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Abstract. Let 1 < p ≤ q <∞. Inspired by some recent results concerning
Hardy type inequalities where the equivalence of four scales of integral con-
ditions was proved, we use related ideas to find ten new equivalence scales
of integral conditions. By applying our result to the original Hardy type
inequality situation we obtain a new proof of a number of characterizations
of the Hardy inequality and obtain also some new weight characterizations.

1. Introduction

We consider the general one-dimensional Hardy inequality

(1.1)
(∫ b

0

(∫ x

0
f(t)dt

)q

u(x)dx

)1/q

≤ C

(∫ b

0
fp(x)v(x)dx

)1/p

with a fixed b, 0 < b ≤ ∞, for measurable functions f ≥ 0,weights u and v and
for the parameters p, q satisfying

1 < p ≤ q < ∞.

The inequality (1.1) is usually characterized by the (Muckenhoupt) condition

(1.2) A1 := sup
0<x<b

AM (x) < ∞,

where

(1.3) AM (x) :=
(∫ b

x
u(t)dt

)1/q (∫ x

0
v1−p′(t)dt

)1/p′

.

Here and in the sequel p′ = p/(p− 1). Further, let us denote

(1.4) U(x) :=
∫ b

x
u(t)dt, V (x) :=

∫ x

0
v1−p′(t)dt,

and assume that U(x) < ∞, V (x) < ∞ for every x ∈ (0, b).
In [2] the equivalence of four scales of integral conditions that characterize

the inequality (1.1) (with the usual Muckenhoupt condition as a special case)
was proved. The proof was carried out by first proving an equivalence theorem
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of independent interest. We will here extend this theorem by finding some
additional new scales of conditions.

As it was shown in [6], [2], [8] and [3], the validity of Hardy’s inequality (1.1)
for all functions f ≥ 0 in fact can be characterized e.g. by prescribing that any
of the following expressions is finite:
(1.5)
AM := sup

0<x<b
U1/q(x)V 1/p′(x);

APS := sup
0<x<b

(∫ x
0 u(t)V q(t)dt

)1/q
V −1/p(x);

AW (r) := sup
0<x<b

(∫ b
x u(t)V q(p−r)/p(t)dt

)1/q
V (r−1)/p(x), 1 < r < p;

A∗
PS := sup

0<x<b

(∫ b
x v1−p′(t)Up′(t)dt

)1/p′

U−1/q′(x);

A∗
W (r) := sup

0<x<b

(∫ x
0 v1−p′(t)Up′(q′−r)/q′(t)dt

)1/p′

U (r−1)/q′(x), 1 < r < q′;

AT := inf
h>0

sup
0<x<b

(
1

h(x)

∫ x
0 u(t)(h(t) + V (t))

q
p′+1

dt
)1/q

;

A∗
T := inf

h>0
sup

0<x<b

(
1

h(x)

∫ b
x v1−p′(t)(h(t) + U(t))

p′
q

+1
dt

)1/p′

.

Here, we will extend this list.
The paper is organized as follows: In Section 2 we formulate an equiva-

lence theorem of independent interest, and in Section 3 we use this equivalence
theorem to describe some new scales of weight characterization of the Hardy
inequality. The main result is formulated in Theorem 3.1, which includes the
results mentioned in (1.5) but gives also ten new weight characterizations. In
Section 4 we give some outlines of the proof of the equivalence theorem ( The-
orem 2.1), whose detailed proof can be found in the research note [1].

2. The equivalence theorem

Theorem 2.1. For −∞ ≤ a < b ≤ ∞, α, β and s positive numbers and f , g,
h measurable functions positive a.e. in (a, b), let us denote

(2.1) F (x) :=
∫ b

x
f(t)dt, G(x) :=

∫ x

a
g(t)dt
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and

(2.2)

B1(x;α, β) := Fα(x)Gβ(x);

B2(x;α, β, s) :=
(∫ b

x f(t)G
β−s

α (t)dt
)α

Gs(x);

B3(x;α, β, s) :=
(∫ x

a g(t)F
α−s

β (t)dt
)β

F s(x);

B4(x;α, β, s) :=
(∫ x

a f(t)G
β+s

α (t)dt
)α

G−s(x);

B5(x;α, β, s) :=
(∫ b

x g(t)F
α+s

β (t)dt
)β

F−s(x);

B6(x;α, β, s) :=
(∫ b

x f(t)G
β

α+s (t)dt
)α+s

F−s(x);

B7(x;α, β, s) :=
(∫ x

a g(t)F
α

β+s (t)dt
)β+s

G−s(x);

B8(x;α, β, s) :=
(∫ x

a f(t)G
β

α−s (t)dt
)α−s

F s(x), α > s;

