problem of
monoprocessor cyclic scheduling with precedence
delays. The operations addition and subtraction
from example on Figure 3 are all processed on
the dedicated processor. Reduction performed on
graph G from illustration example is in Figure 5.

Figure 5: Reduced graph G′.

4.1 Problem Complexity

The problem of monoprocessor cyclic scheduling
with precedence delays is NP-hard, since Brat-
ley’s scheduling problem 1|rj , d̃j |Cmax [2] can be
transformed to it. The transformation is shown in
Figure 6. The independent task set of Bratley’s
problem is represented by the nodes T1, ..., Tn and
their release dates and deadlines are represented
using precedence delays related to dummy task T0.
rj , release date of task Tj , is the length of the
edge e0j from T0 to Tj and h0j = 0. Assuming
s0 = si = 0 inequality (5) determines restriction
sj ≥ rj , which is effectively the only restriction
given by the release date.

Edges from Ti to T0 represent deadlines. Let
ei0 has the height hi0 = 1 and the length li0 =
w− d̃i + pi, where w is equal to value of maximum
dealdine (the moment when the next iteration will
potentialy start). In the same way the deadline

restriction, i.e. si + pi ≤ d̃i, is obtained form (5)
for each of these edges assuming s0 = sj = 0.

We remind that Bratley’s problem 1|rj , d̃j |Cmax

was proven to be NP-hard by transformation from
3-PARTITION problem [16]. Our problem of
monoprocessor cyclic scheduling with precedence

delays is NP-hard, since each instance of Bratley’s
problem can be transformed to the instance of our
scheduling problem as shown above.

Figure 6: Transformation of Bratley’s problem
1|rj , d̃j |Cmax to monoprocessor cyclic scheduling
with precedence delays.

5 ILP Formulation of monoproces-
sor cyclic scheduling with prece-
dence delays

It is useless to look for polynomial algorithm
finding optimal solution of our scheduling problem,
since it is NP-hard. Therefore it is meaningful
to formulate it as problem of ILP, since various
ILP algorithms solve instances of reasonable size
in reasonable time.

5.1 Precedence Constraint

Let ŝi be remainder after division of start time si

by w and let q̂i be the whole number part of this
division. Then si, the start time of Ti in the first
iteration, can be expressed as follows:

si = ŝi + q̂i · w, ŝi ∈ 〈0, w − 1〉 , q̂i ≥ 0 (6)

This notation divides si into q̂i, index of execu-

tion period, and ŝi, number of clock cycles within
the execution period. The schedule has to obey to
two constraints. The first is precedence constraint

restriction corresponding to inequality (5). It can
be formulated using ŝ and q̂:

ŝj + q̂j · w − ŝi − q̂i · w ≥ l′ij − w · h′
ij (7)

Each edge represents one precedence constraint,
hence we have n′

e inequalities (n′
e is the number

of edges in reduced graph G′).

5.2 Processor Constraint

The second kind of restrictions are processor con-

straints. They are related to the monoprocessor
restriction, i.e. at maximum one task is executed
at a given time. The execution period, which is

Figure 7: Processor constraint ilustration example.
Ti and Tj are tasks without precedence constraint
(pi = 2, pj = 3). Start times are ŝi = 7 and ŝj = 3.
Periode w=8.

neither in the tail nor in the head of the schedule,
contains all tasks even if they are from different it-
erations. Please see for example execution period 2
(time 22-33) in Figure 4. Based on this observation
the processor constrains can be simply formulated
using ŝ (please notice that processor constraints do
not depend on q̂). Two disjunctive cases can occur:

In the fisrt case we consider the task Tj to be
followed by the task Ti (both are from arbitrary
iterations) within execution period (see the k′-th
occurence of Tj and the k-th occurrence of Ti in
Figure 7). Corresponding constraint is therefore:

ŝi − ŝj ≥ pj (8)

At the same time the (k−1)-th occurrence of Ti

is followed by the k′-th occurence of Tj , therefore:

ŝj − (ŝi − w) ≥ pi (9)

Both inequalities of the first case can be joined
in one double-inequality:

pj ≤ ŝi − ŝj ≤ w − pi (10)

In the opposite second case we consider the
task Ti to be followed by the task Tj . To derive
constraints for the second case it is enough to
exchange index i with index j in double-inequality
(10):

pi ≤ ŝj − ŝi ≤ w − pj

pi − w ≤ ŝj − ŝi − w ≤ −pj

pj ≤ ŝi − ŝj + w ≤ w − pi (11)

Exclusive OR relation between first case and
second case, i.e. either (10) holds or (11) holds,
disables to formulate the problem directly as ILP
program, since there is AND relation among all in-
equalities in ILP program. In other words the state
space of ŝj , ŝi is not convex even for continuous
values of ŝj and ŝi (see two polytops in Figure 8a,
upper-left one corresponding to 11 and lower-righ
one corresponding to (10)).

