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Quotients of Boolean algebras and regular subalgebras
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Abstract

Let B, C be Boolean algebras and e : B — C an embedding. We examine hierarchy of ideals
on C for which € : B — C/Z is a regular (i.e. complete) embedding and as an application we
deal with interrelationship among P(w)/fin in ZFC groundmodel and in its extension. If M
is an extension of V' adding new subset of w, then in M there is almost disjoint refinement of
the family ([w]*)V. Moreover, there is exactly one ideal Z on w in M such that (P(w)/fin)"
is dense subalgebra of (P(w)/Z)M if and only if M does not add independent (splitting) real.

We show that for a generic extension V[G], the canonical embedding

PY(w)/ fin — P(w)/(U(0s)(B)"

is a regular one, where U(Os)(B) is the Urysohn closure of zero - convergent structure on B.

1 Introduction

Let V be a model of ZFC and M its extension. Then (P(w)/fin)" is a subalgebra of the Boolean
algebra P(w)/fin in M.

It is natural to ask whether (P(w)/fin)" is a regular subalgebra of P(w)/fin.

This question makes sense only in cases when there are new reals in the extension M, otherwise
these algebras coincide. Hence in what follows we suppose that M is an arbitrary ZFC extension
of ground model V' adding new reals.

L. Soukup posed the following question:

Does the family ([w]“)Y have an almost disjoint refinement in any generic extension, which
adds a new real?

It was known that this holds true in different types of generic extension, e.g. adding one Cohen
real [Hec78|.

We shall consider a little more general situation, when we take into account arbitrary ZFC
extension M of V. Clearly to have a chance for the refinement, the extension M has to add a new
real, i.e.

(PW)" < (P)™,

-

in this generalised setting we show in paragraph 3 the following theorem This result was achieved
independently by J. Brendle, his proof is rather different and can be found in L. Soukup’s paper
[Sou07].

Theorem 1. In any ZFC extension M of V' adding a new real there is an almost disjoint refinement
of ([w]*)".

In the following A, B C w; A C* B will denote the fact that A\ B is finite. Note that, in fact
Almost Disjoint (AD) family is a pairwise disjoint family in the Boolean algebra P(w)/fin and a
Maximal Almost Disjoint (MAD) family is a partition of unity in the same algebra.

Definition. Family S C [w]¥ has an almost disjoint refinement (ADR) if there is an almost disjoint
family {Ax : X € S} such that Ax € [X]“ for every X € S.
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Instead of this ‘indexed’ refinement we will benefit from [BPS80] and use any of these equivalents
without further mentioning.

Proposition. For a family S C [w]¥ the following are equivalent:

(i) The family S has ADR, i.e. there is an almost disjoint family {Ax : X € S} such that
Ax € [X]¥ for every X € S.

(1) There is an almost disjoint family A such that for any X € S there is A € A such that
AcCrX.

(11i) There is an almost disjoint family A such that for any X € S

HA €A |XNA|l=w}| =2

Proof. (i) — (ii) This implication is trivial since the almost disjoint family from (7) satisfies also
(ii).

(11) — (iii) Let A be an almost disjoint family as in (7). In [w]* there is a maximal almost disjoint
family (B! :i € 2¥) of a size 2* below any A € A. Hence (B{*:i € 2¥, A € A) satisfies (iii).
(11i) — (i) First enumerate S = {X, : @ € 2¥} and for any X € S denote Ax = {A € A :
|IX NA|l = w}, |Ax| = 2¥. Now proceed by induction and for each X, € S choose an A, €
Ax, —U{A4s: B < a}. Clearly the family {4, N X, : @ € 2*} gives an almost disjoint refinement
for S. ]

Our approach to Theorem 1 strongly benefit from results of [BPS80] or see [BS89]; let us quickly
summarize results we use. For other notions concerning Boolean algebras see [Kop89|.

