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Abstract

We assume thatΩt (for t ∈ [0, T ]) is a time varying domain inR3, which is the exterior of
several compact bodies moving in a container and striking at time instantst ∈ T c, whereT c is
a finite subset of(0, T ). We consider the Navier–Stokes equation with Navier’s slip boundary
condition and we prove its weak solvability inQ(0,T ) := {(x, t); 0 < t < T, x ∈ Ωt}. We
show that Navier’s boundary condition enables us to consider a different class of collisions
than the usual no–slip Dirichlet boundary condition.
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Keywords:Navier–Stokes equations

1 Introduction

A global (in time) weak solvability of the Navier–Stokes equation with the no–slip Dirichlet
boundary condition in a fixed domainΩ ⊂ R

3 is a classical result of the qualitative theory of
the Navier–Stokes equation, see e.g. J. LERAY [19] (1934), E. HOPF [16] (1950), O. A. LA-
DYZHENSKAYA [17] (1969), J. L. LIONS [21] (1969), R. TEMAM [30] (1977) or G. P. GALDI

[11] (2000).
The proof of the same result in a time variable domainΩt represents a subtler problem, espe-

cially due to the dependence of various constants in imbedding inequalities and in estimates of
traces on the concrete shape ofΩt. The first proof of the global (in time) weak solvability of the
Navier–Stokes equation with the no–slip boundary condition, in a time–varying domainΩt with
a prescribed form at each timet, was published by H. FUJITA AND N. SAUER [8] (1970). The
authors assumed that the boundary of the variable domainΩt consists of a finite number of moving
simple closed surfaces of the classC3 so that the distance of any two of these surfaces is never
less thand > 0.) The result was recently generalized by J. NEUSTUPA [22] (2007; Ωt has an
arbitrary shape and smoothness, the assumptions onΩt involve simulation of collisions of bodies
moving in a fluid). The existence and uniqueness of a strong solution in domainΩt with given
smooth moving boundaries was proved by O. A. LADYZHENSKAYA [18] (1968; globally in time
for sufficiently small data or locally in time for large data).

A series of other works, studying the Navier–Stokes equation in a time varying domain, ap-
peared in the last decade. The works we have in mind describe the motion of one or more bodies
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in a fluid and the authors consider the system fluid–bodies to be interconnected so that the position
of the bodies in the fluid is not known in advance. In addition to the Navier–Stokes equation and
the equation of continuity (which describe the motion of the fluid), the authors also consider equa-
tions describing the motion of the bodies in the fluid in dependence on forces and torques resulting
from the action of the fluid on the boundary of the bodies. Of all papers belonging to this category,
let us name e.g. K. H. HOFFMANN, V. N. STAROVOITOV [14] (1999) and [15] (2000), B. DES-
JARDINS, M. J. ESTEBAN [3] (1999) and [4] (2000), C. CONCA, J. SAN MARTÍN , M. TUC-
SNAK [2] (2000), M. D. GUNZBURGER, H. C. LEE, G. SEREGIN [13] (2000), J. SAN MARTÍN ,
V. N. STAROVOITOV, M. TUCSNAK [23] (2002), E. FEIREISL [6] (2003), T. TAKAHASHI [27]
and [28] (both 2003) T. TAKAHASHI , M. TUCSNAK [29] (2004), V. N. STAROVOITOV [25]
(2005). The results presented in these papers concern 2D and 3D cases and they involve theorems
on the global in time existence of weak solutions or the local in time existence of a strong solution.
Some of the papers admit collisions of the bodies moving in the fluid. Another series of papers
studies the motion of the interconnected system fluid–body under the assumption that the body
is able to produce a certain velocity profile on its surface and it moves do to this velocity. The
survey of results on these so called “self–propelled bodies” can be found in the work [11] (2002)
by G. P. GALDI .

All the works cited above consider the homogeneous Dirichlet boundary condition for velocity
on the boundary of domainΩt filled by the fluid.

V. N. STAROVOITOV [24] (2003) derived necessary conditions for the existence of a weak
solution of the Navier–Stokes equation in a time variable domainΩt, which is an exterior of
several solid bodies moving in the fluid, considering also the no–slip Dirichlet boundary condition
on the surface of the bodies. The conditions show that if the bodies have boundaries of the class
C2 then they can strike only with the speed equal to zero at the instant of the collision, otherwise
the weak solution cannot exist.

Motivated by this state, we study the flow of a viscous incompressible fluid around moving
bodies under the assumption that the velocity of the fluid satisfies Naviers slip boundary condition
on the boundary. We assume that the motion of the bodies is a priori known.

All assumptions we impose on the timevariable domainΩt, occupied by the fluid at timet,
are in detail listed in Section 2. We prove the global in time existence of a weak solution of the
initialboundary value problem

∂tv + v · ∇v +∇p = ν∆v + f in Q(0,T ), (1.1)

div v = 0 in Q(0,T ), (1.2)

v · n = V · n in Γ(0,T ), (1.3)

[Td(v) · n]τ + γ (v −V) = 0 in Γ(0,T ), (1.4)

v = v0 in Ω0 × {0}, (1.5)

where the operatorsdiv and∇ act on the spatial variables,Q(0,T ) denotes a space–time cylinder
in R4 whose intersectionΩt×{t} with the time levelt varies along the time axis andΓ(0,T ) is the
envelope ofQ(0,T ):

Q(0,T ) :=
{

(x, t) ∈ R4; 0 < t < T, x ∈ Ωt
}
, (1.6)

Γ(0,T ) :=
{

(x, t) ∈ R4; 0 < t < T, x ∈ Γt
}
. (1.7)

