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Existence of a Weak Solution to the Navier—-Stokes
Equation with Navier's Boundary Condition
around Striking Bodies

Jifi Neustupa and Patrick Penel

Abstract

We assume tha&? (for ¢t € [0, 7)) is a time varying domain iiR?, which is the exterior of
several compact bodies moving in a container and striking at time ingtanfs’, where7 © is
a finite subset of0, T'). We consider the Navier—Stokes equation with Navier’s slip boundary
condition and we prove its weak solvability @ ) := {(x,1); 0 <t < T, x € Q'}. We
show that Navier's boundary condition enables us to consider a different class of collisions
than the usual no—slip Dirichlet boundary condition.
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1 Introduction

A global (in time) weak solvability of the Navier—Stokes equation with the no—slip Dirichlet
boundary condition in a fixed domaid c R? is a classical result of the qualitative theory of
the Navier-Stokes equation, see e.g. 8rRAy [19] (1934), E. FHoPF[16] (1950), O. A. LA-
DYZHENSKAYA [17] (1969), J. L. LoNs [21] (1969), R. TEMAM [30] (1977) or G. P. GLDI

[11] (2000).

The proof of the same result in a time variable donfairmepresents a subtler problem, espe-
cially due to the dependence of various constants in imbedding inequalities and in estimates of
traces on the concrete shapeftf The first proof of the global (in time) weak solvability of the
Navier—Stokes equation with the no—slip boundary condition, in a time—varying dddaiith
a prescribed form at each timewas published by H. B31TA AND N. SAUER [8] (1970). The
authors assumed that the boundary of the variable doftfatonsists of a finite number of moving
simple closed surfaces of the claS$ so that the distance of any two of these surfaces is never
less thand > 0.) The result was recently generalized by EU$TUPA[22] (2007; Q! has an
arbitrary shape and smoothness, the assumptiof¥ aivolve simulation of collisions of bodies
moving in a fluid). The existence and uniqueness of a strong solution in ddmaiith given
smooth moving boundaries was proved by O. ADYZHENSKAYA [18] (1968; globally in time
for sufficiently small data or locally in time for large data).

A series of other works, studying the Navier—Stokes equation in a time varying domain, ap-
peared in the last decade. The works we have in mind describe the motion of one or more bodies



in a fluid and the authors consider the system fluid—bodies to be interconnected so that the position
of the bodies in the fluid is not known in advance. In addition to the Navier—Stokes equation and
the equation of continuity (which describe the motion of the fluid), the authors also consider equa-
tions describing the motion of the bodies in the fluid in dependence on forces and torques resulting
from the action of the fluid on the boundary of the bodies. Of all papers belonging to this category,
let us name e.g. K. H. BFFMANN, V. N. STAROvOITOV [14] (1999) and [15] (2000), B. Bs-
JARDINS, M. J. ESTEBAN [3] (1999) and [4] (2000), C. 6NCA, J. AN MARTIN, M. Tuc-

SNAK [2] (2000), M. D. QUNZBURGER, H. C. LEE, G. SEREGIN[13] (2000), J. 3N MARTIN,

V. N. STAROVOITOV, M. TUCSNAK [23] (2002), E. FEIREISL [6] (2003), T. TAKAHASHI [27]

and [28] (both 2003) T. AKAHASHI, M. TUCSNAK [29] (2004), V. N. SAROVOITOV [25]

(2005). The results presented in these papers concern 2D and 3D cases and they involve theorems
on the global in time existence of weak solutions or the local in time existence of a strong solution.
Some of the papers admit collisions of the bodies moving in the fluid. Another series of papers
studies the motion of the interconnected system fluid—body under the assumption that the body
is able to produce a certain velocity profile on its surface and it moves do to this velocity. The
survey of results on these so called “self—propelled bodies” can be found in the work [11] (2002)
by G. P. G\LDI.

All the works cited above consider the homogeneous Dirichlet boundary condition for velocity
on the boundary of domai’ filled by the fluid.

V. N. STAROVOITOV [24] (2003) derived necessary conditions for the existence of a weak
solution of the Navier—Stokes equation in a time variable dorfiinwhich is an exterior of
several solid bodies moving in the fluid, considering also the no—slip Dirichlet boundary condition
on the surface of the bodies. The conditions show that if the bodies have boundaries of the class
C? then they can strike only with the speed equal to zero at the instant of the collision, otherwise
the weak solution cannot exist.

Motivated by this state, we study the flow of a viscous incompressible fluid around moving
bodies under the assumption that the velocity of the fluid satisfies Naviers slip boundary condition
on the boundary. We assume that the motion of the bodies is a priori known.

All assumptions we impose on the timevariable donfain occupied by the fluid at time,
are in detail listed in Section 2. We prove the global in time existence of a weak solution of the
initialboundary value problem

ov+v-Vv+Vp = vAv+f in Q1) (1.2)
divv =0 in Q1) (1.2)
v.n=V-n in 1), (1.3)
Ta(v) -0l +7(v = V) = 0 in D (o7, (1.4)
vV = v in Q% x {0}, (1.5)

where the operatordéiv andV act on the spatial variable§,, ) denotes a space-time cylinder
in R* whose intersectiof! x {t} with the time levek varies along the time axis anq, r) is the

envelope of) o 7):
Qur) = {(xt)eR0<t<T, xe'}, (1.6)
For = {(xt)eRL0<t<T, xeI"} (1.7)

The equations (1.1), (1.2) describe the motion of a Newtonian viscous incompressible fluid in
domain?. The density of the fluid is supposed to be one. The symbglsy andf in equations



(1.1) and (1.2) successively denote the velocity of the fluid, the pressure, the kinematic coefficient
of viscosity and the specific external body force. Condition (1.3) expresses the impermeability of
I'. Heren denotes the outer normal vector awd. , t) is the velocity of “material points” on the
boundant™ of Q. Condition (1.4) is due to H. NVIER, who proposed in 1824 that the tangential
component of the stress acting on the boundary should be proportional to the relative velocity of
the fluid with respect to the material boundary. Hé&gv) denotes the dynamic stress tensor
associated with the flow. It has the fornily(v) = 2v (Vv), where(Vv), is the symmetrized
gradient ofv. The subscript denotes the tangential componenifo The positive constant is

the coefficient of friction between the fluid and the boundary.

The problem is treated on a relatively general level in Sections 2-7. The definition of its weak
solutions and our main result are given in Section 3. In Section 8, we consider a concrete example
when! is the exterior domain of two moving bodies, striking at the time instast (0, T').

Our technique is based on the construction and estimates of the Rothe approximations. Many
steps require a different approach than in the case of homogeneous Dirichlet’s boundary condition.
For instance, a vector functianfrom the Sobolev spadé’(}’2((2t)3, extended by zero &3\ O,
becomes an element & 1:2(R3)3. Consequently, its norm ih%(Q)3 can be estimated from
above by a constant times the norniin'-2(Q)3, where the value of the constant is independent
of Qf. The same consideration is, however, impossible if one assumas th&t 12 (Q)? satisfies
Navier’s slip boundary condition instead of Dirichlet’s no—slip condition. Other difficulties arise
in the part where we treat the limit transition in the nonlinear term. The standard argument based
on the control of the time oscillations of the approximations and application of the Lions—Aubin
lemma cannot be used in a usual way. Instead of this, we prove a strong convergence of certain
local Helmoltz projections of the approximations, which turns out to be enough in order to verify
the correctness of the limit transition, see Section 7. Note that the similar idea was already used by
K. H. HOFFMANN, V. N. STAROVOITOV in [14] in the case of a 2D flow around a smooth body
moving in a smooth tank, with the Dirichlet no—slip boundary condition on the boundary.

Notation of norms and function spaces.

e (., .)2.q isthe scalar product arf |5. o¢ is the norminL?(Qf) orin L*(€2*)% or in L?(Q*)?,
respectively. The meaning ¢f ||,. o or (., .)o. e @and| . ||, r+ is analogous.

. ng,((zt) is the linear space of infinitely differentiable divergence—free vector—functio$ in
with a compact support ife’.

o LL(QF)is the closure of’5%, () in L1(Q")? (for 1 < g < 4-00).
o Wo2(Q) := WH2(QH)3 N L2(QY)  (with the norm|. |1 5, or s iINW12(QF)3)

2 General assumptions on domaim)! and realization of the boundary condition
(1.3)

2.1 The structure of domainQ!. LetT > 0. We are motivated by the following situation:

K solid bodies move in the fluid in a fixed containBrin the time interval(0,7") so that their
positions are given in advance and they do not depend on the motion of the fluid. Thus, we assume
that the time variable domaiiy, filled by the fluid, has the form

Q' = DNUE, B, for0<t<T, (2.1)



where B, ..., B%. are compact regions occupied by the bodies at imgWe shall further
identify names of the bodies with the names of these regions.) The bodies can strike themselves or
the boundary of the container at certain critical instants of tifne. ., ¢, in the interval(0, T').

We denote the set of these critical timeshy. If ¢ € 7¢ then the bodies touch themselves or the
boundary ofD only by some points on their boundaries. Otherwise, at titne$0, 7] \ 7°¢, the

setsB!, ..., Bt are mutually disjoint and contained in. We assume that

(al) D and the interiors of setB] (k = 1,..., K) are Lipschitz domains iiR3 with piecewise
C' boundaries.

(By a “piecewiseC'! boundary” we mean a boundary which is a union of a finite number of
surfaces of the class!.)

Let us further denote by (¢) the translational velocity, by, (t) the rotational velocity and
by % (t) the center of rotation of thé—the bodyB! at time instantg € (0,7) \ 7¢. Hence
material pointsx € B!, move with the known velocity

V(x,t) = Vi(t) +wp(t) x [x —Xp(t)] fort € (0,7)~T¢. (2.2)

We assume that

(a2) Vi, wy, andx;;, (k =1,..., K) are functions fronC? ([0, T] Tc)?’.
Ot
By

Fig. 1: A possible form of2" inthe caseK =3, t ¢ 7¢ and Bf # 0

Remark 1. In order to simplify the notation, we put} := R3 \ D. SetB} is clearly time—
independent, we use the superscriphly in order to be consistent with the notation of the moving
bodiesB{, e Bf,(. Note that domainD may coincide with the whole spad?; in that case
Bl = 0B} = (. We also extend functiolV by zero toBf: V(x,t¢) := 0 for x € B} and

0 < ¢t < T. Domain{2* can now be expressed in the fofth = R* \ U_, B! . The material point

in the k—th body & = 0,1, ..., K), whose “old” position at time, € [0,7] wasx, € B, has a
“new” position described at timeby

t
Y (t; to,x0) = x0+/ V(Y(s; to,x0),s) ds € Bj. (2.3)

to



The functionY (¢; to, .), fort € [0, 7] andt, € [0, T]\7¢, maps the unionX_ B} continuously
ontoUX  BY. Moreover, the restriction 6¥ (¢; ¢y, .) to B, is an isometric mapping dB,° onto
B}, which mapsdB;° onto 0B! (k = 0,...,K). The restriction ofY (¢; to, .) to BY is the
identity mapping.

