
INVARIANT TENSORS AND GRAPHS

MARTIN MARKL

Abstract. We describe a correspondence between GLn-invariant tensors and graphs. We then
show how this correspondence accommodates various types of symmetries and orientations.

Introduction

Let V be a finite dimensional vector space over a field k of characteristic zero and GL(V ) the

group of invertible linear endomorphisms of V . The classical Invariant Tensor Theorem recalled

in Section 1 states that the space of GL(V )-invariant linear maps between tensor products of

copies of V is generated by specific ‘elementary invariant tensors’ and that these elementary

tensors are linearly independent if the dimension of V is big enough.

We will observe that elementary invariant tensors are in one-to-one correspondence with con-

traction schemes for indices which are, in turn, described by graphs. We then show how this

translation between invariant tensors and linear combination of graphs accommodates various

types of symmetries and orientations.

The above description of invariant tensors by graphs was systematically used by M. Kont-

sevich in his seminal paper [4], but we were not able to find a suitable reference containing all

details. The need for such a reference appeared in connection with our paper [5] that provided

a vocabulary between natural differential operators and graph complexes. Indeed, this note was

originally designed as an appendix to [5], but we believe that it might be of independent interest.

It supplies necessary details to [5] and its future applications, and also puts the ‘abstract tensor

calculus’ attributed to R. Penrose onto a solid footing.
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2 M. MARKL

1. Invariant Tensor Theorem: A recollection

Recall that, for finite-dimensional k-vector spaces U and W , one has canonical isomorphisms

(1) Lin(U, W )∗ ∼= Lin(W, U), Lin(U, V ) ∼= U∗ ⊗ V and (U ⊗ W )∗ ∼= U∗ ⊗ V ∗,

where Lin(−,−) denotes the space of k-linear maps, (−)∗ the linear dual and ⊗ the tensor

product over k. The first isomorphism in (1) is induced by the non-degenerate pairing

Lin(U, W ) ⊗ Lin(W, U) → k

that takes f ⊗ g ∈ Lin(U, W ) ⊗ Lin(W, U) into the trace of the composition Tr(f ◦ g), the

remaining two isomorphisms are obvious. In this note, by a canonical isomorphism we will

usually mean a composition of isomorphisms of the above types. Einstein’s convention assuming

summation over repeated (multi)indices is used. We will also assume that the ground field k is

of characteristic zero.

In what follows, V will be an n-dimensional k-vector space and GL(V ) the group of linear

automorphisms of V . We start by considering the vector space Lin(V ⊗k, V ⊗l) of k-linear maps

f : V ⊗k → V ⊗l, k, l ≥ 0. Since both V ⊗k and V ⊗l are natural GL(V )-modules, it makes sense to

study the subspace LinGL(V )(V
⊗k, V ⊗l) ⊂ Lin(V ⊗k, V ⊗l) of GL(V )-equivariant maps.

As there are no GL(V )-equivariant maps in Lin(V ⊗k, V ⊗l) = 0 if k 6= l (see, for instance, [3,

§24.3]), the only interesting case is k = l. For a permutation σ ∈ Σk, define the elementary

invariant tensor tσ ∈ Lin(V ⊗k, V ⊗k) as the map given by

(2) tσ(v1 ⊗ · · · ⊗ vk) := vσ−1(1) ⊗ · · · ⊗ vσ−1(k), for v1, . . . , vk ∈ V.

It is simple to verify that tσ is GL(V )-equivariant.

Invariant Tensor Theorem. The space LinGL(V )(V
⊗k, V ⊗k) is spanned by elementary invariant

tensors tσ, σ ∈ Σk. If dim(V ) ≥ k, the tensors {tσ}σ∈Σk
are linearly independent.

This form of the Invariant Tensor Theorem is a straightforward translation of [1, Theo-

rem 2.1.4] describing invariant tensors in V ∗⊗k ⊗ V ⊗k and remarks following this theorem, see

also [3, Theorem 24.4]. The Invariant Tensor Theorem can be reformulated into saying that the

map

(3) Rn : k[Σk] → LinGL(V )(V
⊗k, V ⊗k)

from the group ring of Σk to the subspace of GL(V )-equivariant maps given by Rn(σ) := tσ,

σ ∈ Σk, is always an epimorphism and is an isomorphism for n ≥ k (recall n denoted the

dimension of V ).

The tensors {tσ}σ∈Σk
are not linearly independent if dim(V ) < k. For a subset S ⊂ {1, . . . , k}

such that card(S) > dim(V ), denote by ΣS the subgroup of Σk consisting of permutations that

leave the complement {1, . . . , k} \ S fixed. It is simple to verify that then

(4)
∑

σ∈ΣS

sgn(σ) · tσ = 0
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in LinGL(V )(V
⊗k, V ⊗k). By [1, II.1.3], all relations between the elementary invariant tensors are

induced by the relations of the above type. In other words, the kernel of the map Rn in (3) is

generated by the expressions ∑

σ∈ΣS

sgn(σ) · σ ∈ k[Σk],

where S and ΣS are as above. Observe that, with the convention used in (2) involving the inverses

of σ in the right hand side, Rn is a ring homomorphism.