The equations (1.1), (1.2) describe the motion of a Newtonian viscous incompressible fluid in
domainΩt. The density of the fluid is supposed to be one. The symbolsv, p, ν andf in equations
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(1.1) and (1.2) successively denote the velocity of the fluid, the pressure, the kinematic coefficient
of viscosity and the specific external body force. Condition (1.3) expresses the impermeability of
Γt. Heren denotes the outer normal vector andV(. , t) is the velocity of “material points” on the
boundaryΓt of Ωt. Condition (1.4) is due to H. NAVIER, who proposed in 1824 that the tangential
component of the stress acting on the boundary should be proportional to the relative velocity of
the fluid with respect to the material boundary. HereTd(v) denotes the dynamic stress tensor
associated with the flowv. It has the formTd(v) = 2ν (∇v)s where(∇v)s is the symmetrized
gradient ofv. The subscriptτ denotes the tangential component toΓt. The positive constantγ is
the coefficient of friction between the fluid and the boundary.

The problem is treated on a relatively general level in Sections 2-7. The definition of its weak
solutions and our main result are given in Section 3. In Section 8, we consider a concrete example
whenΩt is the exterior domain of two moving bodies, striking at the time instanttc ∈ (0, T ).

Our technique is based on the construction and estimates of the Rothe approximations. Many
steps require a different approach than in the case of homogeneous Dirichlet’s boundary condition.
For instance, a vector functionu from the Sobolev spaceW 1,2

0 (Ωt)3, extended by zero toR3
rΩt,

becomes an element ofW 1,2(R3)3. Consequently, its norm inL6(Ωt)3 can be estimated from
above by a constant times the norm inW 1,2(Ωt)3, where the value of the constant is independent
of Ωt. The same consideration is, however, impossible if one assumes thatu ∈W 1,2(Ωt)3 satisfies
Navier’s slip boundary condition instead of Dirichlet’s no–slip condition. Other difficulties arise
in the part where we treat the limit transition in the nonlinear term. The standard argument based
on the control of the time oscillations of the approximations and application of the Lions–Aubin
lemma cannot be used in a usual way. Instead of this, we prove a strong convergence of certain
local Helmoltz projections of the approximations, which turns out to be enough in order to verify
the correctness of the limit transition, see Section 7. Note that the similar idea was already used by
K. H. HOFFMANN, V. N. STAROVOITOV in [14] in the case of a 2D flow around a smooth body
moving in a smooth tank, with the Dirichlet no–slip boundary condition on the boundary.

Notation of norms and function spaces.

• ( . , . )2; Ωt is the scalar product and‖ . ‖2; Ωt is the norm inL2(Ωt) or inL2(Ωt)3 or inL2(Ωt)9,
respectively. The meaning of‖ . ‖q; Ωt or ( . , . )2; Γt and‖ . ‖2; Γt is analogous.

• C∞0,σ(Ωt) is the linear space of infinitely differentiable divergence–free vector–functions inΩt

with a compact support inΩt.

• Lqσ(Ωt) is the closure ofC∞0,σ(Ωt) in Lq(Ωt)3 (for 1 ≤ q < +∞).

• W 1,2
σ (Ωt) := W 1,2(Ωt)3 ∩ L2

σ(Ωt) (with the norm‖ . ‖1,2; Ωt as inW 1,2(Ωt)3)

2 General assumptions on domainΩt and realization of the boundary condition
(1.3)

2.1 The structure of domain Ωt. Let T > 0. We are motivated by the following situation:
K solid bodies move in the fluid in a fixed containerD in the time interval(0, T ) so that their
positions are given in advance and they do not depend on the motion of the fluid. Thus, we assume
that the time variable domainΩt, filled by the fluid, has the form

Ωt = D r ∪Kk=1B
t
k for 0 ≤ t ≤ T, (2.1)
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whereBt
1, . . . , B

t
K are compact regions occupied by the bodies at timet. (We shall further

identify names of the bodies with the names of these regions.) The bodies can strike themselves or
the boundary of the container at certain critical instants of timetc1, . . . , t

c
M in the interval(0, T ).

We denote the set of these critical times byT c. If t ∈ T c then the bodies touch themselves or the
boundary ofD only by some points on their boundaries. Otherwise, at timest ∈ [0, T ]r T c, the
setsBt

1, . . . , B
t
K are mutually disjoint and contained inD. We assume that

(a1) D and the interiors of setsBt
k (k = 1, . . . ,K) are Lipschitz domains inR3 with piecewise

C1 boundaries.

(By a “piecewiseC1 boundary” we mean a boundary which is a union of a finite number of
surfaces of the classC1.)

Let us further denote byVk(t) the translational velocity, byωk(t) the rotational velocity and
by xk(t) the center of rotation of thek–the bodyBt

k at time instantst ∈ (0, T ) r T c. Hence
material pointsx ∈ Bt

k move with the known velocity

V(x, t) := Vk(t) + ωk(t)×
[
x− xk(t)

]
for t ∈ (0, T )r T c. (2.2)

We assume that

(a2) Vk, ωk and xk (k = 1, . . . ,K) are functions fromC2
(
[0, T ]r T c

)3
.
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Fig. 1: A possible form ofΩt in the caseK = 3, t 6∈ T c andBt
0 6= ∅

Remark 1. In order to simplify the notation, we putBt
0 := R

3
r D. SetBt

0 is clearly time–
independent, we use the superscriptt only in order to be consistent with the notation of the moving
bodiesBt

1, . . . , Bt
K . Note that domainD may coincide with the whole spaceR3; in that case

Bt
0 = ∂Bt

0 = ∅. We also extend functionV by zero toBt
0: V(x, t) := 0 for x ∈ Bt

0 and
0 < t < T . DomainΩt can now be expressed in the formΩt = R

3
r∪Kk=0B

t
k. The material point

in thek–th body (k = 0, 1, . . . ,K), whose “old” position at timet0 ∈ [0, T ] wasx0 ∈ Bt0
k , has a

“new” position described at timet by

Y(t; t0,x0) = x0 +
∫ t

t0

V
(
Y(s; t0,x0), s

)
ds ∈ Bt

k. (2.3)
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The functionY(t; t0, .), for t ∈ [0, T ] andt0 ∈ [0, T ]rT c, maps the union∪Kk=0B
t0
k continuously

onto∪Kk=0B
t
k. Moreover, the restriction ofY(t; t0, .) toBt0

k is an isometric mapping ofBt0
k onto

Bt
k which maps∂Bt0

k onto ∂Bt
k (k = 0, . . . ,K). The restriction ofY(t; t0, .) to Bt0

0 is the
identity mapping.