The first case, constrained by (10), differs from
the opposite second case, constrained by (11), only
in w in the middle of double-inequality. This term

signals whether Ti is before Tj within execution
period or not. Therefore (10) and (11) can be
reduced into one double-inequality while using
binary decision variable x̂ij (x̂ij = 1 when Ti is
followed by Tj and x̂ij = 0 when Tj is followed by
Ti):

pj ≤ ŝi − ŝj + w · x̂ij ≤ w − pi (12)

The processor constraint restrictions for two
tasks Ti and Tj is illustrated in Figure 8. All
feasible start times on monoprocessor are marked
in Figure 8a. Other couples of start times cause
overlap of tasks. Introduction of x̂ij realizing ex-
clusive OR between (10) and (11) is demonstrated
graphicaly by cuts of the polytop in Figure 8b
in the planes x̂ij = 1 and x̂ij = 0. Therefore
we are able to formulate our problem using ILP
program (AND relation among inequalities and
integer restriction on variables).

To derive feasible monoprocessor schedule
double-inequality (12) must hold for each un-
ordered couple of two distinct tasks, therefore there
are

(
(n′2 − n′)/2

)
double-inequalities (where n′ is

the number of tasks in reduced graph G′), i.e. there

are
(
n′2 − n′

)
inequalities specifying the processor

constraints.

5.3 Objective function

Using ILP formulation we are able to test the
schedule feasibility for given w. In addition we can
minimize the iteration overlap by formulation the

objective function as min
n∑

i=1

q̂i.

The summarized ILP program, using variables
ŝi, q̂i, x̂ij , is shown in Figure 9. It contains(
2n′ + (n′2 − n′)/2

)
variables and

(
n′

e + n′2 − n′
)

constraints.
If needed, this problem can be reformulated to

minimize Cmax by adding one variable cmax and n′

constraints:

ŝj + q̂j ≤ cmax, Tj ∈ T (13)

Such reformulated problem not only decides
feasibility of the schedule for given period w, but
if such schedule exists it also finds the one with
minimal tail.

5.4 Period minimizations

Nevertheless the aim of the cyclic scheduling is to
find a feasible schedule with minimal period w.
Therefore w is not constant but due to the periodic-
ity of the schedule it is positive integer value. Lower
bound of period w is given by equation (3) related
to critical circuit of G′ (identical with circuit of G).

The schedule found by BCS of G′ (assuming
unlimited number of processors) enables two tasks

of G′ to be processed at the same time, which
results in the conflict on monoprocessor. But BCS
schedule can be used to derive upper bound of
period w, by serializing conflicting tasks. Such
schedule, with serialized conflicting tasks, does not
need to be optimal but it is feasible, therefore it
gives upper bound on w.

Period w∗, the shortest period resulting in fea-
sible schedule, can be found iteratively by formu-
lating one ILP program for each iteration. These
ILP iterations need not to be performed for all
w between the lower and upper bound, but the
interval bisection method can be used since w∗ is
not preceded by any feasible solution (i.e. no w ≤
w∗−1 results in feasible solution). Therefore there
are at maximum log2 (upperbound − lowerbound)
iterative calls of ILP.

The above mentioned method gives the feasible
schedule of G′ on monoprocessor. Corresponding
schedule of G is also feasible, since the tasks
executed on unlimited number of processors obey
only to the precedence relation constraints, that are
already included in precedence delays of G′. Figure
10 shows the schedule of the example depicted in
Figure 2 where the dedicated processor is shown on
the bottom line.

6 Results

Presented scheduling technique was implemented
in Matlab language using ILP solver tool
LP SOLVE [14]. Specific inner loop of RLS
filter described in section 2 is shown in Figure
11a where the corresponding task label is above
of each arithmetic operation. Figure 11b shows
corresponding G′, the graph after reduction. The
schedule presented in Figure 12 was found by the
first call of ILP program for w∗ = 26 (the same
period as lower bound of w given by the critical
circuit). ILP program from Figure 9 for this
instance was calculated in 2.09s on Intel Pentium
4 running at 2.4GHz.

Real-time demo application implemented
in Celoxica rc200e development board (Chip
xc2v1000-4, design clock 50MHz, audio input
and output sampling at 44100Hz) using 19-bit
logarithmic number system arithmetic HSLA
reached order of filter N = 129 on sampling
frequency 44100Hz (i.e. 129 iterations of inner
loop executed each 1/44100 s).