1.1. Definition. By the stable range we mean the situation when dim(V ) ≥ k, that is, when the

map Rn in (3) is a monomorphism.

2. Graphs appear: An example

In this section we analyze an example that illustrates how the Invariant Tensor Theorem

leads to graphs. We are going to describe invariant tensors in Lin
(
V ⊗2⊗Lin(V ⊗2, V ), V

)
. The

canonical identifications (1) determine a GL(V )-equivariant isomorphism

Φ : Lin
(
V ⊗2 ⊗ Lin(V ⊗2, V ), V

)
∼= Lin(V ⊗3, V ⊗3).

Applying the Invariant Tensor Theorem to Lin(V ⊗3, V ⊗3), one concludes that the subspace

LinGL(V )(V
⊗2⊗Lin(V ⊗2, V ), V ) is spanned by Φ−1(tσ), σ ∈ Σ3, and that these generators are

linearly independent if dim(V ) ≥ 3. It is a simple exercise to calculate the tensors Φ−1(tσ)

explicitly. The results are shown in the second column of the table in Figure 1 in which X⊗Y ⊗F

is an element of V ⊗2⊗Lin(V ⊗2, V ) and Tr(−) the trace of a linear map V → V .

Let us fix a basis {e1, . . . , en} of V and write X = Xaea, Y = Y aea and F (ea, eb) = F c
abec,

for some scalars Xa, Y a, F c
ab ∈ k, 1 ≤ a, b, c ≤ n. The corresponding coordinate forms of the

elementary tensors are shown in the third column of the table. Observe that the expressions in

this column are all possible contractions of indices of the tensors X, Y and F .

The contraction schemes for indices are encoded by the rightmost column as follows. Given

a graph G from this column, decorate its edges by symbols i, j, k. For example, for the graph in

the bottom right corner of the table, choose the decoration

6

•
X
"!

# 
���•
•
6

F

Y

i
j

k
.

To each vertex of this edge-decorated graph we assign the coordinates of the corresponding

tensors with the names of indices determined by decorations of edges adjacent to this vertex. For

example, to the F -vertex we assign F k
jk, because its left ingoing edge is decorated by j and its

right ingoing edge which happens to be the same as its outgoing edge, is decorated by k. The



4 M. MARKL

Φ−1(tσ):
coordinate
form: graph:

σ = identity X ⊗ Y ⊗ F 7→ F (X, Y ) XjY kF i
jkei

6•F

���•
X

@@I•
Y

σ = ���@@I 6
1 2 3

1 2 3

X ⊗ Y ⊗ F 7→ F (Y, X) XjY kF i
kjei

6•F

���•
Y

@@I•
X

σ = 6 ���@@I
1 2 3

1 2 3

X ⊗ Y ⊗ F 7→ Y ⊗ Tr(F (X,−)) XjY iF k
jkei

6
•
Y
��
��

���•
•
6

F

X

σ = ������HHHY

1 2 3

1 2 3

X ⊗ Y ⊗ F 7→ Y ⊗ Tr(F (−, X)) XjY iF k
kjei

6
•
Y
��
��

@@I•
•
6

F

X

σ = ���*6HHHY

1 2 3

1 2 3

X ⊗ Y ⊗ F 7→ X ⊗ Tr(F (−, Y )) X iY jF k
kjei

6
•
X
��
��

@@I•
•
6

F

Y

σ = ���*
@@I @@I

1 2 3

1 2 3

X ⊗ Y ⊗ F 7→ X ⊗ Tr(F (Y,−)) X iY jF k
jkei

6
•
X
��
��

���•
•
6

F

Y

�

�

�

�

�

�

Figure 1. Invariant tensors in Lin(V ⊗2 ⊗ Lin(V ⊗2, V ), V ). The meaning of
vertical braces on the right is explained in Example 4.1.

vertex 6, called the anchor , plays a special role. We assign to it the basis of V indexed by the

decoration of its ingoing edge. We get

ei

6

•
Xi
"!

# 
���•
•
6

F k
jk

Y j

i
j

k

As the final step we take the product of the factors assigned to vertices and perform the sum-

mation over repeated indices. The result is
∑

1≤i,j,k≤n

X iY jF k
jkei.

In this formula we made an exception from Einstein’s convention and wrote the summation

explicitly to emphasize the idea of the construction. A formal general definition of this process

of interpreting graphs as contraction schemes is given below.



TENSORS AND GRAPHS 5

Let Ĝrex be the vector space spanned by the six graphs in the last column of the table; the hat

indicates that the graphs are not oriented. The subscript “ex” is an abbreviation of “example,”

and distinguishes this space from other spaces with similar names used throughout the note. The

procedure described above gives an epimorphism

(5) R̂n : Ĝrex → LinGL(V )

(
V ⊗2 ⊗ Lin(V ⊗2, V ), V

)

which is an isomorphism if n ≥ 3. The map R̂n defined in this way obviously does not depend

on the choice of the basis {e1, . . . , en} of V .