Remark 2. The boundary ofΩt is denoted byΓt. It has the form

Γt = ∂D ∪
[
∪Kk=1 ∂B

t
k

]
= ∪Kk=0 ∂B

t
k for 0 ≤ t ≤ T. (2.4)

The sets∂D, ∂Bt
1, . . . , ∂Bt

K are mutually disjoint fort ∈ [0, T ]r T c.

Remark 3. SinceΩt is Lipschitzian fort ∈ [0, T ]r T c, we also haveW 1,2
σ (Ωt) ↪→ Lq(Ωt)3 for

2 ≤ q ≤ 6 andt ∈ [0, T ] r T c. Using the characterization ofLqσ(Ωt) (see [9, p. 111]), we can
verify thatW 1,2

σ (Ωt) ↪→ Lqσ(Ωt) for theseq andt.

2.2 The outer normal vector on the boundary ofΩt. It follows from assumption (a1) that
the outer normal vector fieldn is defined a.e. onΓt for t ∈ [0, T ] r T c. Moreover, sinceΓt is a
piecewiseC1 surface, the fieldn can be extended to the neighbourhood ofΓt so that∇n makes
sense a.e. onΓt for t ∈ [0, T ]r T c. We assume that

(a3) there exists a positive constantc1 such that∫
Γt
φ · ∇n · φ dS ≤ c1 ‖φ‖2; Ωt

(
‖φ‖2; Ωt + ‖∇φ‖2; Ωt

)
(2.5)

for t ∈ [0, T ]r T c and allφ ∈W 1,2
σ (Ωt).

Note that the integral on the left hand side of (2.5) can be estimated by a constant times‖φ‖2; Ωt

times‖φ‖1,2; Ωt by means of an appropriate theorem on traces, see e.g. G. P. GALDI [9, p. 42].
Naturally, the constant in the inequality we obtain from the theorem on traces generally depends
ont. Assumption (a3) thus expresses the requirement that inequality (2.5) is satisfied with constant
c1 independent oft for t ∈ [0, T ]r T c. We shall see in Section 8 that the shape of striking bodies
in the neighbourhood of points of collisions plays the decisive role in verification of condition (a3)
in a concrete example.

2.3 Realization of the boundary condition (1.3) – an auxiliary functiona. In order to trans-
form the inhomogeneous boundary condition (1.3) to the homogeneous one, we look for the solu-
tion v in the form v = a + u whereu is the new unknown function anda is supposed to be a
known vector–function, defined in the set

Q∗[0,T ]rT c :=
{

(x, t) ∈ R4; t ∈ [0, T ]r T c, x ∈ Ωt
}
,

such that
div a = 0 in Q[0,T ]rT c , (2.6)

a · n = V · n in Γ[0,T ]rT c . (2.7)

Conditions (1.3) and (2.7) now imply that functionu should satisfy the homogeneous boundary
condition

u · n = 0 a.e. inΓ(0,T ) . (2.8)

We further assume that function a satisfies the five conditions listed below. The possibility of a
construction of functiona, satisfying (2.6), (2.7) and these conditions, depends on domainΩt and
its variation due to the motion and shapes of bodiesBt

1, . . . ,Bt
K . So we attach these conditions to

other assumptions on domainΩt and we refer to them as to (a4)-(a8).
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(a4) a and ∂ta are continuous inQ∗[0,T ]rT c ,

(a5) ‖a(. , t)‖1,2; Ωt ∈ L2(0, T ) – let us denote this norm byθ1(t),

(a6) ‖a(. , t)−V(. , t)‖2; Γt ∈ L2(0, T ) – let us denote this norm byθ2(t),

(a7) there exist functionsθ3 ∈ L1(0, T ), θ4 ∈ L2(0, T ) and θ5 ∈ L1(0, T ), continuous in
[0, T ]r T c, such that fort ∈ [0, T ]r T c andφ ∈W 1,2

σ (Ωt) we have∣∣∣∣∫
Ωt

[
∂ta(. , t) + a(. , t) · ∇a(. , t)

]
· φ dx

∣∣∣∣ ≤ θ3(t) ‖φ‖2; Ωt + θ4(t) ‖∇φ‖2; Ωt , (2.9)∣∣∣∣∫
Ωt
φ · ∇φ · a(. , t) dx

∣∣∣∣ ≤ 1
10ν ‖∇φ‖

2
2; Ωt + 1

4γ ‖φ‖
2
2; Γt + θ5(t) ‖φ‖22; Ωt , (2.10)

(a8) the initial–value problem

d
dt

X(t; ϑ,x) = a
(
X(t; ϑ,x), t

)
, X(ϑ; ϑ,x) = x (2.11)

has a unique solutionX(t; ϑ,x), defined fort ∈ [0, T ], ϑ ∈ [0, T ] and a.a.x ∈ Ωϑ, such
that the mappingx 7→ X(t; ϑ,x) is a one–to–one transformation ofΩϑ

r sϑ ontoΩt
r st

(wheresϑ andst are sets of measure zero inΩϑ or in Ωt, respectively).