Figure 13 shows results of filtering consisting of
four diagrams. The horizontal axis of each diagram
represents the running time (corresponding to a
time interval of 5s), the vertical axis represents
the signal frequencies (up to 22kHz) and the color
represents the signal amplitude. The lower-right
diagram presents the original sound, the upper-
left diagram presents the noise, the upper-right
diagram presents corrupted sound assuming sinu-

a) b)

Figure 8: Statespace of feasible schedules given by double-inequality 12 of the example from Figure 7. a)
Statespace of feasible start times ŝi, ŝj . b) Equivalent convex continous statespace.

min

n∑

i=1

q̂i

Subject to:
ŝj + q̂j · w − ŝi − q̂i · w ≥ l′ij − w.h′

ij , ∀e′ij ∈ G′

pj ≤ ŝi − ŝj + w · x̂ij ≤ w − pi , ∀i 6= j and Ti, Tj ∈ T

Where:
ŝi ∈ 〈0, w − 1〉, q̂i ≥ 0, x̂i ∈ 〈0, 1〉
ŝi, q̂i, x̂ij are integers

Figure 9: ILP programme.

Figure 10: The schedule (w∗ = w(G) = 11) including inverse reduction to multiprocessor.

soidal changes of the estimated channel parame-
ters, and finally the lower-left diagram presents
reconstructed sound. Real-time demonstration is
ready for presentation at the conference.

7 Conclusion

This paper presents ILP based cyclic scheduling
method used to optimize computation speed iter-
ative algorithms running on HSLA [13]. The ap-
proach is based on transformation to monoproces-

sor cyclic scheduling with precedence delays. Then
optimal periodic solution is searched iteratively
using interval bisection.

The advantage of ILP program presented in
Figure 9 in comparison with common ILP programs
used for similar problems is that the number of
variables is independent of period length. Another
property of the formulation is arbitrary processing
time and precedence delay of each task. Moreover
ILP approach enables to incorporate additional

for k=1 to N
T2 T1

η(k) = η(k − 1) - (γf
old(k) * ψold(k − 1))

T3

f(k) = γold(k − 1) * η(k − 1)
T5 T4

ψ(k) = ψold(k − 1) - (γb
old(k) * η(k − 1))

T6

b(k) = γ(k − 1) * ψ(k − 1)
T8 T7

α(k) = α(k − 1) - (κold(k) * ψ(k − 1))
T10 T9

γf (k) = γf
old(k) + (bnold(k) * η(k))

T13 T11 T14 T12

F (k) = (ν + (λ * Fold(k))) + (f(k) * η(k − 1))
T17 T15 T18 T16

B(k) = (ν + (λ * Bold(k))) + (b(k) * ψ(k − 1))
T19

fn(k) = f(k) / F (k)
T20

bn(k) = b(k) / B(k)
T22 T21

γb(k) = γb
old(k) + (fn(k) * ψ(k))

T24 T23

κ(k) = κold(k) + (bn(k) * α(k))
T26 T25

γ(k) = γ(k − 1) - (bn(k) * b(k))
end

a) b)

Figure 11: a) The inner loop of RLS filter. Constant N determines the filter order. b) Cor-
responding reduced graph G′ contains four circuits c1, c2, c3 and c4 with critical circuit c1 since
w = max{26/1, 9/1, 9/1, 9/1} = 26.

Figure 13: Active noise cancelation

constraints. Therefore the tasks can be also
constrained by release dates and deadlines related
to beginning of the period (this features were not
explained in this paper since they are not exploited
in RLS filter application).

Results of the scheduling applied on RLS fil-
ter automated design are better than the ones
achieved by experienced FPGA programmer. For
given sampling period the filter order achieved by
our method is 129, in contrast to manual design
achieving order 75. This acceleration by 70% is

Figure 12: The schedule (w = 26) of RLS filter
inner loop.

due to the schedule overlap (operations belonging
to different iteration are executed simultaneously),
which is rather difficult for manual design but it is
straight for cyclic scheduling.

Our method of algorithm modeling, transfor-
mation, scheduling is fully automated therefore it
can be easily incorporated in design tools while
processing considerable simplification for rapid pro-
totyping.

In future work we would like to develop more
general technique for another FPGA libraries dif-
fering from HSLA in the number of dedicated
processors. For the ILP acceleration it is needed
to study discrete convex optimization in order to
be able to remove integer constraints on ŝi, which
seams to be feasible.