The space Ĝrex can also be defined as the span of all directed graphs with three unary vertices

(6) • X ,6
• Y
6 and 6 ,

and one “planar” binary vertex

(7)
6•F

��� @@I

whose planarity means that its inputs are linearly ordered. In pictures, this order is determined

by reading the inputs from left to right.

3. The general case

Let us generalize calculations in Section 2 and describe GL(V )-invariant elements in

(8) Lin
(
Lin(V ⊗h1, V ⊗p1) ⊗ · · · ⊗ Lin(V ⊗hr , V ⊗pr),Lin(V ⊗c, V ⊗d)

)
,

where r, p1, . . . , pr, h1, . . . , hr, c and d are non-negative integers. The above space is canonically

isomorphic to

V ∗⊗p1 ⊗ V ⊗h1 ⊗ · · · ⊗ V ∗⊗pr ⊗ V ⊗hr ⊗ V ∗⊗c ⊗ V ⊗d,

which is in turn isomorphic to

(9) V ∗⊗(p1+···+pr+c) ⊗ V ⊗(h1+···+hr+d),

via the isomorphism that moves all V ∗-factors to the left, without changing their relative order.

By the last and first isomorphisms in (1), the space in (9) is isomorphic to

Lin(V ⊗(p1+···+pr+c), V ⊗(h1+···+hr+d)).

We will denote the composite isomorphism between (8) and the space in the above display by

Φ. Since all isomorphisms above are GL(V )-equivariant, Φ is equivariant, too, thus the space (8)

may contain nontrivial GL(V )-equivariant maps only if

(10) p1 + · · ·+ pr + c = h1 + · · ·+ hr + d.
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Denote by Ĝr the space spanned by all directed graphs with r + 1 planar vertices

�
���

@
@@I

A
AAK

�
���

@
@@I

�
���
•F1

. . .︸ ︷︷ ︸
h1 inputs

. . .
p1 outputs︷ ︸︸ ︷

· · · �
���

@
@@I

A
AAK

�
���

@
@@I

�
���
•Fr

. . .︸ ︷︷ ︸
hr inputs

. . .
pr outputs︷ ︸︸ ︷

and �
���

@
@@I

A
AAK

�
���

@
@@I

�
���
. . .︸ ︷︷ ︸

d inputs

. . .
c outputs︷ ︸︸ ︷

,

where planarity means that linear orders of the sets of input and output edges are specified.

Observe that the number of edges of each graph spanning Ĝr equals the common value of the

sums in (10). For each graph G ∈ Ĝr we define a GL(V )-equivariant map R̂n(G) in the space (8)

as follows.

As in Section 2, choose a basis (e1, . . . , en) of V and let (e1, . . . , en) be the corresponding dual

basis of V ∗. For Fi ∈ Lin(V ⊗hi, V ⊗pi), 1 ≤ i ≤ r, write

Fi = Fi

ai
1
,...,ai

pi

bi
1
,...,bi

hi

ea1
⊗ · · · ⊗ eapi

⊗ eb1 ⊗ · · · ⊗ ebhi

with some scalars Fi

ai
1
,...,ai

pi

bi
1
,...,bi

hi

∈ k or, more concisely, Fi = Fi
Ai

Bi eAi ⊗eBi

, where Ai abbreviates the

multiindex (ai
1, . . . , a

i
pi

), Bi the multiindex (bi
1, . . . , b

i
hi

), eAi := ea1
⊗· · ·⊗eapi

, eBi

:= eb1⊗· · ·⊗ebhi

and, as everywhere in this paper, summations over repeated (multi)indices are assumed.

A labelling of a graph G ∈ Ĝr is a function ` : Edg(G) → {1, . . . , n}, where Edg(G) denotes

the set of edges of G. Let Lab(G) be the set of all labellings of G. For ` ∈ Lab(G) and 1 ≤ i ≤ r,

define Ai(`) to be the multiindex (ai
1, . . . , a

i
pi

) such that ai
s equals `(e), where e is the edge that

starts at the s-th output of the vertex Fi, 1 ≤ s ≤ pi. Likewise, put I(`) := (i1, . . . , ic) with

it := `(e), where now e is the edge that starts at the t-th output of the -vertex, 1 ≤ t ≤ c.

Let Bi(`) and J(`) have similar obvious meanings, with ‘inputs’ taken instead of ‘outputs.’ For

F1 ⊗ · · · ⊗ Fr ∈ Lin(V ⊗h1 , V ⊗p1) ⊗ · · · ⊗ Lin(V ⊗hr , V ⊗pr) define finally

(11) R̂n(G)(F1 ⊗ · · · ⊗ Fr) :=
∑

`∈Lab(G)

F1
A1(`)

B1(`) ⊗ · · · ⊗ Fr
Ar(`)
Br(`) eJ(`) ⊗ eI(`) ∈ Lin(V ⊗c, V ⊗d).