Remark 4. We shall often use the mappingx 7→ X(t; ϑ,x) in order to transform volume in-
tegrals onΩϑ to volume integrals onΩt. The Jacobian of this mapping equals one due to the
incompressibility of flowa.

3 A weak formulation of the initial–boundary value problem (1.1)–(1.5)
and the main theorem

By analogy withQ∗[0,T ]rT c , we denote byQ∗[0,T ] (respectivelyQ∗[0,T )) the set of points(x, t) ∈ R4

such that0 ≤ t ≤ T (respectively0 ≤ t < T ) andx ∈ Ωt.

A formal derivation of the weak formulation. Assume thatφ is an infinitely differentiable
divergence–free vector–function inQ∗[0,T ] that has a compact support inQ∗[0,T ) and satisfies the
conditionφ ·n = 0 a.e. onΓ(0,T ). Assume thatv is a “sufficiently smooth” solution of (1.1)–(1.5)
of the formv = a + u wherea satisfies all the assumptions named in Section 2 andu ∈ L2

σ(Ωt)
for a.a.t ∈ (0, T ). Let us multiply equation (1.1) by functionφ and integrate onQ(0,T ). The
integral of{∂tu + (a · ∇)u} · φ can be expressed as follows:∫ T

0

∫
Ωt

{
∂tu(x, t) + a(x, t) · ∇u(x, t)

}
· φ(x, t) dx dt

=
∫ T

0

∫
Ω0

d
dt

u
(
X(t; 0,x0), t

)
· φ
(
X(t; 0,x0), t

)
dx0 dt

= −
∫

Ω0

u0(x0) · φ(x0, 0) dx0 −
∫ T

0

∫
Ω0

u
(
X(t; 0,x0), t

)
· d

dt
φ
(
X(t; 0,x0), t

)
dx0 dt

= −
∫

Ω0

u0(x0) · φ(x0, 0) dx0 −
∫ T

0

∫
Ωt

u(x, t) ·
{
∂tφ(x, t) + a(x, t) · ∇φ(x, t)

}
dx dt,
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whereu0 = v0 − a(. , 0). The integral ofu · ∇v · φ in Ωt can be transformed to the integral of
u · ∇a · φ minus the integral ofu · ∇φ · u by means of the integration by parts. The integral
of ∇p · φ in Ωt equals zero because the subspace of gradients of scalar functions is orthogonal
toL2

σ(Ωt) in L2(Ωt)3. Furthermore, denoting the components of the vectorsa, v, u andφ by the
same slanted letters with indices, we have∫

Ωt
ν∆v · φ dx =

∫
Ωt
ν (∂2

j vi)φi dx =
∫

Γt
ν (∂jvi)nj φi dS −

∫
Ωt
ν (∂jvi)(∂jφi) dx

=
∫

Γt
ν (∂jvi + ∂ivj)nj φi dx−

∫
Γt
ν (∂ivj)nj φi dx−

∫
Ωt
ν (∂jvi)(∂jφi) dx

= −
∫

Γt
γ (v −V) · φ dS −

∫
Ωt

2ν (∇v)s : ∇φ dx, (3.1)

where the subscripts denotes the symmetric part. We have used the identitiesν (∂jvi+∂ivj)nj φi
= [Td(v) · n] · φ = −γ (v − V) · φ, following from the boundary condition (1.4). Writing
everywherea + u instead ofv, we obtain the integral equation∫ T

0

∫
Ωt

{
−(∂tφ+ a · ∇φ) · u− u · ∇φ · a + u · ∇u · φ+ 2ν [∇(a + u)]s : ∇φ

}
dx dt

+
∫ T

0

∫
Γt
γ (a + u−V) · φ dS dt =

∫ T

0

∫
Ωt

g · φ dx dt+
∫

Ω0

u0 · φ(. , 0) dx (3.2)

whereg = f − ∂ta− a · ∇a. Thus, we arrive at the definition:

Definition 1. Suppose thatu0 ∈ L2
σ(Ω0) and f ∈ L2(0, T ; L2(Ωt)3). Put g = f − ∂ta −

a · ∇a. We call the functionv ≡ a + u a weak solutionof the problem (1.1)–(1.5) ifu ∈
L2(0, T ; W 1,2

σ (Ωt)) ∩ L∞(0, T ; L2
σ(Ωt)), the trace ofu on Γ(0,T ) is inL2(0, T ; L2(Γt)3) andu

satisfies (3.2) for all infinitely differentiable divergence–free vector–functionsφ in Q∗[0,T ], with a
compact support inQ∗[0,T ), that satisfy the conditionφ · n = 0 a.e. onΓ(0,T ).

The readers can verify that if the weak solutionv is “sufficiently smooth” and all other input
data are also “sufficiently smooth” then there exists a pressurep so that the pairv, p is a classical
solution of (1.1)–(1.5).

Our main theorem, whose proof is given in Sections 5–7, reads:

Theorem 1. Suppose that domainΩt satisfies all the conditions(a1)–(a3). Suppose that there
exists functiona, satisfying conditions (2.6), (2.7) and (a4)–(a8) from Section 2. Then the weak
solution of the problem (1.1)–(1.5), introduced in Definition 1, exists.

Remark 5. We shall see in Section 8 that condition (a7) induces a restriction on the speed of
colliding bodies in comparison with the coefficientsν andγ, if the bodies strike byC2–surfaces.

4 An apriori energy–type estimate of a solution of the problem (1.1)–(1.5)

In this section, we present a formal derivation of the energytype inequality, assuming that(v, p)
a “sufficiently smooth” solution of (1.1)-(1.5). The formal approach has the advantage that it
enables us to abstract from technical details connected with the approximations of(v, p) and to
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explain clearly the basic ideas. The same energytype inequality can also be derived for appropriate
approximations of(v, p) (see Section 7).