B9(x;α, β, s) :=
(∫ b

x f(t)G
β

α−s (t)dt
)α−s

F s(x), α < s;

B10(x;α, β, s) :=
(∫ b

x g(t)F
α

β−s (t)dt
)β−s

Gs(x), β > s;

B11(x;α, β, s) :=
(∫ x

a g(t)F
α

β−s (t)dt
)β−s

Gs(x), β < s;

B12(x;α, β, s;h) :=
(∫ b

x f(t)h
β−s

α (t)dt
)α

(h(x) + G(x))s, β < s;

B13(x;α, β, s;h) :=
(∫ x

a g(t)h
α−s

β (t)dt
)β

(h(x) + F (x))s, α < s;

B14(x;α, β, s;h) :=
(∫ x

a f(t)(h(t) + G(t))
β+s

α dt
)α

h−s(x);

B15(x;α, β, s;h) :=
(∫ b

x g(t)(h(t) + F (t))
α+s

β dt
)β

h−s(x).

The numbers B1(α, β) := sup
a<x<b

B1(x;α, β), Bi(α, β, s) = sup
a<x<b

Bi(x;α, β, s)

(i = 2, 3, . . . , 11) and Bi(α, β, s) = inf
h≥0

sup
a<x<b

Bi(x;α, β, s;h) (i = 12, 13, 14, 15)

are mutually equivalent. The constants in the equivalence relations can depend
on α, β and s.

Remark 2.1. The proof of Theorem 2.1 (see [1] and Section 4)is carried out
by determining positive constants ci and di so that

(2.3) ciBi(α, β, s) ≤ B1(α, β) ≤ diBi(α, β, s), i = 2, 3, . . . , 15.

3. The main result

Theorem 3.1. Let 1 < p ≤ q < ∞ , 0 < s < ∞, and define, for the weight

functions u, v, the functions U and V by (1.4), and the functions Ai(s), i =
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1, 2, . . . , 15, as follows
(3.1)

A1(s) := sup
0<x<b

(∫ b
x u(t)V q( 1

p′−s)(t)dt
)1/q

V s(x), ;

A2(s) := sup
0<x<b

(∫ x
0 v1−p′(t)Up′( 1

q
−s)(t)dt

)1/p′

U s(x);

A3(s) := sup
0<x<b

(∫ x
0 u(t)V q( 1

p′+s)(t)dt
)1/q

V −s(x);

A4(s) := sup
0<x<b

(∫ b
x v1−p′(t)Up′( 1

q
+s)(t)dt

)1/p′

U−s(x);

A5(s) := sup
0<x<b

(∫ b
x u(t)V

q
p′(1+sq) (t)dt

) 1+sq
q

U−s(x);

A6(s) := sup
0<x<b

(∫ x
0 v1−p′(t)U

p′
q(1+sp′) (t)dt

) 1+sp′
p′

V −s(x);

A7(s) := sup
0<x<b

(∫ x
0 u(t)V

q
p′(1−sq) (t)dt

) 1−sq
q

U s(x), qs < 1;

A8(s) := sup
0<x<b

(∫ b
x u(t)V

q
p′(1−sq) (t)dt

) 1−sq
q

U s(x), qs > 1;

A9(s) := sup
0<x<b

(∫ b
x v1−p′(t)U

p′
q(1−sp′) (t)dt

) 1−sp′
p′

V s(x), p′s < 1;

A10(s) := sup
0<x<b

(∫ x
0 v1−p′(t)U

p′
q(1−sp′) (t)dt

) 1−sp′
p′

V s(x), p′s > 1;

A11(s) := inf
h>0

sup
0<x<b

(∫ b
x u(t)h(t)q( 1

p′−s)
dt

)1/q
(h(x) + V (x))s, p′s > 1;

A12(s) := inf
h>0

sup
0<x<b

(∫ x
0 v1−p′(t)h(t)p′( 1

q
−s)

dt
)1/p′

(h(x) + U(x))s, qs > 1;

A13(s) := inf
h>0

sup
0<x<b

(∫ x
0 u(t)(h(t) + V (t))q( 1

p′+s)
dt

)1/q
h−s(x);

A14(s) := inf
h>0

sup
0<x<b

(∫ b
x v1−p′(t)(h(t) + U(t))p′( 1

q
+s)(t)

)1/p′

h−s(x).

Then the Hardy inequality (1.1) holds for all measurable functions f ≥ 0 if and
only if any of the quantities Ai(s) is finite. Moreover, for the best constant C
in (1.1) we have C ≈ Ai(s), i = 1, 2, 3, . . . , 14.
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Remark 3.1. The conditions in (1.5) can be described in the following way:

AM = A1( 1
p′ ),

APS = A3(1
p),

AW (r) = A1( r−1
p ) with 1 < r < p,

A∗
PS = A4( 1

q′ ),

A∗
W (r) = A2( r−1

q′ ) with 1 < r < q′,

AT = A13(1
q ),

A∗
T = A14( 1

p′ ).