Remark 2. The boundary of)! is denoted by™. It has the form
I = 0DU [Uf,0BL] = Ui_,0B;, for0<t<T. (2.4)
The set9D, 0BY, ..., OB} are mutually disjoint for € [0,7] \ 7¢.

Remark 3. Since()! is Lipschitzian fort € [0,7] ~ T¢, we also havéV}*(Q!) «— L4(Q)3 for
2 < g < 6andt € [0,T] \ 7¢. Using the characterization df%(Q¢) (see [9, p. 111]), we can
verify thatWa2(Q?) — LZ(Q?) for theseg andt.

2.2 The outer normal vector on the boundary of!. It follows from assumption (al) that
the outer normal vector field is defined a.e. o’ for ¢ € [0, 7] \. 7¢. Moreover, sincd™ is a
piecewiseC'! surface, the fielch can be extended to the neighbourhood b0 thatVn makes
sense a.e. oh for t € [0, 7] \. 7¢. We assume that

(a3) there exists a positive constantsuch that
o ¢-Vn-¢dS < e l|@llaar (@l + [VPl2ar) (2.5)

fort € [0,7) ~ T¢and allg € Wa?(Q1).
Note that the integral on the left hand side of (2.5) can be estimated by a constantdifpes
times||¢|; 2. by means of an appropriate theorem on traces, see e.g. GalRl @, p. 42].
Naturally, the constant in the inequality we obtain from the theorem on traces generally depends
ont. Assumption (a3) thus expresses the requirement that inequality (2.5) is satisfied with constant
¢1 independent of for ¢ € [0, 7] . 7¢. We shall see in Section 8 that the shape of striking bodies
in the neighbourhood of points of collisions plays the decisive role in verification of condition (a3)
in a concrete example.

2.3 Realization of the boundary condition (1.3) — an auxiliary functiona. In order to trans-

form the inhomogeneous boundary condition (1.3) to the homogeneous one, we look for the solu-
tion v in the form v = a + u whereu is the new unknown function analis supposed to be a
known vector—function, defined in the set

QTO,T}rTc = {(X,t) € R4; te0,T]\T° x€ W},

such that
diva = 0 in Q[O,T}I’Tca (26)

a-n=V-n in T 7y - 2.7)

Conditions (1.3) and (2.7) now imply that functienshould satisfy the homogeneous boundary

condition
u-n=>0 a.e.inl ). (2.8)

We further assume that function a satisfies the five conditions listed below. The possibility of a
construction of functiom, satisfying (2.6), (2.7) and these conditions, depends on doftfaand

its variation due to the motion and shapes of boaﬁ‘és. . Bﬁf. So we attach these conditions to
other assumptions on domditi and we refer to them as to (a4)-(a8).

5



(ad) a and d;a are continuous ”@[0 T]rTe
(a5) la(.,t)|l1.2.0t € L*(0,T) — letus denote this norm k4 (¢),
(@6) la(.,t) = V(.,t)||o.r¢ € L*(0,T) — let us denote this norm s (¢),

(a7) there exist function®s € L'(0,7), 64 € L?*(0,T7) andfs € L'(0,T), continuous in
[0,7] . T¢, such that fot € [0,7] ~. 7¢and¢ € W, *(Q) we have

/Qt [Owa(.,t) +a(.,t)- Va(.,t)] - ¢ dx

< 03(t) [|@ll2; 00 + 0a(t) [VPllgye, (2.9)

thb-Vcb-a(-,t) dx| < 15v Vo300 + 37 10115, 0 + 05(0) [|B]15; (2.10)
(a8) the initial-value problem
%X(t; 0,x) = a(X(t; 9,%),t), X(¥; v,x) =x (2.11)

has a unique solutioX (¢; ¥, x), defined fort € [0,7], ¥ € [0,T] and a.ax € 7, such
that the mapping — X(t; 9, x) is a one—to—one transformation @f . s’ ontoQf \ s*
(wheres” ands’ are sets of measure zerof¥ or in ), respectively).

Remark 4. We shall often use the mapping— X(¢; ¥,x) in order to transform volume in-
tegrals onQY to volume integrals of2f. The Jacobian of this mapping equals one due to the
incompressibility of flona.

3 A weak formulation of the initial-boundary value problem (1.1)—(1.5)
and the main theorem

By analogy W|thQ <> We denote byQ[U 7] (respectlveI)Q )) the set of point¢x, t) € R*
suchthad <t < T (respectlvely) <t <T)andx € Q.

A formal derivation of the weak formulation. Assume thatp is an infinitely differentiable
divergence—free vector—function @, ., that has a compact support 0T and satisfies the
conditiong-n = 0 a.e. onl’ (g 7). Assume that is a “sufficiently smooth” solution of (1.1)-(1.5)
of the formv = a + u wherea satisfies all the assumptions named in Section 2waadL2 ()
fora.a.t € (0,7). Let us multiply equation (1.1) by functiogp and integrate o) ry. The
integral of{0;u + (a- V)u} - ¢ can be expressed as follows:

T
/ {815 (x,t) +a(x,t) - Vu(x,t)} - ¢(x,t) dxdt
0
= / / X(t; 0,%0),t) - (X(t; 0,%0),t) dxo dt
Qo dt
X()7 dXo —/ /Qo t O XQ ) %(f)(X(t, O,Xo),t) dXU dt

—/QD U_O(XQ)
= —/ up(x0) - p(x0,0) dxg — / / u(x,t) - {Op(x,t) + a(x,t) - Vo(x,t)} dxdt,
Q0 0 Ot
6



whereuy = vy — a(.,0). The integral ofu - Vv - ¢ in Q! can be transformed to the integral of

u - Va - ¢ minus the integral ofu - V¢ - u by means of the integration by parts. The integral

of Vp - ¢ in Q! equals zero because the subspace of gradients of scalar functions is orthogonal
to L2(Q) in L2(Q*)3. Furthermore, denoting the components of the vectpss u and¢ by the

same slanted letters with indices, we have

/Qt VAV - d) dx = /Qt 1/(8]21)1)@ dx = /Ft 1% (8]»@2-) nj ¢Z ds — /Qt 1% (8]1)1)(({9J¢1) dx
= / 1% (Ojvi =+ 8ﬂ}j) ’I’Lj qf)@ dX — / 1% (82-1)]-) nj gbl dX — / 1% (ijl)(éjqﬁl) dX
It Tt Ot

= —/ Yy(v—-=V)-¢pdS— 2v(Vv), : Vo dx, (3.1)
It ot
where the subscriptdenotes the symmetric part. We have used the identiti@sv; + 0;v;) n; ¢;

= [Tq(v) -mn] - ¢ = —y(v — V) - ¢, following from the boundary condition (1.4). Writing
everywherea + u instead ofv, we obtain the integral equation

T
/ / {-(Op+a-Vop)-u—u-Vop-a+u-Vu-¢+2v[V(a+u),: Vo}dxdt
0o Jar

+/OT/Fty(a—i—u—V)-qdedt:/OT/th-q&dxdt—l—/gou()'¢(.,0)dx (3.2)

whereg = f — 0;a — a - Va. Thus, we arrive at the definition:

Definition 1. Suppose thatiy € L2(QY) andf € L%(0,7T; L*(Q%)3). Putg = f — g,a —
a - Va. We call the functionv = a + u a weak solutionof the problem (1.1)—(1.5) ifu €
L2(0,T; W (1) N L>=(0,T; L2(Q)), the trace ofa on L7 isin L*(0,T; L*(T")?) andu
satisfies (3.2) for all infinitely differentiable divergence—free vector—functibins Qfo,:r]’ with a
compact support i'@fo,:r)’ that satisfy the conditio - n = 0 a.e. onl'(o 7).

The readers can verify that if the weak solutietis “sufficiently smooth” and all other input
data are also “sufficiently smooth” then there exists a pregsacethat the paix, p is a classical
solution of (1.1)—(1.5).

Our main theorem, whose proof is given in Sections 5-7, reads:

Theorem 1. Suppose that domaift! satisfies all the conditions(al)—(a3). Suppose that there
exists functiora, satisfying conditions (2.6), (2.7) and (a4)—(a8) from Section 2. Then the weak
solution of the problem (1.1)—(1.5), introduced in Definition 1, exists.

Remark 5. We shall see in Section 8 that condition (a7) induces a restriction on the speed of
colliding bodies in comparison with the coefficiemtaind~, if the bodies strike by’?—surfaces.

4 An apriori energy—type estimate of a solution of the problem (1.1)—(1.5)

In this section, we present a formal derivation of the energytype inequality, assumirig that
a “sufficiently smooth” solution of (1.1)-(1.5). The formal approach has the advantage that it
enables us to abstract from technical details connected with the approximationgpfnd to



explain clearly the basic ideas. The same energytype inequality can also be derived for appropriate
approximations ofv, p) (see Section 7).

We are going to derive the following inequality

Dl v [ V0GB s+ [ o) s
t
< Juoll3 g + /0 wi(s) [ul., 813, qr ds +wa(t) (4.1)
where ug = u(.,0) = v — a® and functionsv; andws are integrable irf0, T').
Beginning with equation (1.1) (whesre = a + u), we multiply it by functionu and integrate
in Qf. We obtain
{(Bpu+a-Vu+u-Va) -u+2v[V(a+u),: Vu} dx
Ot
+’y/ (a+u—-V)-udsS = / f-udx—/ (O;ia+a-Va) -udx. (4.2)
Tt Ot Ot
(We have used (3.1) and (3.2) wigh= u. As usually, the integral of - Vu-u in Q! equals zero.)