We are going to derive the following inequality

‖u(. , t)‖22; Ωt + ν

∫ t

0
‖∇u(. , s)‖22; Ωt ds+ γ

∫ t

0
‖u(. , s)‖22; Γt ds

≤ ‖u0‖22; Ωt +
∫ t

0
ω1(s) ‖u(. , s)‖22; Ωt ds+ ω2(t) (4.1)

where u0 = u(. , 0) = v0 − a0 and functionsω1 andω2 are integrable in(0, T ).
Beginning with equation (1.1) (wherev = a + u), we multiply it by functionu and integrate

in Ωt. We obtain∫
Ωt

{
(∂tu + a · ∇u + u · ∇a) · u + 2ν [∇(a + u)]s : ∇u

}
dx

+ γ

∫
Γt

(a + u−V) · u dS =
∫

Ωt
f · u dx−

∫
Ωt

(∂ta + a · ∇a) · u dx. (4.2)

(We have used (3.1) and (3.2) withφ = u. As usually, the integral ofu ·∇u ·u in Ωt equals zero.)
First of all, using the transformationx 7→ y = X(t+h; t,x) of Ωt

r st ontoΩt+h
r st+h (see

condition (a8)), we can rewrite the integral of(∂tu + a · ∇u) · u as follows:∫
Ωt

[
∂tu + a · ∇u

]
· u dx =

[∫
Ωt

d
dϑ

1
2

∣∣u(X(ϑ; t,x), ϑ
)∣∣2 dx

]
ϑ=t

= lim
h→0

1
2h

[∫
Ωt

(∣∣u(X(t+ h; t,x), t+ h
)∣∣2 − ∣∣u(X(t; t,x), t

)∣∣2) dx
]

= lim
h→0

1
2h

[∫
Ωt+h
|u(y, t+ h)|2 dy −

∫
Ωt
|u(x, t)|2 dx

]
=

d
dt

1
2

∫
Ωt
|u|2 dx.

Further, we successively estimate the integrals in (4.2).

• The first term on the right hand side can be estimated from below by means of assumption (a6):

γ

∫
Γt

(a + u−V) · u dS ≥ 3γ
4
‖u‖22; Γt − γ θ

2
2(t). (4.3)

• The integral of(∇u)s : ∇u can be treated as follows:

2ν
∫

Ωt
(∇u)s : ∇u dx = ν

∫
Ωt
|∇u|2 dx + ν

∫
Γt

(∂iuj)ui nj dS

= ν ‖∇u‖22; Ωt + ν

∫
Γt
∂i(ujnj)ui dS − ν

∫
Γt
uj (∂inj)ui dS.

The second integral on the right hand side is equal to zero becauseujnj = 0 a.e. onΓt and
the integrand represents the derivative ofujnj in the tangent direction. The third term can be
estimated by means of condition (a1). Thus, we obtain

2ν
∫

Ωt
(∇u)s : ∇u dx ≥ 9ν

10
‖∇u‖22; Ωt −

[
νc1 +

5ν
2
c2

1

]
‖u‖22; Ωt . (4.4)

8



• The integral of(∇a)s : ∇u can be estimated from below by− 1
10 ‖∇u‖22; Ωt −

5
2 θ

2
1(t) due to

condition (a5).

• The modulus of the integral of the product(∂ta + at · ∇a) · u in (4.2) can be estimated by
means of assumption (a7), estimate (2.9):∣∣∣∣∫

Ωt
(∂ta + a · ∇a) · u dx

∣∣∣∣ ≤ θ3(t) ‖u‖22; Ωt +
1
4
θ3(t) +

ν

10
‖∇u‖22; Ωt +

5
2ν

θ2
4(t).

• The integral ofu · ∇a · u can be estimated by means of assumption (a7), estimate (2.10).

• Finally, the integral off · u can be estimated by12 ‖f‖
2
2; Ωt + 1

2 ‖u‖
2
2; Ωt .

Substituting now all these estimates to (4.2) and integrating with respect to time from0 to t,
we obtain inequality (4.1) with

ω1(t) = 2νc1 + 5νc2
1 + θ3(t) + 2θ5(t) + 1

2 ,

ω2(t) = 2γθ2
2(t) + 1

4 θ3(t) + 5νθ2
1(t) + (5/2ν) θ2

4(t) + 1
2 ‖f‖

2
2; Ωt .

5 The time discretization and stationary boundary–value problems

In this section, after preliminary remarks, we define and study stationary problems obtained from
(3.2) by means of the time discretization.

5.1 A partition of the interval [0, T ]. Since the functionsθ2
1, θ2

2, θ3, θ2
4 andθ5 are integrable in

(0, T ) and continuous in[0, T ] r T c, there exists a boundΘ > 0 such that to eachN ∈ N there
exists a partitionPN : 0 = t0 < t1 < . . . < tN = T of the interval[0, T ] with the properties
‖PN‖ := maxn=1,...,N dn < 2T/N (wheredn := tn − tn−1) and

N∑
n=1

[
θ2

1(tn) + θ2
2(tn) + θ3(tn) + θ2

4(tn) + θ5(tn)
]
dn ≤ Θ. (5.1)

We further consider numberN ∈ N to be fixed in this section. Moreover,N is supposed to be
“sufficiently large”. (We specify in next paragraphs what it means.)

We can assume without the loss of generality that{t1; t2; . . . ; tN} ∩ T c = ∅.