It is easy to check that R̂n(G) is a GL(V )-fixed element of the space (8). The nature of the

summation in (11) is close to the state sum model for link invariants, see [2, Section I.8], with

states being the values of labels of the edges of the graph.

3.1. Proposition. Let r, p1, . . . , pr, h1, . . . , hr, c and d be non-negative integers. Then the map

R̂n : Ĝr → LinGL(V )

(
Lin(V ⊗h1, V ⊗p1) ⊗ · · · ⊗ Lin(V ⊗hr , V ⊗pr),Lin(V ⊗c, V ⊗d)

)

defined by (11) is an epimorphism. If n ≥ e, where e is the number of edges of graphs spanning

Ĝr and n = dim(V ), R̂n is also an isomorphism.
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Observe that we do not need to assume (10) in Proposition 3.1. If (10) is not satisfied, then

there are no GL(V )-invariant elements in (8) and also the space Ĝr is trivial, thus R̂n is an

isomorphism of trivial spaces.

Proof of Proposition 3.1. By the above observation, we may assume (10). Consider the diagram

(12)

Ĝr LinGL(V )

(
Lin(V ⊗h1, V ⊗p1) ⊗ · · · ⊗ Lin(V ⊗hr , V ⊗pr),Lin(V ⊗c, V ⊗d)

)

k[Σk] LinGL(V )(V
⊗(p1+···+pr+c), V ⊗(h1+···+hr+d))

-

-

6 6

ΦΨ ∼=∼=

R̂n

Rn

in which Rn is the map (3), R̂n is defined in (11) and Φ is the composition of canonical isomor-

phisms and reshufflings of factors described on page 5 above. The map Ψ is defined as follows.

Let us denote, for the purposes of this proof only, by Ou(Fi) the linearly ordered set of

outputs of the Fi-vertex, 1 ≤ i ≤ r, and by Ou( ) the linearly ordered set of outputs of . The

set Ou := Ou(F1) ∪ · · · ∪ Ou(Fr) ∪ Ou( ) is linearly ordered by requiring that

Ou(F1) < · · · < Ou(Fr) < Ou( )

(we believe that the meaning of this shorthand is obvious). Let In be the linearly ordered set of

inputs defined in the similar way. The orders define unique isomorphisms

(13) Ou ∼= (1, . . . , k) and In ∼= (1, . . . , k)

of ordered sets.

Since graphs spanning Ĝr are determined by specifying how the outputs of vertices are con-

nected to its inputs, there exists a one-to-one correspondence G ↔ ϕG between graphs G ∈ Ĝr

and isomorphisms ϕG : Ou
∼=
→ In. Given (13), such ϕG can be interpreted as an element of the

symmetric group Σk. The map Ψ is then defined by Ψ(G) := ϕG.

It is simple to verify that the diagram (12) commutes, so the proposition follows from the

Invariant Tensor Theorem. �

4. Symmetries occur

In the light of diagram (12), Proposition 3.1 may look just as a clumsy reformulation of the

Invariant Tensor Theorem. Graphs become relevant when symmetries occur.

4.1. Example. Let Sym(V ⊗2, V ) ⊂ Lin(V ⊗2, V ) be the subspace of symmetric bilinear maps,

i.e. maps satisfying f(v′, v′′) = f(v′′, v′) for v′, v′′ ∈ V . Let us explain how to use calculations of

Section 2 to describe GL(V )-equivariant maps in Lin
(
V ⊗2⊗Sym(V ⊗2, V ), V

)
.
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The right Σ2-action on Lin(V ⊗2, V ) given by permuting the inputs of bilinear maps is such that

the space Sym(V ⊗2, V ) equals the subspace Lin(V ⊗2, V )Σ2 of Σ2-fixed elements. This right Σ2-

action induces a left Σ2-action on Lin
(
V ⊗2⊗Lin(V ⊗2, V ), V

)
which commutes with the GL(V )-

action, therefore it restricts to a left Σ2-action on the subspace LinGL(V )

(
V ⊗2⊗Lin(V ⊗2, V ), V

)

of GL(V )-equivariant maps.

There is also a left Σ2-action on the linear space Ĝrex interchanging the inputs of the F -

vertices of generating graphs. It is simple to check that the map (5) of Section 2 is equivariant

with respect to these two Σ2-actions, hence it induces the map

(14) Σ2\R̂n : Σ2\Ĝrex → Σ2\LinGL(V )

(
V ⊗2 ⊗ Lin(V ⊗2, V ), V

)

of left cosets. Observe that, by a standard duality argument,

(15) Σ2\LinGL(V )

(
V ⊗2 ⊗ Lin(V ⊗2, V ), V

)
∼= LinGL(V )

(
V ⊗2 ⊗ Sym(V ⊗2, V ), V

)
.