Hence, Theorem 3.1 generalizes the corresponding results in [2], [6] and also all
previous results of this type.

Proof of Theorem 3.1. In (2.1) we put a = 0, f(x) = u(x), g(x) = v1−p′(x),
so that F (x) = U(x), G(x) = V (x), and choose

α =
1
q
, β =

1
p′

.

Then the assertion follows from the fact that

Ai(s) = Bi+1(
1
q
,

1
p′

, s), i = 1, 2, . . . , 14.

are all equivalent with A1 from(1.2) according to Theorem 2.1 and the finiteness
of A1 is necessary and sufficient for the inequality (1.1 ) to hold. Moreover, since
for the least constant C in (1.1) we have C ≈ A1 it is clear that C ≈ Ai(s) and
the proof is complete.

Remark 3.2. The proof of Theorem 2.1 (cf. Remark 2.1) gives us also the
possibility to estimate e.g. the quantities A1, AW (r), A∗

W (r), APS, A∗
PS, A∗

T ,
and A∗

PS , in terms of each other.

4. Outlines of the proof of the equivalence theorem

In the proof, which is rather technical, we use - among other tools - the fact
that the function F from (2.1) is decreasing and the function of G from (2.1)
is increasing, and that

f(x)dx = −dF (x), g(x)dx = dG(x)

so that

(4.1)
∫ b

x
f(t)F λ(t)dt =

1
λ + 1

F λ+1(x);
∫ x

a
g(t)Gκ(t)dt =

1
κ + 1

Gκ+1(x).

Moreover, the equivalences

(4.2) Bi(α, β, s) ≈ B1(α, β), i = 2, 3, 4, 5,

have been proved in [2, Theorem 2.1], so that it is remains to prove the other
10 equivalences.

Here, we will give a detailed proof only for some equivalence, in order to show
the typical steps used. As mentioned, full proofs can be found in [1].
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1. B1(α, β) ≈ B6(α, β, s).
(i) B1(α, β) . B6(α, β, s):

B1(x;α, β) =Fα(x)Gβ(x) = Fα+s(x)F−s(x)Gβ(x)

=
(∫ b

x
f(t)dt

)α+s

Gβ(x)F−s(x)

=
(∫ b

x
f(t)G

β
α+s (x)dt

)α+s

F−s(x)

≤
(∫ b

x
f(t)G

β
α+s (t)dt

)α+s

F−s(x) = B6(x;α, β, s).

(we have used the fact that G is increasing). Now we take the suprema for
x ∈ (a, b) and have that B1(α, β) ≤ B6(α, β, s), i.e. in (2.3) it is d6 = 1.

(ii) B6(α, β, s) . B1(α, β):

B6(x;α, β, s) =
(∫ b

x
f(t)G

β
α+s (t)dt

)α+s

F−s(x)

=
(∫ b

x
f(t)B

1
α+s

1 (t, α, β)F− α
α+s (t)G− β

α+s (t)G
β

α+s (t)dt

)α+s

F−s(x)

≤ B1(α, β)
(∫ b

x
f(t)F− α

α+s (t)dt

)α+s

F−s(x)

= B1(α, β)
(
−α + s

s
F

s
α+s |bx

)α+s

F−s(x)

=
(

α + s

s

)α+s

B1(α, β)F s(x)F−s(x) =
(

α + s

s

)α+s

B1(α, β)

(we have used the fact that B1(t, α, β) ≤ B1(α, β), and formula (4.1) for F
with λ = − α

α+s). Taking the supremum on the left-hand side, we have that

B6(α, β, s) ≤ 1
c6

B1(α, β) with c6 =
(

s
α+s

)α+s
.

2. B1(α, β) ≈ B8(α, β, s); α > s.
(i) B1(α, β) . B8(α, β, s): Fix x ∈ (a, b) and define y = y(x) ∈ (x, b) so that

(4.3)
∫ y

x
f(t)dt =

∫ b

y
f(t)dt.

Then

Fα(x) =
(∫ b

x
f(t)dt

)α

=
(∫ y

x
f(t)dt +

∫ b

y
f(t)dt

)α

= 2α

(∫ b

y
f(t)dt

)α

= 2α

(∫ y

x
f(t)dt

)α−s (∫ b

y
f(t)dt

)α

= 2α

(∫ b

y
f(t)dt

)α−s

F s(y).
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and

B1(x;α, β) = 2α

(∫ y

x
f(t)dt

)α−s

F s(y)Gβ(x)

= 2α

(∫ y

x
f(t)G

β
α−s (x)dt

)α−s

F s(y)

≤ 2α

(∫ y

x
f(t)G

β
α−s (t)dt

)α−s

F s(y)

≤ 2α

(∫ y

a
f(t)G

β
α−s (t)dt

)α−s

F s(y) = 2αB8(y;α, β, s)

(we have used the fact that G is increasing). Taking the supremum with respect
to y (right) and x (left), we have that B1(α, β) ≤ 2αB8(α, β, s), i.e. d8 = 2α.