5.2 Notation. In order to simplify the notation, we putΩn := Ωtn and Γn := Γtn = ∂Ωtn for
n = 0, 1, . . . , N .

Due to technical reasons, we extend functiona(. , t) (together with its derivatives) and function
f(. , t) by zero toR3

r Ωt.
Forx ∈ Ωn, we denote by[∇a]n(x) (respectivelyfn(x)) the mean value of∇a(x, .) (respec-

tively f(x, .) on the time interval(tn−1, tn). We putgn(x) := fn(x) − [∂ta(x, tn) + a(x, tn) ·
∇a(x, tn)]. Furthermore, forx ∈ Γn, we denote byAn(x) (respectivelyVn(x)) the mean value
of a

(
Y(. ; tn,x), .

)
(respectivelyV

(
Y(. ; tn,x), .

)
) on (tn−1, tn)

5.3 Stationary boundary value problems – the weak formulation and existence of a solution.
We putU0 := u0 and we denote byUn approximate values of the unknown functionu on the
time levelstn (n = 1, 2, . . . , N ). On then–th time level, we assume thatUn−1 is already a known
function fromL2

σ(Ωn) and we look forUn ∈W 1,2
σ (Ωn) such that
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∫
Ωn

{[
Un −Un−1 ◦X(tn−1; tn, .)

]
·Φ− dn Un · ∇Φ · a(. , tn) + dn Un · ∇Un ·Φ

}
dx

+
∫

Ωn

2dnν
{

[∇a]n +∇Un

}
s

: ∇Φ dx

+
∫

Γn

dnγ
[
An + Un −Vn

]
·Φ dS =

∫
Ωn
dn gn ·Φ dx (5.2)

for all Φ ∈W 1,2
σ (Ωn).

Remark 6. Equation (5.2) is a time–discretized variant of (3.2) on the time levelt = tn. The
symbol Un−1 ◦ X(tn−1; tn, .) denotes the composite functionx 7→ Un−1

(
X(tn−1; tn,x)

)
.

The differenceUn(x) − Un−1

(
X(tn−1; tn,x)

)
(for x ∈ Ωn) approximates the time derivative

(d/dt)u
(
X(t; tn,x), t

)
at the timet = tn, multiplied bydn.

Integral equation (5.2) represents a nonlinear boundary–value problem for the unknown func-
tion Un. Applying the Lions–Leray theorem, we can arrive at the next lemma on the existence of
its solution (see Section 9, Appendix A1, for the complete proof):

Lemma 1. If n ∈ {1; . . . ; N} anddn is small enough then equation (5.2) has a solutionUn in
W 1,2
σ (Ωn).

We further assume that alldn (for n = 1, . . . , N ) are as small as Lemma 1 requires, which is
equivalent toN being large enough.

5.4 Estimates of solutions of the weak problem (5.2).We derive a discrete variant of the energy
inequality (4.1) in this sub–section. UsingΦ = Un in (5.2), we obtain:

1
2
‖Un‖22; Ωn +

1
2

∫
Ωn

∣∣Un −Un−1 ◦X(tn−1; tn, .)
∣∣2 dx

+ 2dnν
∫

Ωn

(∇Un)s : ∇Un dx +
∫

Γn

dnγ |Un|2 dS

≤ 1
2
‖Un−1‖22; Ωk−1

+
∣∣∣∣dn ∫

Ωn

gn ·Un dx
∣∣∣∣+
∣∣∣∣dn ∫

Ωn

Un · ∇Un · a(. , tn) dx
∣∣∣∣

+
∣∣∣∣2dnν ∫

Ωn

(
[∇a]n

)
s

: ∇Un dx
∣∣∣∣+
∣∣∣∣∫

Γn

dnγ (An −Vn) ·Un dS
∣∣∣∣. (5.3)

By analogy with (4.4), we have

2ν
∫

Ωn

(∇Un)s : ∇Un dx ≥ 9ν
10
‖∇Un‖22; Ωn − ν

[
c1 +

5
2
c2

1

]
‖Un‖22; Ωn . (5.4)

The integral of[∂ta(. , tn) + a(. , tn) · ∇a(. , tn)] ·Un (the part ofgn ·Un) can be estimated by
means of assumption (a7), inequality (2.9):∣∣∣∣∫

Ωn

[
∂ta(. , tn) + a(. , tn) · ∇a(. , tn)

]
·Un dx

∣∣∣∣ ≤ θ3(tn) ‖Un‖2; Ωn + θ4(tn) ‖∇Un‖2; Ωn

≤ ν

10
‖∇Un‖22; Ωn +

5
2ν

θ2
4(tn) +

1
2
θ3(tn)

[
‖Un‖22; Ωn + 1

]
. (5.5)
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The integral offn ·Un (the part ofgn ·Un) can be obviously estimated as follows:∣∣∣∣∫
Ωn

fn ·Un dx
∣∣∣∣ ≤ 1

2

∫ tn

tn−1

‖f(. , t)‖22; Ωt dt+
1
2
‖Un‖22; Ωn . (5.6)

The integral ofUn · ∇Un · a(. , tn) can be estimated by means of inequality (2.10):∣∣∣∣∫
Ωn

Un · ∇Un · a(. , tn) dx
∣∣∣∣ ≤ ν

10
‖∇Un‖22; Ωn +

γ

4
‖Un‖22; Γn + θ5(tn) ‖Un‖22 Ωn . (5.7)

The integral of
(
[∇a]n

)
s

: ∇Un can be estimated by means of assumption (a5):∣∣∣∣2ν ∫
Ωn

(
[∇a]n

)
s

: ∇Un dx
∣∣∣∣ ≤ ν

10
‖∇Un‖22; Ωn + 10ν θ2

1n , (5.8)

whereθ2
1n denotes the mean value ofθ2

1 on (tn−1, tn). (By analogy, just below we also useθ2
2n for

the mean value ofθ2
2.) Finally, the integral of(An −Vn) ·Un on Γn can be estimated by means

of assumption (a6):∣∣∣∣γ ∫
Γn

(
An(xn)−Vn(xn)