Note that an algebra B is (k,-,2) distributive if and only if any x-many partitions of unity
have a common refinement, or equivalently if and only if the intersection Ny« D, of k-many open
dense sets is dense.

Cardinal invariant b (non-distributivity number) is characterised through distributivity prop-
erties of the algebra P(w)/fin as follows:

Definition.
h = min {x: P(w)/fin is not (k, -, 2) distributive },

In the proof of Theorem 1 we use the techniques of base tree. Base tree is a special kind of a
dense subset of P(w)/ fin; see e.g. [BS89.

Theorem. [BPS80|) There is a base tree (T, D*) for [w]?, i.e.
(i) (T,2%) C [w]“ is a tree,

(i1) if B € T then the family of immediate successors of B in T is a mazimal almost disjoint
family below B of a full (2¥) size,

(11i) for each A € [w]¥ there is B € T' such that B C A,
(iv) the height of T is b.
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It is well known that if new real is added, then (P(w)/fin)" is not a regular subalgebra of
(P(w)/fin)™. There is a natural question wheather there is an ideal Z such that the canonical
embedding

(P(w)/fin)" = (P(w)/fin)" /T,

becomes regular. We show in paragraph 2 more general theorem

Theorem 2. Let B be a subalgebra of a Boolean algebra C. There is an ideal T on C such that
the canonical homomorphism

i:B — C/I
b — [b]z,
is a reqular embedding of B into C/Z.

Finally in paragraphs 4 and 5 we compute the minimal regularization ideal for embeddings
(P(w)/fin)V — (P(w)/fin) /T and B — B“/Fin. Latter and former regularisation ideals are
closely connected with order sequential topology on Boolean algebras, which we briefly introduce
here in the Topological intermezzo.

2 Regularisation ideals

We start with Theorem 2. First, let us recall the definition of regular subalgebra B of a Boolean
algebra C and its equivalents.

A subalgebra B of a Boolean algebra C is called regular if any X C B which has a supremum
\/* X in B, has the same element as a supremum of X in C, i.e. \/* X = \/° X. An embedding
i : B — C is regular if the image i[B] is the regular subalgebra of algebra C.

Proposition 3. For a subalgebra B C C the following are equivalent

(i) B is a regular subalgebra of C,
(11) every mazimal pairwise disjoint family in B is mazimal in C,
(iii) for each ¢ € CT there is a ‘pseudoprojection’ b, € B ; i.e. for every a <b., a € BT

alNc#0,

(iv) for every generic filter F on C, F N B is a generic filter on B.

Proof. The proofs of implications (i) < (ii) < (iii) <> (v) and (vi)— (ii) are straight forward.
To show that (ii)— (vi) let ¢ € C*. Take arbitrary maximal pairwise disjoint family B, C {b €

B : bAc=0}. From (i) it follows that B, is not maximal in B, hence there is some b, disjoint

with B, and we are done. ]

Let B, C be Boolean algebras and e : B — C an embedding. We are looking for ideals on C for
which the factor embedding i is regular.

Theorem 2. Let B be a subalgebra of a Boolean algebra C. There s a minimal ideal Z,,;, on C
such that the canonical homomorphism

i:B — C/Znn

is a reqular embedding of B into C/Z .
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Proof. Let
7 = {u € C : 3 max. pairwise disjoint family X C B such that u Az = 0 for any = € X}.

We check that 7 is an ideal. The set 7 is downward closed. Let u,v € Z. Take maximal
pairwise disjoint families X and Y that guarantee that u respectively v belongs to Z. Then
z={oxANy#0:2€ X &y €Y} is amaximal pairwise disjoint family of elements of B and u Vv
is disjoint from every element of z. Therefore u vV v € 7, hence 7 is an ideal.