References

[1] J. BÃlazewicz, K. Ecker, G. Schmidt and
J. Wȩglarz. Scheduling Computer and Manu-

facturing Processes. Springer, second edition,
2001.

[2] P. Bratley, M. Florian and P. Robillard.
Scheduling with earliest start and due date
constraints. Naval Res. Logist. Quart. 18,
1971.

[3] N. Chabini and Y. Savaria. Methods for
optimizing register placement in synchronous
circuits derived using software pipelining tech-
niques. In ISSS, pages 209–214, 2001.

[4] C. M. Chang, C. M. Chen and C. T. King. Us-
ing integer linear programming for instruction
scheduling and register allocation in multiissue
processors. Computers and Mathematics with
Applications, 1997.

[5] P. Chrétienne. List schedules for cyclic
scheduling. In Proceedings of the third interna-

tional conference on Graphs and optimization,
pages 141–159. Elsevier Science Publishers B.
V., 1999.

[6] P. Chrétienne. On graham’s bound for cyclic
scheduling. Parallel Comput., Volume 26,
Number 9, pages 1163–1174, 2000.

[7] P. Chrétienne, E. G. Coffman, J. K. Lenstra
and Zhen Liu. Scheduling Theory and its

Applicaton. John Wiley and Sons, 1995.

[8] B. D. Dinechin. Simplex scheduling: More
than lifetime-sensitive instruction scheduling.
Proceedings of the International Conference
on Parallel Architecture and Compiler Tech-
niques, 1994.

[9] D. Fimmel and J. Müller. Optimal software
pipelining under resource constraints. Journal
of Foundations of Computer Science, 2001.

[10] M. Gondrant and M. Minoux. Graphes et

algorithmes. Eyrolles, 1985.

[11] R. Govindarajan, E. R. Altman and G. R.
Gao. A framework for resource-constained
rate-optimal software pipelining. IEEE Trans-
actions on Parallel and distributed systems,
vol. 7, no. 11, 1996.

[12] C. Hanen and A. Munier. A study of the
cyclic scheduling problem on parallel proces-
sors. DAMATH: Discrete Applied Mathemat-

ics and Combinatorial Operations Research

and Computer Science, Volume 57, 1995.

[13] A. Heřmánek, Z. Pohl and J. Kadlec. Fpga
implementation of the adaptive lattice filter.
In. Proc. FPL2003, Springer, Berlin, 2003.

[14] J. C. Kantor. LP SOLVE 2.3.
ftp://ftp.es.ele.tue.nl/pub/lp solve/, 1995.

[15] I. Kazuhito, E. Lucke and K. Parhi. Ilp
based cost-optimal dsp synthesis with module
selection and data format conversion. IEEE
Transactions on Very Large Scale Integration
(VLSI) Systems, 1999.

[16] J. K. Lenstra, A. R. Kan and P. Brucker.
Complexity of machine scheduling problems.
Ann. Discrete Math. 1, 1977.

[17] A. Leung, K. V. Palem and A. Pnueli. A
fast algorithm for scheduling time-constrained
instructions on processors with ilp. IEEE
PACT, 1998.

[18] R. Matoušek, M. Tichý, A. Z. Pohl, J. Kadlec
and C. Softley. Logarithmic number system
and floating-point arithmetics on fpga. Field-
Programable Logic and Applications: Re-
configurable computing Is Going Mainstream.
Lecture notes in Computer Science A 2438,
Springer, Berlin, 2002.

[19] S. Megerian, M. Drinic and M. Potkonjak.
Watermarking integer linear programming so-
lutions. Proceedings of the 39th conference on
Design automation, New Orleans, Louisiana,
USA, 2002.

[20] A. Munier. The complexity of a cyclic schedul-
ing problem with identical machines. Rapport
masi, Institut Blaise Pascal, 1990.

[21] G.-J. Olsder, K. Roos and R.-J. Egmond.
An efficient algorithm for critical circuits and
finite eigenvectors in the max-plus algebra.
Linear Algebra and its Applications, Volume
295, Number 1–3, pages 231–240, 1999.

[22] H.-J. Park and B. K. Kim. An efficient opti-
mal task allocation and scheduling algorithm
for cyclic synchronous applications. Proceed-
ings 6th International Conference on Real-
Time Computing Systems and Applications
(RTCSA ’99), 1999.

[23] S. L. Sindorf and S. H. Gerez. An integer
linear programming approach to the over-
lapped scheduling of iterative data-flow graphs
for target architectures with communication
delays. PROGRESS 2000 Workshop on Em-
bedded Systems, Utrecht, The Netherlands,
2000.