First of all, using the transformation— y = X(t + h; t,x) of Q \ s onto Q! \ st (see
condition (a8)), we can rewrite the integral(@u + a - Vu) - u as follows:

/Qt[atu—ka-Vu] ‘udx = {/Qt%%‘u(xw t,x) )‘ de:t
~ lim % U (\u(X(tJrh; t,%),t + h) > = [u(X(t; t,x),t)f) dx]

1 d1
lim o [/Qwh lu(y,t+ h)|*dy /Qt lu(x, )] dx] 13 /Qt lu|” dx

Further, we successively estimate the integrals in (4.2).
e The first term on the right hand side can be estimated from below by means of assumption (a6):

7 [ u= V) wds = Tl - 1630, “.3)
e The integral of Vu), : Vu can be treated as follows:
/Qt(Vu) Vudx = u/ |Vu|2dx+u/ (Osuj) uinj dS
=v HVUHQ;Q,& + V/I‘t Oi(ujnj)u; dS — V/ uj (Oinj) u; dS.

Tt

The second integral on the right hand side is equal to zero beeguse= 0 a.e. onl* and
the integrand represents the derivative:gf; in the tangent direction. The third term can be
estimated by means of condition (al). Thus, we obtain

v 5Y%
21// (Vu)s: Vudx > 5 [Vl o — [l/cl +5 cﬂ [T (4.9)
Qt K 9



The integral of(Va), : Vu can be estimated from below by || Vul|2. . — 363(t) due to
condition (ab).

The modulus of the integral of the produéia + a' - Va) - u in (4.2) can be estimated by
means of assumption (a7), estimate (2.9):

1 )
[ (@asa-va) udx < 6a(t) [ulB o+ 5 00(t) + 15 [Vulfer + o 6300).
Qt v

The integral ofu - Va - u can be estimated by means of assumption (a7), estimate (2.10).

Finally, the integral off - u can be estimated by ||£[12. ,: + 3 [[u/|2. -

Substituting now all these estimates to (4.2) and integrating with respect to timedftorm
we obtain inequality (4.1) with

wi(t) = 2we + 5VC% + 05(t) + 205(t) + %’
wa(t) = 279%@) =+ %93(75) + 5u9%(t) + (5/2v) ei(t) + %Hfug;m'

5 The time discretization and stationary boundary—value problems

In this section, after preliminary remarks, we define and study stationary problems obtained from
(3.2) by means of the time discretization.

5.1 A partition of the interval [0, 7. Since the functiong?, 63, 65, 65 andds are integrable in
(0, T) and continuous 0, T . 7°¢, there exists a boun@ > 0 such that to eaclV € N there
exists a partitionPy : 0 = tp < t1 < ... < ty = T of the interval[0, T'] with the properties
| Pn|| := max,—1,.. N~ dn < 2T/N (whered,, :=t, —t,—1) and

N
> (03 (tn) + 03 (tn) + 03(tn) + 05 (tn) + 05(tn)] dn < ©. (5.1)

n=1

We further consider numbéY € N to be fixed in this section. Moreovek, is supposed to be
“sufficiently large”. (We specify in next paragraphs what it means.)

We can assume without the loss of generality faf to; ...; tn} N7 = 0.

5.2 Notation. In order to simplify the notation, we pu,, := Q= and T, := I''» = 9Q!» for
n=20,1,...,N.

Due to technical reasons, we extend functdn, ¢) (together with its derivatives) and function
f(.,t) by zero toR? \ Q?.

Forx € Q,, we denote byVal,,(x) (respectivelyf,,(x)) the mean value oVa(x, .) (respec-
tively f(x, .) on the time intervalt,, 1, t,). We putg,(x) := f,(x) — [Ora(x, t,) + a(x, t,) -
Va(x,t,)]. Furthermore, fok € I',,, we denote byA,,(x) (respectivelyV,,(x)) the mean value
of a(Y(.; tn,x), .) (respectivelyV (Y (.; t,,%), .)) ON (tn—1,ty)

5.3 Stationary boundary value problems — the weak formulation and existence of a solution.
We putU, := uy and we denote by{J,, approximate values of the unknown functiaron the
time levelst,, (n = 1,2, ..., N). On then—th time level, we assume th#t,_; is already a known
function fromL2(Q2,,) and we look fofU,, € Wy"*(€2,,) such that

9



/ {[Un = Uni 0 X(tn—15 tn, )] - ® —d, U, - V@ -a(., ) + d, Uy, - VU, - &} dx
Qn

+ / 2dny{[Va]n + VUn}S : V@ dx
Qn

+/ dnfy[An—i—Un—Vn]&I)dS:/ dp, 8n - P dx (5.2)

n
n

forall ® ¢ W;’Q(Qn).

Remark 6. Equation (5.2) is a time—discretized variant of (3.2) on the time level ¢,,. The
symbol U,,_; o X(t,—1; tn, .) denotes the composite functior — Un_l(X(tn_l; tn,x)).
The differenceU,, (x) — U,—1(X(tn—1; tn,x)) (for x € Q,,) approximates the time derivative
(d/dt)u(X(t; tn,x),t) at the timet = ¢, multiplied byd,,.

Integral equation (5.2) represents a nonlinear boundary—value problem for the unknown func-
tion U,,. Applying the Lions—Leray theorem, we can arrive at the next lemma on the existence of
its solution (see Section 9, Appendix Al, for the complete proof):

Lemmal. If n € {1;...; N} andd, is small enough then equation (5.2) has a solufidn in
W2 ().
We further assume that all, (forn = 1,..., N) are as small as Lemma 1 requires, which is

equivalent taV being large enough.

5.4 Estimates of solutions of the weak problem (5.2)We derive a discrete variant of the energy
inequality (4.1) in this sub—section. Usidg= U,, in (5.2), we obtain:

1 1
Z HUnH%Qn + —/ ‘Un —Up_1 0 X(tp—1; tn, .)‘2dx
2 ’ 2 Qn
+ 2dn1// (VU,), : VU, dx+/ dpy U, dS
Qp

n

1
< 5Vl +

dn/ g, - U, dx| + dn/ U, -VU,-a(.,t,) dx
Q7L QTL
+ ‘any/ ([Va]n)s : VU,, dx| + dpy (A —V,) - U, dS’. (5.3)
n F’IL
By analogy with (4.4), we have
v 5)
2;// (VUL): VU, dx > 12 [VUnlq, = v [cl + §cﬂ U280, (5.4

The integral ofj0,a(.,t,) + a(.,t,) - Va(.,t,)] - U, (the part ofg,, - U,,) can be estimated by
means of assumption (a7), inequality (2.9):

/ [Dwa(. . tn) +al.,ty) - Va(., t,)] - U, dx

n

< 93(tn) ||Un”2;Qn + 94(tn) ||VUn||2;Qn
v 2 5 9 1 2
< VUM, + 5 63(ta) + 5 Os(t0) [Vl 0, +1]: (5.5)
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The integral off,, - U,, (the part ofg,, - U,,) can be obviously estimated as follows:

/ f, U, dx
Qn

The integral ofU,, - VU,, - a(., t,) can be estimated by means of inequality (2.10):

1 [t 1
§§/ [£C, D5 0 dt + 5 1Tl - (5.6)
tn—1

U, VU, -a(., t,)dx
Qn

v gl
< 15 IVUnlzia, + 4 10nllzir, + 05(t) [Unllz g, (5.7)

The integral of([Va]n)s : VU,, can be estimated by means of assumption (a5):

< = [VULIR g, + 10063

10 T (5.8)

2u /Qn([Va]n)s : VU, dx

where@n denotes the mean value@®fon (¢,_1,t,). (By analogy, just below we also ué_én for
the mean value cﬂ%.) Finally, the integral ofA,, — V,,) - U,, onT’,, can be estimated by means
of assumption (a6):

‘7 [ (Axa) = Vi) - U ) dS(x,)

dln/t" / [a(Y (t; tn, Xn),t) — V(Y (& tn, X5), )] - Un(xn) dS(x,,) dt

IN

tn
}HM@M+%/‘ (Y (£ tnxn), t) — V(Y (t; tn,xa),8)|” dS () dt
n t'n—l Fn
tn
Y Y 2 2
4 dTL t'n—l It 4

Substituting now estimates (5.4)—(5.9) to (5.3), summingifet 1,...,j (wherel < j < N,
j € N), and multiplying by two, we obtain the inequality

J J
HU]'Hg;Q]- + ZHUn —Upg0 X(tn—l; tn, )H;,Qn + Vzdn ||vUnH%,Qn

n=1 n=1
J J J
+9> dn |Unl3r, < [Uolls0 + Y win [[Unll3,0, + D> won, (5.10)
n=1 n=1 n=1
where 5
win = 2d, (Cll/ + 5 C%I/ + 1) + 2d, Qg(tn) + 2d, 95(tn),

5 tn _ _
W = = dn3(t) + / I£C )30 At + 20,003, + 29, 03,
n—1

Remark 7. It follows from the definition o2 , 62 , and from (5.1) that the functiohy (s) :=
wip (fort,—1 < s < t,)is integrable or{0,7") and

T 5 T
/ An(s)ds < 2(611/—}—56%1/—}—1)'_]’4—/ 03(s)ds +20 = c3, (5.11)
0 0

11



N T
)
E wop < ;@+/ [||f(.,5)||§;gs+20u«9%(s)+279%(8)} ds = c4. (5.12)
0

n=1

Bothcs andc, are independent @¥. Furthermorew,,, — 0 asN — +oo uniformly with respect
tone{l;...; N}

6 Non-stationary approximations and their weak convergence

We define

N U,(x) if xeQ,, N VU,(x) if x€Q,,
u’(x,t) = . U™ (x,t) := _
0 if xeR3~\Q,, @) if x€R3~Q,,

ul (x,t) == u (Y(t; t,%),t) = Up(Y(tns; t,x)) if x €T

fort,_1 <t<t,andn=1,... N.

The values ofaV (., ¢) andU,, at the pointsY (,; t,x) € I', are understood in the sense of
traces of functions defined a.e.(iy,. The definition of functionsi?' (., ¢) andU™(. , ¢) not only
in Q,, but also inR? \ €, is necessary because these functions will be later used in (3.2) and
integrated irQ2¢, which generally differs fronf2,, by more than only a set of measure zero.