No b € BT belongs to Z, so the mapping i : B — C/Z is an embedding. We show that i is
a regular embedding. Let {¢; : i € I} be a maximal pairwise disjoint family in i[B], the family
{lci] -1 € I} is a maximal pairwise disjoint family in C/Z. Assume that there is [u], disjoint with
every [¢;] in C/Z, i.e. ¢; Au € Z, hence there is a maximal pairwise disjoint set X; C B | ¢; such
that u is disjoint from every element of X;. The set (J{X, : ¢ € I} is maximal in B and so u € Z,
ie [ul=0¢€C/T.

Such obtained ideal [ is minimal. O

Proposition 4. Let B be a subalgebra of a Boolean algebra C and let J C C be a maximal ideal
such that BN J = {0}. Then canonical embedding

i:B—C/J,
is a reqular one. In this case i[B] is even dense in C/J.

Proof. Suppose that i[B] is not dense in C/J. Then there is a ¢ € C, ¢ ¢ J such that for any
be BT b<Ls c Since J is maximal and ¢ ¢ J there is a j € J such that there is a b € B so that
b<cVjie. b<jsc; contradiction. O

Corollary 5. Let B be a subalgebra of a Boolean algebra C and let 7 C C be a maximal
regularising ideal. Then

(i) if B is complete, then B ~ C/J;
(ii) if C is complete, then RO(B) ~ C/J.
Proposition 6. Let B be a subalgebra of a Boolean algebra C and let
K={J : J is an ideal on C mazimal with respect to J NBT = 0}
then
(i) K = Znin and
(i) UK ={ceC : =(FIbeB") b<c}.

Proof. Suppose that Z\ J # 0 and a € T\ J. Since J is maximal then there is a j € J for which
there is a b € BT such that b < j Va. Since a € Z, there is a maximal antichain M in B such that
m A a = 0, for each m € M. Every b € B has to intersect some m € M, s0 0 # mAb<jVa,
but the m and a are disjoint hence m A b < j, which is contradiction with the assumption that J
does not intersect B.

Clearly, K D Z. Take arbitrary ¢ € C* \ Z, the set {b € B : b < —c} is not dense in B as
c ¢ T. It means that there is a by € B such that

YoeBt (b<—c) — b—1by#0.

That is, by A —c ¢ B and one can take a maximal ideal J containing this element, which shows
that ¢ ¢ (| K; and we are done. O



B.BALCAR AND T.PAZAK: REGULAR SUBALGEBRAS AND QUOTIENTS 5)

3 Almost disjoint refinement of ground model reals

Let M be a ZFC extension of V. We ask about the existence of almost disjoint refinement of
(P(w))Y in M Clearly to have a chance for the refinement, the extension M has to add a new real,
ie.

(Pw)" < (Pw)™.

=

Hence, from now on we will assume, that the extension M adds new reals. In fact we ask about
the existence (of course in M) of a mapping

0 (W) — W)
such that for each z # y, =,y € ([w]*)V
(i) ¢(z) C z and

(i) @(x) Nply) =" 0.
First we show, that the embedding (P(w))" € (P(w))M is far from regular.

=

Lemma 7. There is 0 C w, 0 € M such that for each X € [w]* NV there is a Y € [X]*NV such
that Y No = 0.

Proof. Instead of w one can consider a countable set

A= {01} : new}

Let x be the characteristic function of a new real. Define 0 = {x [ n: n € w}, note that o is set
of compatible functions. Then o has desired properties:

Let X C A, X € V be infinite. From the Ramsey theorem it follows that X contains either
infinite subset Y of compatible functions or it contains infinite subset Y of pairwise disjoint func-
tions. In the latter case clearly |Y No| < 1. Now suppose that Y is set of compatible functions
and Y No is infinite. Then JY = x, but JY € V and x € V, a contradiction. Hence Y No =* ()
and we are done. ]

This yields a list of straight forward corollaries.

Corollary 8. (i) Let V be a model of ZFC and M its extension that adds new reals. Then
(P(w)/fin)V is not a regular subalgebra of the Boolean algebra P(w)/fin in M; o from the
Lemma 7 has no pseudoprojection.