Let us denote Ĝrex,• := Σ2\Ĝrex. The bullet • in the subscript signalizes the presence of vertices

with fully symmetric inputs. By definition, graphs G′, G′′ ∈ Ĝrex are identified in the quotient

Ĝrex,• if they differ only by the order of inputs of the F -vertex. In Figure 1, this identification is

indicated by vertical braces. We see that Ĝrex,• is again a space spanned by graphs, this time with

no linear order on the inputs of the F -vertex. So we may define Ĝrex,• as the space spanned by

directed graphs with vertices (6) and one binary (ordinary, non-planar) vertex (7). We conclude

by interpreting (14) as the map

(16) R̂n : Ĝrex,• → LinGL(V )

(
V ⊗2 ⊗ Sym(V ⊗2, V ), V

)
.

It follows from the properties of the map (5) and the characteristic zero assumption that R̂n is

always an epimorphism and is an isomorphism if n ≥ 3.

At this point we want to incorporate, by generalizing the pattern used in Example 4.1, symme-

tries into Proposition 3.1. Unfortunately, it turns out that treating the space (8) in full generality

leads to a notational disaster. To keep the length of formulas within a reasonable limit, we de-

cided to assume from now on that p1 = · · · = pr = 1, c = 0 and d = 1. This means that we will

restrict our attention to maps in

(17) Lin
(
Lin(V ⊗h1 , V ) ⊗ · · · ⊗ Lin(V ⊗hr , V ), V

)
.

For graphs this assumption implies that the vertices F1, . . . , Fr have precisely one output, and

that the anchor has one input and no outputs. The number of inputs of Fi will be called the

arity of Fi, 1 ≤ i ≤ r. Condition (10) reduces to

r = h1 + · · ·+ hr + 1

and one also sees that r equals the number of edges of the generating graphs.

The above generality is sufficient for all applications we have in mind. A modification to the

general case is straightforward but notationally challenging.
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The space Lin(V ⊗h, V ) admits, for each h ≥ 0, a natural right Σh-action given by permuting

inputs of multilinear maps. A symmetry of maps in Lin(V ⊗h, V ) will be specified by a subset

I ⊂ k[Σh]. We then denote

LinI(V
⊗h, V ) :=

{
f ∈ Lin(V ⊗h, V ); fs = 0 for each s ∈ I

}
.

For I as above and a left Σh-module U , we will abbreviate by I\U the left coset IU\U .

4.2. Example. Let I := Ih ⊂ k[Σh] be the augmentation ideal. Then LinIh
(V ⊗h, V ) is the space

of symmetric maps,

LinIh
(V ⊗h, V ) = Sym(V ⊗h, V ),

therefore the augmentation ideal describes the symmetry of the local coordinates of vector fields

and their derivatives, see [5, Example 3.2]. We leave as an exercise to describe in this language

the spaces of antisymmetric maps.

4.3. Example. Let h := v +2, v ≥ 0, and let ∇ ⊂ k[Σh] be the image of the augmentation ideal

Iv of k[Σv] in k[Σh] under the map of group rings induced by the inclusion Σv ↪→ Σv ×Σ2 ↪→ Σh

that interprets permutations of (1, . . . , v) as permutations of (1, . . . , v, v + 1, v + 2) keeping the

last two elements fixed. Then Lin∇(V ⊗h, V ) consists of multilinear maps V ⊗(v+2) → V that are

symmetric in the first v inputs, i.e. multilinear maps possessing the symmetry of the Christoffel

symbols of linear connections and their derivatives, see again [5, Example 3.2].

4.4. Remark. It is clear how to generalize the above notion of symmetry to maps in the left Σp-

right Σh-module Lin(V ⊗h, V ⊗p) for general p, h ≥ 0. A symmetry of these maps will be specified

by subsets I ∈ k[Σh] and O ∈ k[Σp], the corresponding subspaces will then be

LinO
I (V ⊗h, V ⊗p) :=

{
f ∈ Lin(V ⊗h, V ⊗p); fs = 0 = tf for each s ∈ I and t ∈ O

}
.

Suppose we are given subsets Ii ⊂ k[Σhi
], 1 ≤ i ≤ r. Our aim is to describe GL(V )-invariant

elements in the space

(18) Lin
(
LinI1

(V ⊗h1 , V ) ⊗ · · · ⊗ LinIr
(V ⊗hr , V ), V

)
.

Let

I := I1 ∪ · · · ∪ Ir ⊂ k[Σh1
× · · · × Σhr

],

where Ii is, for 1 ≤ i ≤ r, identified with its image in k[Σh1
× · · · × Σhr

] under the map induced

by the group inclusion Σhi
↪→ Σh1

× · · · × Σhr
.