6.1 Estimates of the sequenceu™'}, {UV} and {ul¥'}. Inequalities (5.10) and (5.12) imply

that if NV is so large that,, < 1 foralln € {1;...; N} then
1 N N
5 0¥ ()5 Rs + v IITU $)|13, ks s+ Hu $)|13, rs ds
< HuOlligoJr/ An(s) ”uN('vS)H%;R3 ds +ca. (6.1)
0

Applying Gronwall’s lemma and estimate (5.11), we deduce that

lu™(.,0)

t t
2; < 2(||u0\|§;90 + c4) —|—4(||u0|\§;90 —|—C4)/ AN (S) exp<2/ An (o) dJ) ds
0 s

Z(Hung;Qo + 1) [1+2c36™3] = 5 (6.2)

IN

for 0 <t < T. Using inequality (6.2) in (6.1), we obtain

T T
V/ HUN(WS)H;R:‘) dS+’Y/ HuiV(WS)Hg;FS ds < c3cs + ¢4+ 2c5 = cs. (63)
0 0

Constants:; andcg are independent av. We can reversely derive from inequalities (6.2) and
(6.3) that

[Unll2ia, < ¢ (n=1,...,N), (6.4)
N N

VY dn VU350, 7> dnl[Unl3r, < ce. (6.5)
n=1 n=1

12



6.2 Weak convergence of subsequence&stimates (6.2) and (6.3) imply that there exist sub-
sequences ofu’¥}, {UN} and{ul'} (we shall denote them again yn™¥}, {UV} and {ul'})
and functionaa € L>°(0,T; L*(R*)*), U € L*(0,T; L*(R*)?) andu, € L*(T' (g r))* such that

uV —— u weakly— in L>(0,T; L*(R3)?) for N — +o0, (6.6)
UV —U weakly inL?(0, T; L*(R%)?) for N — +o0, (6.7)
ull — u, weakly inL*(T' g 7y)? for N — +oo. (6.8)

The next lemma brings the information on relations betwedih andu,. The lemma is proved
in Section 9, Appendix A2.

Lemma?2. a) U= Vu inthe sense of distributions @ ),

b) ue L2(0,T; W2 (Q)),

) u, = tr(u) onl' 1) (wheretr(u) denotes the trace of the functiubQ(Om onTo,7))-
6.3 Substitution of the approximations to integral equation (3.2). The approximations’v
(represented by’ onT*) naturally satisfy the integral equation (3.2) with a certain effdt¢).

Thus, if we denote b (u’V,ul, ¢) the the left hand side of (3.2) (where we us® in Q! and
u? onT?), we have

T
Z(uV,ul, ):/0 /th-qf)dxdt—&—/ﬂouo-(;’)(.,O)dx—i—SN(q’)). (6.9)

The following Lemma 3 provides the information on the asymptotic behavio&if'¢#) asN —
+o00. The proof is given in Section 9, Appendix A3.

Lemma 3. Given a test functior as in Definition 1, we havBmy . 1o, £V (¢) = 0.

Let us now deal with the left hand side of (6.9). It can be split to the um™, ¢) + ... +
Zs(u®, @) + I5(u)Y, ¢), where

(WY, ) = —/OT/Qt(a@Jra-vcp).uNdxdt,
(", ¢) = —/OT/QtuN-V(j)-adxdt,
I3(uV, ) = /OT/QtuN-UN-quxdt,
Ti(uV, ) = /OT/WQV[V(a—i—uN)]s:ngdxdt,

T
Is(ul, @) = /0 /Ft’y(a—i—u*N—V)'qdedt.

Using the types of convergence named in (6.6)—(6.8) and statements a) and c) of Lemma 2, we
can deduce thaf; (u, ¢) — Z;(u, @) fori = 1, 2, 3 andZs(ul¥, ¢) — Zs(u, ¢) asN — +co.
Thus, passing withV to +oo in (6.9), we obtain the identity

T
/0 /Qt{—(c‘)tgb—ka.ng) ‘u—u-Ve¢-a+2v[V(a+u)s: Vd)} dth+NE>TOOIS(uN7¢)
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//F (a+u-V)-$pdsdt = //th ¢dxdt+/ up - ¢(.,0)dx.  (6.10)

In order to show that is a weak solution of the problem (1.1)—(1.5), it remains to verify that

lim  Zz(u?, @) //u Vu - ¢ dxdt. (6.11)
Qt

N—+400

7 The limit process in the nonlinear term Zz(u', ¢)

The existence of the limit on the left hand side of (6.11) follows from (6.10). Thus, it is sufficient
to check the value of the limit only for an arbitrary subsequendaidf, UV }. The limit in (6.11)

is not standard due to the variability of doma and the test functiokp, which is required to
have only the normal component equal to zerolgg). We prove the validity of (6.11) (for

a subsequence dfu®™,U™}) in this section. At first we successively explain in sub—sections
7.1-7.3 that it is sufficient to prove (6.11) with certain modified functigfis¢™ and¢;™ (for
j=1,...,J)instead of the original functiot.

7.1 Definition of function ¢*. Recall that7“ = {t5; ...; t5,} C (0,T) is the family of critical
time instants when the bodies moving in contaihecollide. Lete; > 0 be given. Then, due to
(6.2) and (6.3), there exists> 0 so small that

to, kK
‘ / / N.UN. qﬁdxdt‘
te Qt
tmtr 2Kkcs5¢
< Veses Z/ UV (., 8)]lgs0r db < csy/ V5 S < (7.1)
t8,—K

for all N € N sufficiently large. (Heres is the maximum ofg| onRR3. x [0,T].) Letn be an
infinitely differentiable cut—off function of variabledefined on the intervd0, 7', with values in
[0, 1], such that

1 if dist(;7°)
n(t) = { (7.2)

> K
0 if dist(t;7°) < 3.

The functiong* (x, t) := n(t) ¢(x,t) equals zero fot € [0, 7] such thatlist(t; 7¢) < x and

uV  UN . (¢ — 9*) dxdt| < ¢

(913

due to (7.1). Since; can be chosen arbitrarily small, it is sufficient to prove (6.11) with function
¢* instead ofep.

7.2 Definition of function ¢**. Since domair2! is Lipschitzian for each € [0, 7 ~. 7¢, it has
a cone property (see [1, p. 66]) athal’Q(Qt) — L5(Q%)3. Moreover, if we restrict ourselves to
timest € I(x), where

I(k) = {t€[0,T]; dist(; T) > ik},
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then the cone parameters in the definition of the cone property of daMiatan be chosen to
be independent af Hence the constant in the corresponding imbedding inequality also becomes
independent of, see [1, p. 103]. Consequently,

™ )llers < C (™ (1)l rs + UV, 1)ll2;re)

for all t € I(x). From this information and from (6.4), we deduce that the prodaiitt UV
belongs to the spade? (I(x); L'(R®)?) N L (I(k); L3/?(R?)?). By interpolation, we obtain the
inclusionu® - UY € L™ (I(k); L*(R?)%) for r > 1, s > 1 such thaR/r + 3/s = 4. Particularly,
uV UM € L4(1(k); LY4(R3)?).

Functiong™® can be approximated by infinitely differentiable divergence—free vector—functions
with a compact support i, 7y with an arbitrary accuracy in the norm of the spdcé! (I(n);
L5/4(0%)?). Hence, giver, > 0, there exists such a vector-functigi* that satisfies

T
uN~TUN-¢*dx—/ / uV o UN ™ dx| < e
t 0 Qt

for all N € N sufficiently large. Since, can be chosen to be arbitrarily small, we can prove (6.11)
only with the functiong™* instead of¢ (respectively instead ap*).

7.3 Partition of function ¢**. LetJ € N. We denoter; = j7'/m (for j = 0,...,J). There
exist.J + 1 infinitely differentiable functionspy, . .., ¢; on[0, T'] with their values in the interval
[0, 1] such thatsupp g C Iy := [10,71), suppy; C I := (1j—1,7j+1) (forj =1,...,J = 1),
supppy C Iy :== (15-1,77] and Z}LO pj(t) =1 for0 <t < T. Now we pute;” := p; ¢™*
(for j =0,1,...,J). The functionsp;” are divergence—free, they have compact supportgin
and Z}]:O @ =™ In Qo 1y

Denote byG ;) the set{x € R%; 3t € I; : (x,t) € supp ¢}*}. If J is large enough then the
distance betweef¥ ;) andI" is greater than one half of the distance betwegp ¢** andF[O,Tﬁ
forallt € I;. Thus, there exists a bounded open{ggt in R3 with the boundary of the clags'
such that(;) C Q) C ﬁ(j) c Q' forall ¢ € I;. So, we conclude that in order to prove (6.11), it

Q

is sufficient to treat it separately with = ¢;* (for j = 0,1,...,J) and to show that
lim / / uV . vu . ¢ dxdt = / / u- Vu- ¢} dxdt. (7.3)
N=oo 1y Jog, Q)

(SinceG; x I C UN_1Q,, X (t,—1,t,) for sufficiently largeN, we can writeVu” instead of
UV in (7.3).)

7.4 The local Helmholtz decomposition of functionu™. We denote byP; the Helmholtz
projection inL?();))*. Putw} := Pju®. The function(I — P7)u™ has the formVo! for an
appropriate scalar functiop‘fjV . (7.3) can now be written as

: N N oK 2 *ok N N *ok
+ V) - V2ol J} dx dt :// u-Vu- ¢i* dxdt. (7.4)
i Q)

SinceVpl - V2l = V(5|VeN|?) andgi* (., t) € LZ(2), the integral oV o - V2ol - ¢7*
on ;) equals zero.
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Fig. 2: SetsQ ), supp @™, supp ¢;", G(;) and ;)

The convergence (6.6) and (6.7), the coincidendg®bfwith Vu® on Q;) x I and the bound-
edness of operatd?] in L*(Q;)* and inW12(Q;))? imply that

W§V — w;:= Plu, and chév —Vpj:=(I-Pu for N — +oo (7.5)

weakly inL2(I;; Wh2(€;))?) and weakly- in L>°(I;; L2(Q;))).

7.5 Strong convergence of a subsequence {)ivj-v}. We are going to show that there exists
a subsequence dfw)' } that tends tow; strongly in L*(I;; L2(€;))) asN — +oo. We shall
therefore use the next lemma, see J. LoNs [21, Theorem 5.2].

Lemmad4. Let0 < a < 5 and letHy, H and H, be Hilbert spaces such thaty —— H — H;.

Let H*(R; Ho, Hy) denote the Banach spadev € L?(R; Hy); |[9|* w(0) € L*(R; Hy)} with
the norm

~ 1/2

lwlla:r = (lwllZ2, o) + O D72 R, 1r,) .

(Herew(v) is the Fourier transform ofv(t).) LetH*(a,b; Hoy, Hy) further denote the Banach
space of restrictions of functions froh* (R; Hy, H;) onto the intervala, b), with the norm

llwlla; @by = inf [[zlle;r

where the infimum is taken over alle H*(R; Hy, H;) such that: = w a.e. in(a,b). Then
H*(0,T; Hy, Hy) —— L*(a,b; H).