(i) In any ZFC extension M of V adding a new real there is 0 C w, 0 € M such that o does
not contain infinite ground model set.

(iii) In any ZFC extension M of V adding a new real (P(w)/fin)" is not a regular subalgebra
of P(w)/fin, i.e. there is a MAD family in (P(w)/fin)" which is no longer MAD in M; cf.
Lemma 3.

(iv) If there is a H C [w]* dense in (P(w)/fin) such that H C V. Then P(w) = PV (w).

The following theorem gives an affirmative answer to L. Soukup’s question.

Theorem 1. In any ZFC extension M of V' adding a new real there is an almost disjoint refinement

of ([w]*)""
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Proof. From Corollary 8 we already know, that the Boolean algebra (P(w)/fin)" is not regular in
P(w)/fin. Hence by the definition, there is some MAD family in (P(w)/fin)", which is no longer
MAD in the extension.

Let (T, 2*) C [w]“ be a base tree for [w]“, in groundmodel V; and let A € V' be a destructible
MAD family with its ‘destructor’ o € [w]¥, 0 € M. We denote T, the a-level of the tree T'.

By recursion we construct a base tree 7% € V for [w]* N V. We start with the root t € T of
the tree T' and leave it untouched. The set ¢ is an infinite subset of w, take arbitrary bijection
b:t—win V. So b '[A] is a destructible MAD family on ¢ with destructor b='(o) € M. There
is a common refinement of the MAD families b~ [A] and T;. This common refinement will be the
next level 77 of the constructed tree 7.

Let T}, level be constructed. For every ¢t € T pick a bijection b; : ¢ — w. The T7;; level will
be the common refinement of 7, ., and the maximal almost disjoint family

{b;'A] : teT: Ae A}

On the limit stages v < h. Take T common refinement of the 77 for each o < 7. Such
refinement exists by the definition of b.

The tree T* € V is clearly a base tree for ([w]*)". Moreover, for each t € T* we found a subset
b; '(0) € M. Note that each b, '(c) is almost disjoint with every s € T} for each 3 > . Hence,

for each t # s, b;1(o) is almost disjoint from b, ' (o) and

{b;'(0) : teT*}

is an almost disjoint refinement of ([w]*)", which completes the proof. O

4 Regularisation ideal for P(w)/fin

From the previous paragraphs we know, that for arbitrary ZFC extension M, there is a minimal
ideal such that the embedding (P(w)/fin) — (P(w)/fin)M /T is regular. We are able to describe
a regularisation ideal only in the case of generic extension rather then an arbitrary one. i.e. the
minimal ideal Z;, such that the embedding

(P(w)/fin)"" = (P(w)/fin)""® | T

is regular. To describe I,,;, we introduce Order sequential topology on Boolean algebras.

Topological Intermezzo

In order to equip a Boolean algebra with a topological structure that agrees with the Boolean
operations we start with a convergence structure. It is enough to determine which sequences
converge to 0 because using the symmetrical difference operation we can move convergent sequences
to an arbitrary element a € B. It is natural to use the usual notion of a limit; i.e. lima, = 0 if

and only if
limsupa, = /\ \/ a,=0= \/ /\ ay = liminf a,,.

n k>n n k>n

It is clear that right-hand side of the previous formula is redundant and one can define the
order convergence structure on Boolean algebra B as the following ideal

Os(B) = {f € B : limsup f = 0}.
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Note that it follows directly from the definition that f € Os(B) if and only if there is g € B*
so that ¢ \,0 and f <g.

The order convergence structure Os(B) determines the Order sequential topology 5 on the
Boolean algebra: The set A C B is 75-closed if and only if

Vf e A¥ f convergent sequence, lim f € A.

(B, 75) is generally a T7 topological space. The 7, topology allows us to define an ideal; Urysohn
closure of Os(B)
U(Os(B)) ={f €B“: f =50}

There is an obvious relation between algebraic and topological convergence.