As in Example 4.1, we use the fact that, for 1 ≤ i ≤ r, each Lin(V ⊗hi, V ) is a right Σhi
-space,

hence the tensor product Lin(V ⊗h1 , V )⊗ · · ·⊗Lin(V ⊗hr , V ) has a natural right Σh1
× · · ·×Σhr

-

action which induces a left Σh1
× · · · × Σhr

-action on the space (17). This action restricts to the

subspace of GL(V )-equivariant maps.
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There is also a left Σh1
× · · · ×Σhr

-action on the space Ĝr given by permuting, in the obvious

manner, the inputs of the vertices F1, . . . , Fr of generating graphs. The map R̂n of Proposition 3.1

is equivariant with respect to the above two actions and induces the map

I\R̂n : I\Ĝr → I\LinGL(V )

(
Lin(V ⊗h1, V ) ⊗ · · · ⊗ Lin(V ⊗hr , V ), V

)

of left quotients. Denoting ĜrI := I\Ĝr and realizing that, by duality, the codomain of I\R̂n is

isomorphic to the subspace of GL(V )-fixed elements in (18), we obtain the map (denoted again

R̂n)

(19) R̂n : ĜrI → LinGL(V )

(
LinI1

(V ⊗h1, V ) ⊗ · · · ⊗ LinIr
(V ⊗hr , V ), V

)

which is, by Proposition 3.1, an epimorphism and is an isomorphism if dim(V ) ≥ r.

4.5. Remark. As in Example 4.1, it turns out that the quotient ĜrI = I\Ĝr is a space of graphs

though, for general symmetries, “space of graphs” means a free wheeled operad on a certain

Σ-module [6]. In the cases relevant for our paper, we however remain in the realm of ‘classical’

graphs, as shown in the following example, see also the proof of Corollary 5.1.

4.6. Example. Suppose that, for some 1 ≤ i ≤ r, Ii equals the augmentation ideal Ihi
of k[Σhi

]

as in Example 4.2. Then, in the quotient I\Ĝr, one identifies graphs that differ by the order of

inputs of the vertex Fi. In other words, modding out by Ii ⊂ I erases the order of inputs of Fi,

turning Fi into an ordinary (non-planar) vertex. If Ii = ∇ as in Example 4.3, one gets a vertex

of arity v + 2, v ≥ 0, whose first v inputs are symmetric.

For applications, we still need one more level of generalization that will reflect the antisymme-

try of the Chevalley-Eilenberg complex [5, Section 2] in the Lie algebra variables. As a motivation

for our construction, we offer the following continuation of the calculations in Section 2 and Ex-

ample 4.1.

4.7. Example. We will consider the tensor product V ⊗ V as a left Σ2-module, with the action

τ(v′ ⊗ v′′) := −(v′′ ⊗ v′), for v′, v′′ ∈ V and the generator τ ∈ Σ2. The subspace (V ⊗ V )Σ2 of

Σ2-fixed elements is then precisely the second exterior power ∧2
V . This left action induces a

GL(V )-equivariant right Σ2-action on the space Lin
(
V ⊗2⊗Sym(V ⊗2, V ), V

)
such that

Lin
(
V ⊗2 ⊗ Sym(V ⊗2, V ), V

)
/Σ2

∼= Lin
(
∧2

V ⊗ Sym(V ⊗2, V ), V
)

.

The above isomorphism restricts to an isomorphism

(20) LinGL(V )

(
V ⊗2 ⊗ Sym(V ⊗2, V ), V

)
/Σ2

∼= LinGL(V )

(
∧2

V ⊗ Sym(V ⊗2, V ), V
)

.

of the subspaces of GL(V )-equivariant maps.

Likewise, Ĝrex,• carries a right Σ2-action that interchanges the labels X and Y of the •6-vertices

of graphs in the last column of Figure 1 and multiplies the sign of the corresponding generator

by −1. The map (16) is Σ2-equivariant, therefore it induces the map

R̂n/Σ2 : Ĝrex,•/Σ2 → LinGL(V )

(
V ⊗2 ⊗ Sym(V ⊗2, V ), V

)
/Σ2.
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Let us denote Gr2
ex,• := Ĝrex,•/Σ2 and R2

n := R̂n/Σ2. Using (20), one rewrites the above map as

an epimorphism

R2
n : Gr2

ex,• � LinGL(V )

(
∧2

V⊗Sym(V ⊗2, V ), V
)

which is an isomorphism if n ≥ 3.

The space Gr2
ex,• is isomorphic to the span of the set of directed, oriented graphs with one

(non-planar) binary vertex F , an anchor 6, and two ‘white’ vertices ◦6. By an orientation we

mean a linear order of white vertices. A graph with the opposite orientation is identified with

the original one taken with the opposite sign. It is clear that, with Gr2
ex,• defined in this way, the

map Gr2
ex,• → Ĝrex,•/Σ2 that replaces the first (in the linear order given by the orientation) white

vertex ◦6by the black vertex •6labelled by X, and the second white vertex by the black vertex

labelled by Y , is an isomorphism.

The symmetry of the inputs of the vertex F implies the following identities in Gr2
ex,•:

6•F

���◦ <@@I◦
= −

6•F

���◦ >@@I◦
= −

6•F

���◦ <@@I◦
,

from which one concludes that

6•F

���◦ <@@I◦
= 0.