Letj € {1;...; M} be fixed. We shall use Lemma 4 witta, b) = I;, Hy = (Q(j )
H = L2(Q) and Hy = W, 2(Q). (HereW, +*(Q;)) denotes the dual tWOU(Q(j ),
whereWy () is the closure o052 ((;)) in W12(Q;))%. The norm iniv, ,*(Q;)) will be
denoted by . [[-1,2;0;-)

We claim that{w'} is bounded in the spade”(I;; Ho, Hy).

The boundedness (@f;vj.v} in L2(I;; Hy) follows from (6.2), (6.3), from the coincidence Gf

with Vu™ onQ;, x I; and from the boundedness of operagrin L?((;))> and inW12(;))°.
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Thus, we only need to verify that the sequer¢@|* w;.\/} is bounded in the space?(1;; Hi),

i.e.inL2(I;; Wy ,*(Q;)))- LetzY be an extension by zero ofY from the time interval; onto
R. Then

+00
2§V(19) :/ 7271'11519 N Z 727r1t19PjU dt (76)

neAl tn—1

whereAY is the set of such indices € {1;...; N} that[R? x (t,—1,%,)] Nsupp @7 # 0. AY
has the forrmé-v ={l;1+1;...;q} wherel <[ < ¢ < N. Calculating the integrals in (7.6), we
obtain

2N () = Z 273119 [e—%itn,lﬂ _e—27ritnq9] PiU,
1
2rid [

q
Z 6_27Titn7179 [Pg_Un — Pg.Unfl]
n=l+1

e—27ritl,1 Pg—Ul 76—27ritq Pqu] + 59
T1

SinceQ;) C Q° forall s € I;, we also havél ;) C Q, foralln € Aé\’ (if N is large enough).

If [9| < 1then, using (7.6) and (6.4), we can estimate the nor@|6fzY (9) in W, ,*(Q;)) as
follows:

q
101 &Y )|y 5.0, < COQ I dn[Unllziag, < CQ) W% (7.7)
n=l

If |¢¥] > 1 then we must proceed more subtly:

. gle— 1
I D)y, < o — (IPZU a2, + 1B Ul 120,)

i S
+ o Z 1P U, — PgUn—IH—L?;Q(j)
n=[l+1

< C(©Q j)) |19‘a_1 (”Ul”Q'Qu) +1Uq ”21%'))

‘19|oz 1 q
>

(7.8)

/ (U,, — Un—l) -1, dx
Q4

where the supremum is taken overll € Wolﬁ(ﬂ(j)) such that|v,,[[1,2;0, > 0.
The sum in (7.8) can be split to two parts and estimate@py- 2, Where

q

Z = Zsup 1

n— l+1 ¥n ||7vbn||12'Q(j)

Zy = Z sup ————

/ [Un(x) = Upe1 (X(tn—1; tn, x))] - ¥, (x) dx
Q)

/ [Un_l(x) — Un_l(X(tn_l; tn, x))] <, (x)dx
Q)

The estimate ofZ;. Functiony,,, extended by zero t&? Q(;), belongs toVa%(€),). Hence
the integral off U, (x) — Up—1 (X (tn—1; tn, x))] - 9,,(x) 0N Q(;) equals the integral of the same
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function in€2,, and it can be therefore expressed by means of (5.2). Thusan be estimated:

/Uw a(. ) dx

zZ < sup
Z Hllﬁn!

n=I[+1 Yn

].72y Q(])

_ dn/ U, VU, 4, dx—2dn/ V{[Va]n—I—VUn}S:Vzbn dx
Qn Qn

- dn/ fy[Ak+Un—Vn]~¢ndS+dn/ g -, dx|.
n Q'ﬂ

The surface integral of,, equals zero because the functigr) is zero onl’,,. All other terms

on the right hand side can be estimatedty?;)) by means of (6.4), (6.5), standard inequalities
based on the Sobolev imbedding theorem (applie€ij) and the tblder inequality. Let us

show the procedure in greater detail, for example, in the case of the terms containing the product
U, VU, -v,:

Z sup !
n=

1 i [ u,-vU, -, dx
||¢n”17239(j)

Qn

T eplle o 1o
3 oA O 4 VU |20, (UGl 10,

- n=I+1 d’”Hl’Q’ Q)
3/2 1/2
< COy) Y 4 (190, [Unlln, + IVOIY5, 10.053,)
n=l+1
1/2 3/4
< C VU, N2 q VU, |3 /N1/4
< O S VU2, +( Y IVUIE,

n=l+1 n=I[+1
< C(Q(]’),C5,CG)-

The estimate ofZ,. In order to estimates,, we use the identities

tn d
Va0 = Ut (Xt 15 00030)) = [ 52 Unea (X065 1,3 e
tn—1

tn
= /t a(X(§7 tn,X),g) : VUn—l(X(gv tn7x)) df

Then the sung, can be estimated by means of condition (a4) and (6.5) as follows:

[ lls; 2 1/2
2, < C@) swp pre i 3 [/ /Q VU, (X(E %)) [ dxdﬁ}
tn—1 ()

||¢n||1 506) ot

[/tt</%\ a(X(& tn,x),€)] dx)2/3d§]1/2

1/2 ¢ T 1/2
) [ A \dxdg} [/ Ha(-,é)HiQ;dis}
n— l+1 tn 1 Qk 1 0

C(Q(j), Ce, fO 91 (t) dt) .

IN

IN
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Application of Lemma 4. Substituting the estimates &f; and 2, to (7.8), we finally obtain

H|19\az§V(z9)HfL2g% < C(Q() 56, fy O1(t) dt) [9]27 (7.9)

The constanC(Q(j),c5,c6,j0T 01(t)dt) is independent ofV. Recall that inequality (7.9) holds
for |9 > 1. Since the exponent satisfies) < a < % the right hand side of (7.9) is in-
tegrable on(—oco, —1) U (1,400) with power2. This, together with (7.7), implies that the
sequence{[9|* 2 ()} is bounded inL?(R; W, ,*(€;))). This further implies that the se-
quence{w’'} is bounded i (I;; W,*(Q;)), Wy, *(9;)). This space is reflexive, hence
there exists a subsequence (we denote it agail{wby}) which converges weakly i (Ij;
W;’Q(Q(j)), W&;’Q(Q(j))). Due to (7.5), the limit must be ;. Applying now Lemma 4, we have:
wl — w; = Plustrongly inL?(I;; L*(Q;))?).

7.6 Completion of the proof of Theorem 1. This strong convergence, together with the weak
convergence (7.5), enables us to pass to the limit in the first three terms on the left hand side of
(7.4). The procedure is standard (see e.g. J.IbNIs [21] or R. TEMAM [30]), therefore we omit
the details. Using also the identity

/ (V- V)V, - ¢;"dx = 0,
Qi)

following from the inclusiong’* € L2(;) and from the fact thatVy; - V)Vy; equals
V(1|V;[?), we can verify the validity of (7.4), and consequently also the validity of (6.11).
This confirms thai is a weak solution of the problem (1.1)—(1.5). The proof of Theorem 1 is
completed.

8 Example: The flow around two striking bodies with ball-shaped front surfaces

The geometrical configuration. We assume that two compact bodiBé and B move inR3

in the time interval0, 7'] and they strike at the time instatit< (0,7"). Thus, the time—variable
domainQ? has the form)! = R? \ (B! U BY) and set7 of critical times in(0, T'), when the
considered bodies collide, is the one pointBét= {t°}. We assume that conditions (al) and (a2)
from Section 2 are fulfilled (withD = R? and K = 2). Furthermore, we assume that

(a0) bodiesB! and B} touch themselves at timé by material points?f € B! and P} € 9B},
in whose neighbourhoods the surface$dfand B coincide with surfaces? andS% of the
balls with the radiii?; andRs.

We can deduce from these assumptions that there exist8 such that fot in the time interval
(t¢ —7,t° 4+ 7):
e The shortest line segmefitconnectingB! and B} has the end points on surfacgsand.S5.

e There exists a Cartesian coordinate systgmy}, y4 such that’ is a subset of thgi—axis,
the originO* is in the middle of* and the transformation; = Uf;z; + V{ (i,j = 1,2,3)
between the Cartesian coordinatgs =2, z3 andyt, v4, y4 is smooth: i.e. the entries of the
3 x 3 unitary matrixU* = (U};) and the components of the vectet = (V{,Vy,Vy) are
functions fromC?([0, %) U (¢¢, T), continuous of0, T'.
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e The lengthd! of line segment?, as a function of variablé is continuous o0, 7'] and such
thaté’ = 0 for t = t andé® > 0 for ¢t € [0,¢°) U (¢°, T]. Moreover, it belongs t62 ([0, ) U
(t°,T7).

e There exists > 0 so that the graph of the functia} = g1 (¢, 44, 8%) (respectivelyyl =
—92(y1, 5, 0")), where

g vh01) o= 38"+ Ry — /B2 — (W))? — (b)? fork =1, 2and(})? + (4))® <2,

is a subset 0B} N St (respectivelyd B N S%), containing pointP} (respectivelyPs), for
t© — 7 < t < t° + 7. We further denote the mentioned graphs¥yy (respectivelyss ).

e The integral of¢ - Vn - ¢ onT* on the left—hand side of inequality (2.5) in condition (a3) can
be split to the integral o}, U S%., whereVn is negative semi—definite, and the integral on
I\ (St.USE,.), whereVn is bounded and one can use the continuity of the operator of traces
from W,(Q¢) into L?(T* ~ (S}, U Séc))g’ with a constant in the corresponding inequality
independent of. Thus, we can verify that condition (a3) holds in our concrete considered
situation.

|
f. I
: |
Sie: vs =011, v5,8")  p . !
1 I
: » . Ot 25 QZ | yi’ yé
| _ I
1 E gt ldt :
Shet yh = —g2(y1, 5, 0") Py [2 !
________ |

Fig. 3: The shapes of bodig% and B near the point of the collision
at timest close to the instant’ of the collision

We denote by’ the critical sub—domain db?, where the collision occurs, namefy, := {yt =
(y5, 5, 95) € R (y1)? + (y5)* < r*and — ga(vf,y5,8") < vh < g1(yi,v5,0") }.

In order to apply Theorem 1 in this geometrical configuration, we need to construct fuagction
satisfying the equation of continuity (2.6), the boundary condition (2.7) and conditions (al)—(a5)
formulated in Section 2We confine ourselves only to the definition of functiora in domain €2/
for t € (t¢—7,t%) U (¢ t°+ 7). We consider an appropriate extensioradb the seQro’tc)U(tc,T}
to be only a matter of standard techniques and therefore we do not describe it here. In accordance
with this philosophy, we will sketch the verification of conditions (2.6), (2.7) and (al)—(a5) only
for the part of functiora, defined inQ..