Proposition 9. A sequence (x,) converges to x in the topology T, T, —= 0, if and only if any
subsequence of (x,) has a subsequence that converges to 0 algebraically.

The definition of the topological structure sketched here works well only in case the Boolean
algebra in question is complete (or at least o-complete). In general, the assumption on o-
completeness of B is not necessary. We give a general definition here; for more details see [V1a69],
|IBFH99|, [BJPO5| or [Paz07|.

Definition 10. Let B be an arbitrary Boolean algebra,
Os(B) = {f € B*:3A C B a maximal countable antichain such that f 1 A},

where f L A means that the set {n € w: f(n) A a # 0} is finite for every a € A.

The structure with piece-wise Boolean operation is again Boolean algebra; one also can look
at B“ as a set of B-names for subsets of w in the forcing extension by B. From this point of view,
the ideal Os(B) consist of names for finite subsets of w.

Proposition 11. Let B be a complete Boolean algebra. Then for any generic G on B
O0s“(B) = {fe¢ : f€OsB)} = fin = W],
where fo ={n e€w: f(n) € G}.

Proof. Let f € Os and suppose on contrary that fg is an infinite set for some generic G. Since
f € Os, there exists g \, 0 such that f < g. Clearly if f(n) € G then g(n) € G. Since g is
monotone and f¢ is infinite, we have g(n) € G for every n € w. This is a contradiction since
0= A{g9(n) :new}eaq.

On the other hand, suppose that f & Os and set d = limf > 0. Choose a generic filter G such
that d € G. Clearly, Vk € w d < \/{f(n) : n > k}, which means that Vk € w Im > k f(m) € G;
hence the set fg is infinite. O

Computing a regularization ideal for P(w)/fin

Now we are ready to show that the minimal regularisation ideal Z;, for the canonical embedding
of Boolean algebra (P(w)/fin)" into (P(w)/fin)V® is given by the evaluation of names from
U(Os(B)).

Theorem 12. Let B be a complete Boolean algebra and let G be a generic in B over V. Then
Toin = U(0s)C.
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Proof. Let f € V be such that fo = p C w destroys a MAD A € V. Find a name g € U(Os)
for the set p. Suppose f & U(Os); i.e. there is a X C w infinite such that f [ Y & Os for each
Y € [X]¥. Let

X ={Xew” : WeX|“f1YO0s}.

For X € X thereisan A € Asuch that XNA is infinite; denote this infinite intersection Yx = XNA.
Since X € X, f | Yx € Os; i.e. limy, f € G. Otherwise if

AV fn)ea,

kcw k<n€Yy

then \/; ey, f(n) € G for each k € w and the set fo N (AN X) is infinite, which contradicts
the fact that fg destroys A. Now, put

c = \/ mnEYX f(n) €G7

Xex

and g(n) = f(n) — ¢; clearly go = fo = p and g € U(Os).

Let f € U(Os) \ Os i.e. for every infinite X there is a Yx € [X]“ such that f [ Yx € Os. The
family
F={Yxy : Xew“}

is then dense in P(w)/fin. Now, pick an arbitrary MAD family A C F. Clearly, fg is an infinite
set (f & Os) and destroys the MAD A. O

This result together with Corollary 8 yields the following equivalence. This equivalence was
achieved independently by M. S. Kurili¢ and A. Pavlovi¢.

Corollary. [KP07| For a complete Boolean algebra B the following are equivalent
(i) U(Os(B)) = Os(B),
(ii) there are no V®-destructible MAD in V/,

(iii) the algebra B as a forcing notion does not add new reals.

In a special case when there are no independent reals in the extension M there is even a unique
largest regularisation ideal (cf. Proposition 4) with simple and straightforward description. We
say that A C PM(w) is independent real if for every X € [w]* NV are both sets AN X and X \ A
infinite.