Therefore Gr2
ex,• is in this case one-dimensional, spanned by the equivalence class of the oriented

directed graph

6
◦ ��
��

���◦
•
6

F

<
.

In the notation of Figure 1, the above graph represents the map that sends (X ∧ Y ) ⊗ F ∈

∧2
V ⊗ Sym(V ⊗2, V ) into

X ⊗ Tr(F (Y,−)) − Y ⊗ Tr(F (X,−)) ∈ V.

Let us turn to our final task. We want to describe GL(V )-invariant elements in the space

(21) Lin

(

∧
1≤i≤m

Sym(V ⊗hi, V ) ⊗
⊗

m+1≤i≤r

LinIi
(V ⊗hi, V ), V

)

where, as before, r, h1, . . . , hr are positive integers, Ii ⊂ k[Σhi
] for m + 1 ≤ i ≤ r, and m is

an integer such that 1 ≤ m ≤ r. Having in mind the description of the space of symmetric

multilinear maps given in Example 4.2, we extend the definition of Ii also to 1 ≤ i ≤ m, by

putting Ii := Ihi
. The first step is to identify the exterior power ∧1≤i≤m Sym(V ⊗hi, V ) with the

fixed point set of an action of a suitable finite group. This can be done as follows.

For 1 ≤ w ≤ m, let A(w) ⊂ {1, . . . , m} be the subset A(w) := {1 ≤ i ≤ m; hi = hw}. Then

{1, . . . , m} =
⋃

1≤w≤m A(w)
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is a decomposition of {1, . . . , m} into not necessarily distinct subsets. Let Σ̂ ⊂ Σm be the

subgroup of permutations of {1, . . . , m} preserving this decomposition.

The group Σ̂ acts on
⊗

1≤i≤m Sym(V ⊗hi, V ) by permuting the corresponding factors. If we

consider this tensor product as a left Σ̂-module with this permutation action twisted by the

signum representation, then

∧
1≤i≤m

Sym(V ⊗hi, V ) ∼=

(
⊗

1≤i≤m

Sym(V ⊗hi, V )

)bΣ

.

The above left Σ̂-action on
⊗

1≤i≤m Sym(V ⊗hi, V ) induces a dual GL(V )-equivariant right Σ̂-

action on the space (21).

There is a right Σ̂-action on the quotient ĜrI = I\Ĝr defined as follows. For a graph G ∈ Ĝr

representing an element [G] ∈ ĜrI and for σ ∈ Σ̂, let Gσ be the graph obtained from G by

permuting the vertices F1, . . . , Fm according to σ. We then put [G]σ := sgn(σ)[Gσ]. Since, by

the definition of Σ̂, σ may interchange only vertices with the same number of inputs and the

same symmetry, our definition of Gσ makes sense.

It is simple to see that the map R̂n in (19) is Σ̂-equivariant, giving rise to the map

R̂n/Σ̂ : ĜrI/Σ̂ → LinGL(V )(LinI1
(V ⊗h1 , V ) ⊗ · · · ⊗ LinIr

(V ⊗hr , V ), V )/Σ̂

of right cosets. The codomain of R̂n/Σ̂ is easily seen to be isomorphic to the subspace of GL(V )-

equivariant elements in (21). The above calculations are summarized in the following proposition

in which Grm
I := ĜrI/Σ̂ and Rm

n := R̂n/Σ̂.

4.8. Proposition. Let r, h1, . . . , hr be non-negative integers, 1 ≤ m ≤ r, and Ii ⊂ k[Σhi
] for

m + 1 ≤ i ≤ r. Then the map

(22) Rm
n : Grm

I → LinGL(V )


 ∧

1≤i≤m

Sym(V ⊗hi, V ) ⊗
⊗

m+1≤i≤r

LinIi
(V ⊗hi, V ), V




constructed above is an epimorphism. If, moreover, the dimension n of V ≥ the number of edges

of graphs spanning Grm
I , Rm

n is also an isomorphism.

The following result says that the presence of vertices with symmetric inputs miraculously

extends the stability range (Definition 1.1). In applications, these vertices will represent the Lie

algebra generators in the Chevalley-Eilenberg complex.

4.9. Proposition. Suppose that h1, . . . , hm ≥ 2. If n ≥ e − m, where n is the dimension of V

and e the number of edges of graphs spanning Grm
I , then the map Rm

n in Proposition 4.8 is an

isomorphism.