9.1 Definition of the auxiliary function a in Qf. At first we define vectorial potentiaks; and
wo as functions of the spatial variablgs = (¢, v5,v%):
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Wk(yt 5t 5t) - iét yéyé - yiyg 0 (8 1)
R 29k (Y, v5,0Y)" 2gk(yh, b, 01) '

for k = 1, 2 in the closure oﬂ’é, where the sign+*“ holds for k = 2 and “—" holds fork = 1.
Further, we define vectorial potential as an interpolation betweew; and w, such thatw
coincides withw in the neighbourhood of surfac and withwy in the neighbourhood of%:

w(y', 6%, 0% = wi(y", 6", 8") n(y', 6" + wa(y', 6%, 8" [1 — n(y', 61)], (8.2)

where

n(yt 52&) — C< yé +g2(y§,y575t) >
’ gl(yﬁ,yg,cﬁ)+gg(yf,y§,6t) ,

¢ is an infinitely differentiable cut—off function on the intervél 1], such that < ((s) < 1 for
0<s<1,((s)=0for0<s< 1 and((s)=1for2 <s<1. Now we define

a(y', ', 5t) = curlw(y’,d, %), (8.3)
curl being calculated with respect to the spatial varighleFormula (8.2) yields
a = 1751+[1—77]52+5t [anwl—VnXWQ] (8.4)

where a; := curlw!, a, := curlw} andV is also considered with respect to varialgfe
Finally, functiona arises froma by means of the transformation

a(x,t) == (UHT-a(U" x+ V', o, o). (8.5)

9.2 Conditions (2.6) and (2.7).The mapping=t(x) := y! = Ut x + V! represents an isometry
of G {(Q%) onto %, smoothly depending ohfor ¢ € [0,t¢) U (t¢, T]. Thus, we can verify (2.6),
(2.7) and (al)—(a5) directly for functici(y?, &%, 6*), consideringy’ € Q.. Moreover, due to the
smooth dependence of matii¥ and vectoiV* ont, we can choose the coordinate systgnys,
4 to be the new reference frame for our calculations at each time and consequently, not to take
into account the dependence of the coordingfes/, v ont any more. Thus, we shall further
write onlyy or yi, y2, y3 instead ofy’ or !, v4, v4.
Functiona is divergence—free because it is defined to be a curl of the vectorial potential
Naturally, condition (2.7) for functiod makes sense only off . U S .. Functiona coincides
with a; in the neighbourhood of surfac¥ and it coincides witta, in the neighbourhood of5.
Calculating the curl ofv, we obtain

ay(y, ot 6) = 4t (_g Y2 Y3 y1y3(3191)+y2y3(82g1)>
’ ) 2915 2915 a0 29%

whereg; abbreviateg; (y1, y2, 6*). OnSt_, the outer normal vectai equals
(0191, 0291, —1)/+/(0191)% + (D291)% + 1 becausegs = g;. Hence we have

- ~ _qw (0 Y2 Y10191 + Y2 Oagn
a-n‘st al-n‘st =0 | —F=, —7—, 1— ‘n
1lc 1lc

2917 2g1’ 201
(—d%) :
= = (00 (8.6)
V(0191)% + (D291)% + 1
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Since the velocityv of material points on surfacg, ., expressed in the reference frage ya, ys,
equals the sum of the vertical componént0, 575) and a component tangential $, (due to the
rotation of bodyB?), the right hand side of (8.6) equals - n. Thus, condition (2.7) holds on
surfacesS? .. The validity of (2.7) onS?, follows in the same way.

9.3 Conditions (a4)—(a6) and (a8). Since the verification of all the conditions is lengthy and
technical, we choose only the first terf; in the sum on the right hand side of (8.4) and we sketch
the procedure for this term. Moreover, it is advantageous to work in the cylindrical coordinates
©, y3, wherep = (yf + y§)1/2. The form of functiora; in the cylindrical coordinates is

/
~ : ~ o~ : Yy3pyg Y3
al(Yvétv(st) = (alp) A1, (113) =& <_ﬁ7 0, — 2[‘;21 + ;))
1

whereg; is now considered to be a function of the varialgesndé: g1 (p,dt) = %5t + Ry —
VR =% (for p <),

The gradient ofya; is V(na;) = nVa; + Vi ® a;. Calculating the non—zero cylindrical
components oVa; andVn and substituting there the explicit forms of the derivativgs’ and
(g92)’, we obtain

5t 5t 2
Oty = —5 -+ oo s
91 29i/Ri—0p
0G5 = ys'p(4RE — 3p°) y30tp°
’ 297 (RT —p?)*/2 g} (Rf — p?)’
_ 5t / 5t
dsar13 = — 2{;?1 + 0’
o — ,<y3+g2> [_ p(ys —g1) 3 p(ys + 92)
g 91+ 92 (91 +92)>V/R5 —p* (91 +92)% /Ry — p?

8377 — </<y3 +92> ]-
g1+92/) 91+ 92

Using these formulas, one can show that andd;(na;) are continuous if(y,t) € R%; t €

0, T)\T¢, y € QLU S, U S5} and the normgina, |1 2, o and||na; — Vl|y, gt g are square
integrable (as functions af in (0, 7"). Showing the same for the other terms on the right hand side
of (8.4) and considering an appropriate extension of funetifrom Q% to Qf, we verify conditions
(a4)—(a6) and (a8). Moreover, we find out that functigrn condition (a5) is inL%(0, T") for each

1< g < +4o00.

9.4 Condition (a7). Of inequalities (2.9) and (2.10) in condition (a7), we focus on (2.10), which,
as we shall see, induces a certain restriction on the si#einfthe neighbourhood of the critical
time instant© of the collision. Thus, leth € W2(Q1).

Using assumption (a4) and the continuous imbeddit@2’) — W2(Q!), we can derive that

‘/Qt(j)-Va-(bdx

v
< asalt) |8l30: + 15 1Vl 00 (8.7)

wherea(t) := 61(t) + 01 (t). Inequality (8.7) holds at timeis# t© when domair2! has the cone
property and¥ 1:2(Q)3 is therefore continuously imbedded ink§(Q2?)3. Constant;; depends
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on v and it also generally depends omhrough the cone parameters appearing in the definition
of the cone property of)!, see e.g. [1, p. 103]. However, if we use (8.7) only at timesich
that|t — t¢| > 7 thenc;s, although depending on, can be considered to be independent.of
Consequently, inequality (2.10) is satisfied (Witit) := c15a(t)) fort € [0,t¢— ) U (t°+ 7, T).

On the other hand, sinegs; blows up fort — ¢, we use another techniques in order to estimate
the integral of¢ - Va - ¢ for t € (t¢ — 7,t°) U (t°,t° + 7). As we have already mentioned, we
confine ourselves only to the critical sub—dom@fnof Q. We have

1/2
- Vo-al.,t) dy\ < [Vl ( / |a<.,t>2\¢\2dy) . ©.8)
QL Qt

Following the restriction that we explain the important steps only with the first tgfmon the
right hand side of (8.4), instead with the whole right hand side, and taking into account that the
decisive contribution tona;| comes from the the componentmi,,, we get

27 91(p3") 2
Qd—ét/d/d/ < 62+ 0%+ 63] d
/ Inai,* [@)*dy = 16| [ pdp © I (0.5 (62 + 63 + 03] dys
—g2 P7
gl(pvdt)
< |5t\/ —5 / d@/ > 1eilp e 01(p) /(93% Py, &) d¢ dys
4g3( 0,6 _
—ga(p.ot) JELP 3} g1(p)
< (St p dp 27rd 515 6t 2 51&
< |6 Z T 0.5 ¢ [[91(p.0") + g2(p,6")] &5 (p, ¢, 91(p, 6"))
J€{p; ;3 ’
g1(p,0%)
)+ [ (0050006 df]
—ga(p,3t)
" r 27 . 9
< cQ<R1,Rg>|6|/O pdp/o B0, 0, 91(p, ) [? dgo
r - gl(p,cst)
+cm<Rl,Rg)5trr2/ pdp/ dy / 103 (p. 0. 35)|” dys
0 0
_92(p’5t)
< co(Ru, Ry) |0 |1lI3, 1 + cr0(Ra, R2) 16| r? |V |3, -

Considering all the terms in the expansion (8.4ad&and not only the termya;), with all their
components (i.e. not only with the compongaj ,), we can derive the same inequality, only with
different constants;; andc;s instead ofcg andcyg:

[ RCOR 9P dy| < entrr ) 1018, + cxa R o) 17 [V B o

Substituting these estimates to (8.8), we obtain

¢V ady‘ < 1811V Pllaser [er1 B2 1 + 1272 [Vbla: ]/

Q
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< 8" et [Vl ar e+ 16 ez [ Voll3, o
. 5t
< 13 (den + vemr) | O3

for anye! > 0. Considering an appropriate smooth extension of functifrom Q2 to Qf, we get
additional terms on the right hand side which are analogous to (8.6) and we arrive at the estimate

W

¢ Vo -adx
Qt

< [ (e en+ vermr) + €] IVeIEa +

+ c13(6) [|9ll3. o (8.9)
which is valid fort € (t¢ — 7,t°) U (¢¢,t° + 7) and{ > 0.