)
·Un(xn) dS(xn)

∣∣∣∣
=
∣∣∣∣ γdn

∫ tn

tn−1

∫
Γn

[
a
(
Y(t; tn,xn), t

)
−V

(
Y(t; tn,xn), t

)]
·Un(xn) dS(xn) dt

∣∣∣∣
≤ γ

4
‖Un‖22; Γn +

γ

dn

∫ tn

tn−1

∫
Γn

∣∣a(Y(t; tn,xn), t
)
−V

(
Y(t; tn,xn), t

)∣∣2 dS(xn) dt

=
γ

4
‖Un‖22; Γn +

γ

dn

∫ tn

tn−1

∫
Γt

∣∣a(x, t)−V(x, t)
∣∣2 dS(x) dt =

γ

4
‖Un‖22; Γn + γ θ2

2n. (5.9)

Substituting now estimates (5.4)–(5.9) to (5.3), summing forn = 1, . . . , j (where1 ≤ j ≤ N ,
j ∈ N), and multiplying by two, we obtain the inequality

‖Uj‖22; Ωj +
j∑

n=1

∥∥Un −Un−1 ◦X(tn−1; tn, .)
∥∥2

2; Ωn
+ ν

j∑
n=1

dn ‖∇Un‖22; Ωn

+ γ

j∑
n=1

dn ‖Un‖22; Γn ≤ ‖U0‖22; Ω0
+

j∑
n=1

ω1n ‖Un‖22; Ωn +
j∑

n=1

ω2n , (5.10)

where

ω1n = 2dn
(
c1ν +

5
2
c2

1ν + 1
)

+ 2dn θ3(tn) + 2dn θ5(tn),

ω2n =
5
ν
dn θ

2
4(tn) +

∫ tn

tn−1

‖f(. , t)‖22; Ωt dt+ 20dnνθ2
1n + 2γdn θ2

2n .

Remark 7. It follows from the definition ofθ2
1n, θ2

2n, and from (5.1) that the functionλN (s) :=
ω1n (for tn−1 < s ≤ tn) is integrable on(0, T ) and∫ T

0
λN (s) ds ≤ 2

(
c1ν +

5
2
c2

1ν + 1
)
T +

∫ T

0
θ3(s) ds+ 2Θ := c3, (5.11)
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N∑
n=1

ω2n ≤
5
ν

Θ +
∫ T

0

[
‖f(. , s)‖22; Ωs + 20νθ2

1(s) + 2γθ2
2(s)

]
ds := c4. (5.12)

Bothc3 andc4 are independent ofN . Furthermore,ω1n → 0 asN → +∞ uniformly with respect
to n ∈ {1; . . . ; N}.

6 Non–stationary approximations and their weak convergence

We define

uN (x, t) :=

{
Un(x) if x ∈ Ωn,

0 if x ∈ R3
r Ωn,

U
N (x, t) :=

{
∇Un(x) if x ∈ Ωn,

O if x ∈ R3
r Ωn,

uN∗ (x, t) := uN
(
Y(tn; t,x), t

)
= Un

(
Y(tn; t,x)

)
if x ∈ Γt

for tn−1 < t ≤ tn andn = 1, . . . , N .
The values ofuN (. , t) andUn at the pointsY(tn; t,x) ∈ Γn are understood in the sense of

traces of functions defined a.e. inΩn. The definition of functionsuN (. , t) andUN (. , t) not only
in Ωn, but also inR3

r Ωn, is necessary because these functions will be later used in (3.2) and
integrated inΩt, which generally differs fromΩn by more than only a set of measure zero.

6.1 Estimates of the sequences{uN}, {UN} and {uN∗ }. Inequalities (5.10) and (5.12) imply
that ifN is so large thatω1n <

1
2 for all n ∈ {1; . . . ; N} then

1
2
‖uN (. , t)‖22;R3 + ν

∫ t

0
‖UN (. , s)‖22;R3 ds+ γ

∫ t

0
‖uN∗ (. , s)‖22; Γs ds

≤ ‖u0‖22; Ω0 +
∫ t

0
λN (s) ‖uN (. , s)‖22;R3 ds+ c4. (6.1)

Applying Gronwall’s lemma and estimate (5.11), we deduce that

‖uN (. , t)‖22;R3 ≤ 2
(
‖u0‖22; Ω0 + c4

)
+ 4
(
‖u0‖22; Ω0 + c4

) ∫ t

0
λN (s) exp

(
2
∫ t

s
λN (σ) dσ

)
ds

≤ 2
(
‖u0‖22; Ω0 + c4

) [
1 + 2c3 e2c3

]
:= c5 (6.2)

for 0 ≤ t ≤ T . Using inequality (6.2) in (6.1), we obtain

ν

∫ T

0
‖UN (. , s)‖22;R3 ds+ γ

∫ T

0
‖uN∗ (. , s)‖22; Γs ds ≤ c3c5 + c4 + 2c5 := c6. (6.3)

Constantsc5 andc6 are independent ofN . We can reversely derive from inequalities (6.2) and
(6.3) that

‖Un‖2; Ωn ≤ c5 (n = 1, . . . , N), (6.4)

ν

N∑
n=1

dn ‖∇Un‖22; Ωn + γ

N∑
n=1

dn ‖Un‖22; Γn ≤ c6. (6.5)

12



6.2 Weak convergence of subsequences.Estimates (6.2) and (6.3) imply that there exist sub-
sequences of{uN}, {UN} and{uN∗ } (we shall denote them again by{uN}, {UN} and{uN∗ })
and functionsu ∈ L∞(0, T ; L2(R3)3), U ∈ L2(0, T ; L2(R3)9) andu∗ ∈ L2(Γ(0,T ))3 such that

uN −⇀ u weakly–∗ in L∞(0, T ; L2(R3)3) for N → +∞, (6.6)

U
N −⇀ U weakly inL2(0, T ; L2(R3)9) for N → +∞, (6.7)

uN∗ −⇀ u∗ weakly inL2(Γ(0,T ))
3 for N → +∞. (6.8)

The next lemma brings the information on relations betweenu,U andu∗. The lemma is proved
in Section 9, Appendix A2.