TENSORS AND GRAPHS 13

Proof. Let G be a graph spanning Grm
I and S ⊂ Edg(G) a subset of edges of G such that

card(S) > n. For each permutation σ of elements of S, denote by Gσ the graph obtained by

cutting the edges belonging to S in the middle and regluing them following the automorphism

σ. The linear combination

(23)
∑

σ∈ΣS

sgn(σ) · Gσ ∈ Grm
I

is then a graph-ical representation of the expression in (4), thus the kernel of Rm
n is generated by

expressions of this type. Since, by assumption, card(S) ≤ n + m and h1, . . . , hm ≥ 2, the set S

must necessarily contain two input edges of the same symmetric vertex of G. This implies that

the sum (23) vanishes, because with each graph Gσ it contains the same graph with the opposite

sign. This shows that the kernel of Rm
n is trivial. �

4.10. Remark. By an absolutely straightforward generalization of the above constructions, one

can obtain versions of Proposition 4.8 and Proposition 4.9 describing the space

(24) LinGL(V )

(

∧
1≤i≤m

Sym(V ⊗hi, V ) ⊗
⊗

m+1≤i≤r

LinOi

Ii
(V ⊗hi, V ⊗pi),LinO

I (V ⊗c, V ⊗d)

)

in terms of a space spanned by graphs. Since the notational aspects of such a generalization are

horrendous, we must leave the details as an exercise to the reader.

5. A particular case

We finish this note by a corollary tailored for the needs of [5]. For non-negative integers m, b

and c, denote by Grm
•(b)∇(c) the space spanned by directed, oriented graphs with

(i) m unlabeled ‘white’ vertices with fully symmetric inputs and arities ≥ 2,

(ii) b ‘black’ labelled vertices with fully symmetric inputs and arities ≥ 0,

(iii) c labelled ∇-vertices, and

(iv) the anchor 6.

In item (iii), a ∇-vertex means a vertex with the symmetry described in Example 4.3, see also

Example 4.6. As in Example 4.7, an orientation is given by a linear order on the set of white

vertices. If G′ and G′′ are graphs in Grm
•(b)∇(c) whose orientations differ by an odd number of

transpositions, then we identify G′ = −G′′ in Grm
•(b)∇(c).

5.1. Corollary. For each non-negative integers m, b and c there exists a natural epimorphism

Rm
•(b)∇(c),n : Grm

•(b)∇(c) �

⊕

~h∈H

LinGL(V )


 ∧

1≤i≤m

Sym(V ⊗hi, V ) ⊗
⊗

m+1≤i≤m+b

Sym(V ⊗hi, V )
⊗

m+b+1≤i≤m+b+c

Lin∆(V ⊗hi, V ), V


 ,
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with the direct sum taken over the set H of all multiindices ~h = (h1, . . . , hm+b+c) such that

h1, . . . , hm ≥ 2, hm+1, . . . , hm+b ≥ 0 and hm+b+1, . . . , hm+b+c ≥ 2.

The map Rm
•(b)∇(c),n is an isomorphism if n = dim(V ) ≥ b + c.

Proof. The map Rm
•(b)∇(c),n is constructed by assembling the maps Rm

n from Proposition 4.8 as

follows. For a multiindex ~h = (h1, . . . , hm+b+c) ∈ H as in the corollary take, in Proposition 4.8,

r := m + b + c and

Ii = Ii(~h) :=

{
Ihi

, for m + 1 ≤ i ≤ m + b and

∇, for m + b + 1 ≤ i ≤ r,

see Examples 4.2 and 4.3 for the notation. Let Rm
n (~h) be the map (22) corresponding to the above

choices and Rm
•(b)∇(c),n :=

⊕
~h∈H

Rm
n (~h). We only need to show that the graph space Grm

•(b),∇(c) is

isomorphic to the direct sum of the double quotients Grm

I(~h)
= I(~h)\Ĝr/Σ̂.

As we argued in Example 4.6, the left quotient Ĝr
I(~h) = I(~h)\Ĝr is spanned by directed graphs

with r labelled vertices F1, . . . , Fr such that the 1st type vertices F1, . . . , Fm (‘white’ vertices)

have fully symmetric inputs and arities h1, . . . , hm, and the remaining vertices Fm+1, . . . , Fr are

as in items (ii)–(iv) of the definition of Grm
•(b)∇(c) but with fixed arities hm+1, . . . , hr.

Modding out Ĝr
I(~h) by Σ̂ identifies graphs that differ by a relabelling of white vertices of the

same arity and the sign given by to the signum of this relabelling. This clearly means that the

map

Grm
•(b),∇(c) →

⊕

~h∈H

Grm

I(~h)
=
⊕

~h∈H

Ĝr
I(~h)/Σ̂

that assigns to the first (in the linear order given by the orientation) white vertex of graphs

generating Grm
•(b),∇(c) label F1, to the second white vertex label F2, etc., is an isomorphism. By

simple combinatorics, graphs spanning Grm
•(b),∇(c) have precisely m + b + c edges which completes

the proof of the corollary. �

5.2. Remark. Proposition 4.8 and its Corollary 5.1 was obtained by applying the double-coset

reduction I\ −/Σ̂ and standard duality to the map R̂n of Proposition 3.1. Backtracking all the

constructions involved, one can see that, in Corollary 5.1, the invariant linear map Rm
•(b)∇(c),n(G)

corresponding to a graph G ∈ Grm
•(b)∇(c) is given by the ‘state sum’ (11) antisymmetrized in the

white vertices.
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