Except for (8.9), there is another possibility how one can estimate the integial ¢ - a
in Qf: integrating by parts, we show that this integral equals the negative integ¢al ®a - ¢
in Q'. Confining again ourselves to the critical sub—dom@jnof Q' and to the partyVa; of
Va, we find out that the decisive contribution to the integralpof (nVa;) - ¢ comes from the
termn(apalp)gbg. Using the explicit form ob),a;, and applying Poincés inequality (see e.g. [5,
R. Dautray and J. L. Lions, p. 127]), we obtain

g1(p,6%)

r 27
~ 2 < ot P 2
‘ / gmapalpwpdy‘ < e [ oL [ dyg[o P2 d@]

—9g2 (pvét)
g1 (pvét)

. r 27
e b [ o Lsan [ an [zm | @007 a0+ 5 |¢p|2]

—92 (p76t)

IN

g1(p,0")
o [ 1l @10

—g2(p,6%)

IN

C(Ry, B) 8]V 6yl3, 1 + C(Ry) "“'/ (8

wheregp(p,yg) = f02’r ®p(p, p,y3) de. Using the incompressibility of the floys and the con-
dition ¢ - n = 0 on S, U S5, we can deduce thgt’, ¢, dys = 0. This implies that to each
p € (0,7) there existg/, between—g, andg; such tha’tEp(p, y4) = 0. Thus, the second term on
the right hand side of (8.10) can be estimated:

1(p,0

Y3 2
< C(Ry) |6t|/ 291 P 5t / <¢p P, Y +/ B3, (p, €) d&) dys
9 y
92(p,6*)

g1(p,8°)
< CrLm) W [ pdo [ (@i, A < OB 151 IV05 o
—g2(p,6")

This estimate, (8.10) and analogous estimates of all other terms in the expangiorivef - ¢
successively enable us to arrive at the inequality

é-Va- ¢ dx

. < a3 Vo3 qr- (8.11)
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Multiplying inequality (8.9) byx (wherel < k < 1), inequality (8.11) byl — x and summing
afterwards both the inequalities, we get the estimate which generalizes (8.9) and (8.11):

/ﬁ'w'adx < [(veten + ryenar) 18]+ k€ + (1 = m)era 81| VI3, o
Q
’5t 2 2
+ K Aet ||¢||2; rt T KC13 ||¢H2;Qt' (8.12)

Comparing (8.12) with (2.10), we observe that we need

. . vV
(keterr + ry/erzr) [0+ kE+ (1 — K)era 6] < 0
st
L )
4et — 4

for t € (¢ — 7,1¢) U (t¢, ¢ + 7). The second inequality is satisfied if we choeSe= r |dt|/.
Substituting this! to the first inequality, we obtain the condition

2
K - . . v
c11 — [0 + ke [0 + kE+ (1 — k) e 0] < —.
v 10
Since we can work witlt and¢ arbitrarily small, it is sufficient to have

1%
20
fulfilled for t € (t¢—7,t¢) U (t¢, ¢t + 7) and somes € [0, 1]. For instance, the choiece= 0 leads

to the requirement thad?| < v//20c14. The choice: = 1 yields the conditiond?| < \/~v/20c1; .
Generally, (8.13) is satisfied for somec [0, 1] if

2 . .
e % 842 + (1 - w)e|d] < (8.13)

. —(1 = K)eway + \/(1 — k)22 + ER2eyw
'] < sup

0<k<1 2K2c13

(8.14)

fort e (¢ — 7,t°) U (t°,t° + 7). Thus, we can conclude that the auxiliary functiosatisfies
condition (a4), namely inequality (2.10), if

(a9) there exists- > 0 such thaté?| satisfies inequality (8.14) fare (¢ — 7, t¢ 4+ 7) ~ {t}.

Condition (a9) can be interpreted as the condition on smallness of the speed with which/jodies
and B}, collide at time instant®. We observe that the larger is the coefficiemf friction between
the fluid and the surface of bodiéﬁ, B§ or the coefficient of viscosity, the larger can be the
speedd?|.

Applying Theorem 1, we obtain:

Theorem 2. Suppose that domaift! satisfies the conditions (al), (a2) with the specifications
described at the beginning of Section 8, i.e. with= R? and K = 2. Suppose further that condi-
tions (a0) and (a9) are fulfilled. Then the weak solution of the problem (1.1)—(1.5), introduced in
Definition 1, exists.

Remark 8. We recall that the same theorem cannot hold if no—slip Dirichlet’s boundary condition
is considered instead of Navier's boundary condition (1.3), due to the results of VtARCSOI-

TovV [24]. Thus, the boundary condition (1.3) enables us to consider a larger class of collisions of
bodies, moving in the viscous incompressible fluid, that the traditional no—slip boundary condition.
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9.5 A note to the stroke of two compact bodies with general’? front surfaces. In this case,
the shapes of the bodid3, B} are not necessarily ball-like in the neighbourhoods of paditjts
and P} with which they collide at the time instant. Taking also into account relative positions
and motions ofB! and B} in the time interval(t° — 7,¢¢ + 7), we can deduce that there exist
two functionsys = ¢i(y1,y2,") andys = g5(y1,v9,8%) (for 42 + y3 < r?) of the classC?,
whose forms generally depend vand which play the same role as the functigngndgs in the
previous part of this section. By analogy wighandgs, the functions; andg}, satisfy:

min ¢! = ¢’(0,0,") = min g} = ¢5(0,0,d") = %(V.

Y1, Y2 Y1,Y2

The only restriction we have to impose on the shapes of bdgfieand B in the neighbourhoods
of points P} and P} (in addition to their smoothness) is:

(@10)3r > 03c15 >0 1 gh(y1,y2,0%) > %675 + c15 (y% + y%) fork =1, 2 andy? +y3 < r2.
We define, by analogy with (8.1),

hi,) y (O1hL,)
wi(y' :::|:< (Oahi) s , — k273 0 8.15
Ky 20L (05,607 2gL(ut,uh, oY) (8:15)

for k = 1, 2in Qf, where the sign+* holds for k = 2 and “~” holds for k = 1. The functions
ht andh} of the variableg);, y» are chosen so that

O°hL hL ., gl

o —83/2 = —Ji — 26 5t for y% + y% <r? (8.16)
1 2
Ohl, Oht,

k = 'k = 8.17
5k0.0) = 3E0.0) = 0 ®17)

for k = 1, 2, whereg! denotes the partial derivative gf with respect ta. (Functionsh} andh,
satisfying both the conditions (8.16) and (8.17), can be simply expressed as sums of appropriate
Newton’s potentials and single layer potentials.) We can arrive at the same theorem as Theorem
2, with condition (a9) replaced by condition (a10). To do that, we proceed with the construction
of functionsa anda in the same way as in the first part of this section. Obviously, funélien
divergence—free due to the same reason as the function given by (8.3). Equation (8.16) implies the
validity of condition (2.7), while the identities in (8.17) play the important role in the verification

of conditions (a4)—(a8). However, the verification of validity of (a4)—(a8) requires more space and
we prepare a special paper on this theme.

9 Appendices A1-A3

Appendix Al: Proof of Lemma 1. We write for simplicity onlyU andd instead ofU,, and
d,. Sincet, ¢ T¢ domaing, is Lipschitzian and consequenti/,*(2,) < L%(£,)3 for
1 < ¢ < 6. Moreover, there exists a continuous operator of traces #Qh (€2,,) into L2(T',,)3.
Using assumption (a5), one can verify for givene W,%(€,,) that

/ {U-#-dU-V®-a(.,t,) +dU-VU-® +2dv (VU), : V®} dx—l—/ dyU-®dS

n n

26



is a bounded linear functional in dependencaios W, %(£,,). Thus, it can be written in the form
(A(U,),®),, , whereA(U,) belongs to the dual spad€, "*({2,) to Wy*(2,) and(., .)q,

denotes the duality betwed#, (€2,,) andWy2(€2,,). Similarly, the difference

/ {Un,l o X(tn—1; tn, .) - ® — 2dv [Val, V‘I’} dx
Qn

—/ dy[an—Vn]-i>dS—|—d/ gy P dx
T, Qn

can be expressed &, ® ) WhereF € W, %(£,). We can now write equation (5.2) (for the
unknownU) in the equivalent form as an operator equation in the spﬁﬁé’z(ﬁn):

AU) = F. (9.1)

A is a bounded and demicontinuous operator fiany*(£2,,) to W, “%(,). Using condi-
tion (ab), we can verify that operatot is coercive ifd is sufﬂmently small. (The integral of
2dv(VU), : VU must be treated by analogy with (4.4).)

There exists a bounded mappiig W22 (Q,,) x W2 (Q,) — W, %(Q,) such that

(B(U',U?), @), = {U' ®-4dU'-V&®-a(.,t,) +dU?. VU - &
n Qn

+ 2dv (VU'), : V&} dx+/ dyU'- & dsS
for U!, U2 and® € W, *(Q,). Then, obviously,A(U) = B(U,U). MappingB has the
following properties:

a) GivenU', U2, @, ¥ € W,*(Q,), the real-valued functiofB(U" + s®,U?), &), of
variable s is continuous at the point = 0. Indeed, due to the linearity @& in the first variable,
this is equivalent to the continuity of the functied3(¥, U?), >Qn at the points = 0, which
follows from the finiteness of 3(¥, U?), @), .

b) If d is sufficiently small then mappinf is monotone in its main part.lt means that
(B(U%,U?%) - B(U', U?), U? - U'), >0 forall U', U? € W,*(Q,). This can be ver-
ified by means of the linearity of(., U?): denotingU = U? — U', we have (B(U?,U?) —
B(U', U?%), U? - U'), = (B(U,U?, U), . The non-negativity of this expression far
small enough can be again proved by means of conditions (a5)—(a7) and by estimating the integral
of 2dv(VU), : VU in the same way as in (4.4).

¢) If U” — Uforr — +oo weakly inW,*(,) then (B(¥,U") — B(¥, U), ®), —0
asr — +oo for each®, ¥ ¢ WQ’Z(QH). This property of mappings follows from the identity

(B(W,U") - B(W,U), &), = d/ (U" —U)- VT - & dx,
s

from the weak convergendd” — U in L5(£2,)? and from the inclusioV® - & € L3(Q,)3.
(Both are the consequences of the continuous imbeddihg(2,,) — L6(Q,)3.)

d) If U" — U forr — +oo weakly inW,?(Q,), ¥ € Wy?(Q,), z € W, "*(Q,) and
B(®,U") — zforr — +oo weakly inW, *(Q,) then (B(¥,U"), U"), — (z,U)q, for
r — +oo. In order to verify this statement, we use the estimate !

(B(®,U"), U"),, — (2, U)g,]
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< [(B(®,U"), U"=U), |+ [(B(®,U"), U), —(z,U)g,| 9.2)

and the identity

(B(¥,U"), U" - U)

(®.(U'-U)—d¥-V(U —U)-a(.,t,)
Qpn

Qn

+dU"- V¥ - (U - U) +2dv (V¥),: V(U - U)} dx+/ dy¥ - (U"-U)dx
The second term on the right hand side of (9.2) tends to zero due to the weak convergence of
B(¥,U") tozin W, %(Q,). All terms on the right hand side of the identity above, except for
the integral ofdU” - V¥ - (U" — U), tend to zero due to the weak convergenc@Jéfto U in
WE2(2,). The integral offU” - V¥ - (U” — U) can be estimated as follows:

/Q QU -V - (U7~ U) dx| < d[[U g0, [V%]a0n U7 — Ully g
+ d[|U" 6,02, IV¥l2 0, ror [U" = Ulls;q, raz, (9.3)

whereR > 0 andQff := Q, N Br(0). The sequence§||U" |5, 0, } and{||U" — Ul|s,q, } are
bounded due to the weak convergence[®F'} in W,?(2,,) and the continuous imbedding of
Ws?(Q) into L%(2,)? and L3(2,,). The norm| V¥ ||y, ¢, y-or can be made arbitrarily small
by choosingR large enough. Thus, the second term of the riaht hand side of inequality (9.3) can
also be made arbitrarily small by choosifglarge enough. The normgJ” — U5, QR tend to
zero asr — +oo becausdV,?(QF) is compactly imbedded inté3(Q%)3 and consequently,
U" — U strongly inL3(2%)3. Hence the first term on the right hand side of (9.3) can be made
arbitrarily small by choosing sufficiently large. The proof of statement d) is completed.