Definition 13. Let H be the family of subsets of w that do not contain infinite sets from the
ground model
H={ceM:cCcw & -3Fac(w) aco}.

Theorem 14. The following holds in M.
(i) H is an open dense subset of ([w]“, C).

(i) H is an ideal if and only if M does not add independent reals.
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Proof. First note that if M adds a new real y C w, x € V, then H contains infinite set. It is easy
to see, that o given by lemma 7 is an infinite set belonging to H.

To prove (i), let A € ([w]*)V. Then there is a bijection f in V between w and A and by the
previous proposition 3 there is a subset ¢ C w in M which does not contain an infinite ground
model set, so f[o] € H is subset of A. Generally, if A € [w]* then A € H or thereisan A’ € ([w]*)Y,
A’ C A and we can use the same reasoning.

(71) Suppose that M adds an independent real o. Clearly o € H and —o € H, hence H is not
an ideal.

On the other hand if H is not an ideal, then there are a,b € H so that there is an X € ([w]*)V
and X C aUb. Again, we can identify X and w in ground model and then X Na is an independent
real in M. [

It is clear, that whenever H is an ideal, then it is the unique regularisation ideal; cf. Proposi-
tion 6.

Proposition 15. Let M be a ZFC extension of V adding new reals, then M does not add inde-
pendent reals if and only if there is unique ideal H such that the canonical embedding P(w)/ fin —
P(w)/H is regular.

Proof. Direct consequence of Propositions 4 and 6. O

5 Regularisation ideal for B“/F'in

In this final part we assume that Boolean algebras are at least o-complete. This assumption is
necessary but since our motivation comes from forcing it is not too restrictive.
The canonical embedding

e:B — B

b — (b:n€w)

is obviously regular. The more interesting situation is the derived embedding é : B — B/Fin,
where Fin = {f € B* : {n : f(n) # 0}| < w}. This embedding is not regular since image of
maximal countable antichain (a, : n € w) C B is not maximal in B*/Fin. It is enough to put
f={(a, :n € w) € (BY\Fin) and we get f A e(a,) € Fin for every n € w. Note that by our
assumption that B is o-complete, there are countable maximal antichains in B.

It is natural to ask what is the minimal regularisation ideal Z,;, for this situation and how
algebra B“ /7., behaves from the forcing point of view.

Proposition 16. The canonical embedding of o-complete Boolean algebra B into B¥/Os(B) is
reqular. Moreover, whenever the canonical embedding B — BY /T is reqular for some ideal T O Fin,

then Os(B) C T.

Proof. Let f € B* — Os then d = limf > 0 is the required pseudoprojection witnessing the fact
that the embedding B < B“/Os is regular.

Computing I,,,;, from the Theorem 2 we obtain that
Lnin = {f € B* : 3 max. antichain A in B such that f L A}.

It is clear from the definition that Os C I,,;,, which completes the proof. O

We conclude with the forcing description of algebra B“/Z, where Z is regularisation ideal.
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Theorem 17. Let B be a complete Boolean algebra and Fin C T C B“ an ideal for which the

canonical embedding B — B* /T is regular, then B¥/T) is isomorphic with an iteration of B and
P(w)/Z, where G is the generic filter on B; i.e.

B“/I = Bx*(Pw)/I%.

Proof. We define

0 :BxPWw)/I¢ — BY/I
(b, f) — e®) NS,

where f is a B-name for a subset of w. Let us remind the ordering i.e.

(b, f) < (c,g)ifand only if b < ¢ & b I+ “[f]r < [g]77,

where b |- “[f]z < [g]z” means that e(b) A f <z e(b) A g.
It is a routine check to verify that ¢ preserves ordering, disjoint relation and that [BxP(w)/Z¢]
is dense in B¥/Z. O

The following result was originally proved by A. Kamburelis.

Corollary 18. If B is a complete Boolean algebra, then

B“/Os(B) = Bx (P(w)"® /Fin).
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