(ii) B8(α, β, s) . B1(α, β):

B8(x;α, β, s) =
(∫ x

a
f(t)G

β
α−s (t)dt

)α−s

F s(x)

=
(∫ x

a
f(t)B

α
α−s

1 (t;α, β)F− α
α−s (t)G− β

α−s (t)G
β

α−s (t)dt

)α−s

F s(x)

≤ B1(α, β)
(∫ x

a
f(t)F− α

α−s (t)dt

)α−s

F s(x).

Now (see (4.1))
∫ x
a f(t)F− α

α−s (t)dt = α−s
s

(
F− s

α−s (x)− F− s
α−s (a)

)
≤ α−s

s F− s
α−s (x) (even if F (a) = ∞, since − s

α−s < 0).
Hence

B8(x;α, β, s) ≤ B1(α, β)
(

α− s

s

)α−s (
F− s

α−s (x)
)α−s

F s(x)

=
(

α− s

s

)α−s

B1(α, β)

and taking the supremum, we have

B8(α, β, s) ≤ 1
c8

B1(α, β, ) with c8 =
(

1
α− s

)α−s

.

3. B1(α, β) ≈ B12(α, β, s), β < s.
(i) B1(α, β) . B12(α, β, s): Assume that B12(α, β, s) < ∞ and denote it for

simplicity by B12. Since infh>0 supx

(∫ b
x f(t)h

β−s
α (t)dt

)α
(h(x) + G(x))s = B12,

there exists a positive function h such that(∫ b

x
f(t)h

β−s
α (t)dt

)α

(h(x) + G(x))s ≤ B12,

and consequently ∫ b

x
f(t)h

β−s
α (t)dt ≤ B

1
α
12h

− s
α (x),(4.4)
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x
f(t)h

β−s
α (t)dt ≤ B

1
α
12G

− s
α (x).(4.5)

From (4.4) we obtain, raising both sides to the power s−β
s > 0, multiplying by

f(x) and integrating from y to b, that

(4.6)
∫ b

y
f(x)

(∫ b

x
f(t)h

β−s
α (t)dt

) s−β
s

dx ≤ B
s−β
sα

12

∫ b

y
f(x)h

β−s
α (x)dx.

Now we use the equivalence relation

B5(1, 1, 1) ≈ B5(1, 1,
β

s
),

which holds, since both terms are equivalent to B1(1, 1) (see (4.2)). This relation
reads

sup
x

(∫ b

x
g(t)F 2(t)dt

)
F−1(x) ≈ sup

x

(∫ b

x
g(t)F 1+β

s (t)dt

)
F−β

s (x).

We use this relation with
∫ b
x f(t)h

β−s
α (t)dt for F (x) and with

f(x)
(∫ b

x f(t)h
β−s

α (t)dt
)−β

s
−1

for g(x). Then we have

sup
x

(∫ b

x
f(t)dt

) (∫ b

x
f(t)h

β−s
α (t)dt

)−β
s

≈ sup
x

∫ b

x
f(y)

(∫ b

y
f(t)h

β−s
α (t)dt

) s−β
s

dy

 (∫ b

x
f(t)h

β−s
α (t)dt

)−1

. B
s−β
sα

12 ,

where the last inequality follows from (4.6). Therefore we get

(4.7) sup
x

(∫ b

x
f(t)dt

)α (∫ b

x
f(t)h

β−s
α (t)dt

)−αβ
s

. B
s−β

s
12 .

Taking into account that due to (4.5)

Gβ(x) ≤ B
β
s
12

(∫ b

x
f(t)h

β−s
α (t)dt

)−αβ
s

,

we get from (4.7) that

sup
x

F (x)αGβ(x) ≤ B
β
s
12 sup

x
Fα(x)

(∫ b

x
f(t)h

β−s
α (t)dt

)−αβ
s

. B
β
s
12B

1−β
s

12 = B12.

Therefore, we have that

B1(α, β) . B12(α, β, s).
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(ii) B12(α, β, s) . B1(α, β): Since for h(x) = G(x), it is

B12(α, β, s, G) = 2s

(∫ b

x
f(t)G

β−s
α (t)dt

)α

Gs(x)

= 2sB2(x;α, β, s) . 2sB2(α, β, s) . B1(α, β)

(see (4.2) for i = 2), we immedatly obtain that B12(α, β, s) . B1(α, β).
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