We have verified the assumptions of the Leray-Lions theorem, see egr4y,LJ. L. LIONS
[20] or S. FUCIK, A. KUFNER([7, p. 231], ford small enough. Due to this theorem, equation (9.1)
has a solutioflU € Wa2(Q,,).

Appendix A2: Proof of Lemma 2. a) LetF ¢ CO (Qo, T))g. Let us extendr by zero to
[R3 x (0,7)] ~ Q(o0,r)- The support oF belongs tau_, Q, x [t,_1,t,) for all sufficiently large
N, henceUY = Vu'¥ onsupp F. Statement a) now follows from the identities

T
/ / F:Udxdt = lim / / F:vu dxdt
Ot N—+o0 R3
— lim / / DivF-u® dxdt = / / DivF - u dxdt.
N—+oco R3 0 Ot

b) Sinceu € L>(0,T; L*(Q')%), U € L*(0,T; L*(Q")?) andVu = U a.e. inQ o 1), we
deduce thaur € L2(0,T; W12(Q!)?). It suffices to show thati(.,t) € L2(Q?) for a.a.t €
(0,7). Thus, lett € (0,7) ~ 7€ be fixed. The sequendai”(.,t)} is bounded inL?(R3)3,
hence there exists a subsequence (we denote it &géia , ¢)}) and a limit functioma? such that
uV (. t) — u’ weakly in L?(R3)3. Due to (6.6)u’ = u(.,t) fora.a.t € (0,T) \ 7¢. Suppose
that the fixedt is chosen so that it is one of the instants of time when this equality holdg. ket
an arbitrary function froni12(Q!). Functionp can be extended &> so that the gradient of the
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extension belongs tb?(IR%)3. (See e.g. E. M. €IN [26], p. 181.) In order not to complicate the
notation, we denote the extended function agaip.Mow we have

/u(.,t)'Vpdx:/ u'-Vpdx = lim u"(.,t)- Vpdx
Qt R3

N—+oc0 R3
= lim / Uy -Vpdx = 0, (9.4)
N—+o0 Qn
where the appropriate is determined by and N so thatt € (¢,-1,t,). (Pointst,_; andt,

belong to the partition 0f0, 7' defined at the beginning of Section 5. The partition depends on
N.) The set of gradients of all functiopsc W2(Q!) is dense in the orthogonal complement to
L2(QY) in L2(Q%)3. Thus, we have verified that(. , t) € L2(Q).

c) Letk € {0;1;...; K}, J be an closed interval if0,7) ~ 7¢ andt’ € J. All these
guantities are considered to be arbitrarily chosen, however fixed. There&xisisso small that
theé—neighbourhood¢ (B}) of thek—the bodyB}. has the empty intersection wiﬁj for all time
instantst,s € J andj € {0; 1; ...; K}, j # k. The mappingdY (¢; s, .), which is an isometry
of B; onto Bj, can be extended to the isometrylaf( B;) ontoU¢ (B}.).

Denotev™ (x',t) := u(Y(t; ¢',x'),t) for t € J andx’ € Ug(BY) ~ BY. In accor-
dance with the definition of function”, we havev (x',t) = U, (Y (tn; t,Y(t; ¥',X'))) =
U, (Y(tn; t',x)) fort € Jp := T N (tn-1,tn]. It foIIows from (6.6), (6.7) and from statement
a) of Lemma 2 that ™ (x, ¢) — u (Y (t; ¢/, %), t) weakly in L2(J; W'2(Ug(BL) ~ BY)?) for
N — +o0.

Let ¢ be an arbitrary vector function from? (7 ; 0B}). Then we have

/J/aB,g w.(x, 1) - h(x,1) dS(x) dt = NL“EOO/ /w (x,1) - ab(x,t) dS(x) dt

N
= Nl—i>r-I|-1c>o nz_:/jn /BBt tr[Up (Y (tn; £, %))] - ¥(x,t) dS(x) dt

= NETOO;LH /aBt/ Y (to; t',x))] - (Y(t; ¢, %), 1) dS(x) dt

= // tr[u(Y (X)), )] (Y (5 ¢, %), t) dS(x') dt
7 JoBt

_ / / trfux, 6)] - 9 (x, ) dS(x) dt.
7 Jost

This completes the proof of Lemma 2. As usually, we mostly omit the denotation “tr” for traces
of functions on the boundary.
Appendix A3: Proof of Lemma 3. Recall thatt™V (¢) is defined by (6.9), wherg(u'¥, ul¥, ¢)
= Il(qu é)+...+ I4(uN7 é) + 15(11*]\[7 ®).
We shall further denote,, := ¢(.,t,), where0 =ty < t; < ... < ty = T is the partition of
[0, T'], corresponding to natural numbar.

The integralZl(uN , @) can be expressed:
tn
N
Ti( Z/ / X(t; £,%), )L:t uV(x,t) dx dt
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N 4
= _nz::l/tnl /in %(p(x(t’ tnflaxnfl)at) . Un—l(anl) an,1 dt

N
- Z/ [(bn(X(tna tn,l,xn,l)) - ¢n71(xn71)] Up_1(xp—1) dxp,—1

= UO(XO) do(x0) dxo + Z / Uyt (X(tn15 tnsxn))] - @ (x0) dxp.

The integralZy (u”, ¢) equals

tn

I ( Z ) - Veo(x,t) - a(x,t) dxdt.
tn 1
The integral orf2! can be replaced by the same integraltypbecausdU,, equals zero outside
Q, anda(.,t) equals zero outsid®’. Thus, we can further writ&;(u”, ¢) = Zo(u”, ¢); +
Zo(u, 9)s + Io(ul, ¢)3 where

I2(uN)¢)l = - Z dn, U v¢n( ) ’ (thn) dx,
LY, ¢) = / " U VIst) — 9l )] 2l 1) dxdt
Ty(ul, ¢)3 = /t ' / U,(x) - Vo(x,t,) - [a(x,t) — a(x, t,)] dxdt.

Due to the infinite differentiability of functiorp, assumption (a5) and estimate (6.4), the sum
Tr(u", ¢), satisfies

1Zo(u™, ¢)2| < C(@,c5) Z dy [|a(. )|t dt — 0 for N — +oo.

n=1

In order to understand the behaviour®{u”, ¢); asN — -+oo, we choose a “small” number
x > 0 and we use the cut—off functiop defined by (7.2). (Recall thaf(t) equals zero in the
%n—neighbourhood of critical pointy, ..., t,, which form the se ¢, andn(¢) equals one at
timest whose distance fror ¢ is at least:.) We putg! := 7- ¢ andg? := (1 —17) - ¢. Thus, we
havep = ¢! + ¢? where functionp! coincides withe at timest such thatlist(t; 7¢) > « and it
equals zero at timessuch thatlist(t; 7¢) < 4 k. NowZ»(u", ¢)3 equals the surfi, (u’V, ¢'); +
To(u®, ¢?)3. The first termZy (u'V, ¢'); can be estimated by means of the uniform continuity of
functiona on a subset O@fo,T]’ containing only point$x, ¢) such thatlist(t; 7¢) > k:

N :
1 Zo(u™, ¢')s Z (dn, k) / / x)| Vol (x,t,)| dxdt,
n=1 tn—1

wherecz (d,,, k) — 0 asd,, — 0 for eachs > 0. Hence|Zy(u”, ¢')3| — 0 for N — +o0. The
second ternt,(u'V, ¢?); can be estimated:
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[0,77]

N tn
‘Ig(uN7¢2)3’ < Cf(es) (giax V) (nz::l)n /tnl Qn’a(x,t) —a(x, tn)’ dxdt

where(ZN )K denotes the sum over running from1 to N such thatdist(¢,;7¢) < k. The

n=1
right hand side can be made arbitrarily small uniformly with respeavtby choosingx > 0
sufficiently small. Thus, we can conclude that

N
ZQ(uN7 ¢) = = Z dn/ U, - V¢n ’ a(' 7tn) dx + Ré\f(ﬁ) + SQ(H) (95)
n=1 On

whereRY (k) — 0 asN — +oo for eachx > 0 andSy (k) — 0 ask — 0+ independently ofV.
We can proceed in the same spirit and show that

N

L'.g) = Yo da [ Un Vg, dx+RY () + Sal), 9.6)
n=1 Qn,
N

(Y, ) = Zdn/ 2v([Val, + Uy), : Vo, dx + Ry (k) + Sa(k), (9.7)
n=1 n
N

Is(ul, ) = Zdn/ V(A +U, —V,) -0, dSdt + RY (k) + S5(k), (9.8)
=1 n

n

whereRY (k), RY (k), RY (k) behave in the same way &) (x) andSs(k), Sa(k), S5(x) behave
in the same way aS(x). Similarly, using assumption (a4) and the smoothness of fungtjame
can express the integral gf- ¢ on the right hand side of (3.2):

T N
/0 /th-(;')dxdt = ; dn/ﬂngn-d)n dx + RY (k) + Ss(k), (9.9)

whereRY (k), respectivelySs (), also behaves in the same wayR (), respectivelySs (k). It
means thaR) (k) — 0 asN — +oo for eachx > 0 andSg(x) — 0 ask — 0+. Summing now
Ti(u, ¢), ..., ,(uV, ¢) andZ5(ulY, ¢), expressing them by means of (9.5)—(9.8) and using
(9.1) (with ®,, = ¢,,) and (9.9), we verify that the approximation$’ (respectivelyuly on the
boundary of?) satisfy (6.9) with

EN = RV(K)+ ...+ RY (k) = REY (k) + S1(k) + ... + S5(k) — Ss(k).

The statement of the lemma now follows from the asymptotic behavio(ij@;) andS;(k)
(j=1,...,6)for N — +o0o andx — 0+.
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