Lemma 2. a) U = ∇u in the sense of distributions inQ(0,T ),

b) u ∈ L2(0, T ; W 1,2
σ (Ωt)),

c) u∗ = tr(u) onΓ(0,T ) (wheretr(u) denotes the trace of the functionu
∣∣
Q(0,T )

onΓ(0,T )).

6.3 Substitution of the approximations to integral equation (3.2). The approximationsuN

(represented byuN∗ onΓt) naturally satisfy the integral equation (3.2) with a certain errorEN (φ).
Thus, if we denote byI(uN ,uN∗ ,φ) the the left hand side of (3.2) (where we useuN in Ωt and
uN∗ onΓt), we have

I(uN ,uN∗ ,φ) =
∫ T

0

∫
Ωt

g · φ dx dt+
∫

Ω0

u0 · φ(. , 0) dx + EN (φ). (6.9)

The following Lemma 3 provides the information on the asymptotic behaviour ofEN (φ) asN →
+∞. The proof is given in Section 9, Appendix A3.

Lemma 3. Given a test functionφ as in Definition 1, we havelimN→+∞ EN (φ) = 0.

Let us now deal with the left hand side of (6.9). It can be split to the sumI1(uN ,φ) + . . . +
I4(uN ,φ) + I5(uN∗ ,φ), where

I1(uN ,φ) := −
∫ T

0

∫
Ωt

(∂tφ+ a · ∇φ) · uN dx dt,

I2(uN ,φ) := −
∫ T

0

∫
Ωt

uN · ∇φ · a dx dt,

I3(uN ,φ) :=
∫ T

0

∫
Ωt

uN · UN · φ dx dt,

I4(uN ,φ) :=
∫ T

0

∫
Ωt

2ν [∇(a + uN )]s : ∇φ dx dt,

I5(uN∗ ,φ) :=
∫ T

0

∫
Γt
γ (a + uN∗ −V) · φ dS dt.

Using the types of convergence named in (6.6)–(6.8) and statements a) and c) of Lemma 2, we
can deduce thatIi(uN ,φ)→ Ii(u,φ) for i = 1, 2, 3 andI5(uN∗ ,φ)→ I5(u,φ) asN → +∞.
Thus, passing withN to +∞ in (6.9), we obtain the identity∫ T

0

∫
Ωt

{
−(∂tφ+ a · ∇φ) · u− u · ∇φ · a + 2ν [∇(a + u)]s : ∇φ

}
dx dt+ lim

N→+∞
I3(uN,φ)
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+
∫ T

0

∫
Γt
γ (a + u−V) · φ dS dt =

∫ T

0

∫
Ωt

g · φ dx dt+
∫

Ω0

u0 · φ(. , 0) dx. (6.10)

In order to show thatu is a weak solution of the problem (1.1)–(1.5), it remains to verify that

lim
N→+∞

I3(uN ,φ) =
∫ T

0

∫
Ωt

u · ∇u · φ dx dt. (6.11)

7 The limit process in the nonlinear term I3(uN ,φ)

The existence of the limit on the left hand side of (6.11) follows from (6.10). Thus, it is sufficient
to check the value of the limit only for an arbitrary subsequence of{uN ,UN}. The limit in (6.11)
is not standard due to the variability of domainΩt and the test functionφ, which is required to
have only the normal component equal to zero onΓ(0,T ). We prove the validity of (6.11) (for
a subsequence of{uN ,UN}) in this section. At first we successively explain in sub–sections
7.1–7.3 that it is sufficient to prove (6.11) with certain modified functionsφ∗, φ∗∗ andφ∗∗j (for
j = 1, . . . , J) instead of the original functionφ.

7.1 Definition of function φ∗. Recall thatT c = {tc1; . . . ; tcM} ⊂ (0, T ) is the family of critical
time instants when the bodies moving in containerD collide. Letε1 > 0 be given. Then, due to
(6.2) and (6.3), there existsκ > 0 so small that∣∣∣∣ M∑

m=1

∫ tcm+κ

tcm−κ

∫
Ωt

uN · UN · φ dx dt
∣∣∣∣

≤
√
c5 c8

M∑
m=1

∫ tcm+κ

tcm−κ
‖UN (. , t)‖2; Ωt dt ≤ c8

√
2κc5c6

ν
< ε1 (7.1)

for all N ∈ N sufficiently large. (Herec8 is the maximum of|φ| onR3
+ × [0, T ].) Let η be an

infinitely differentiable cut–off function of variablet defined on the interval[0, T ], with values in
[0, 1], such that

η(t) :=

{
1 if dist(t; T c) ≥ κ,
0 if dist(t; T c) ≤ 1

2κ.
(7.2)

The functionφ∗(x, t) := η(t)φ(x, t) equals zero fort ∈ [0, T ] such thatdist(t; T c) ≤ 1
2κ and∣∣∣∣∫ T

0

∫
Ωt

uN · UN · (φ− φ∗) dx dt
∣∣∣∣ < ε1

due to (7.1). Sinceε1 can be chosen arbitrarily small, it is sufficient to prove (6.11) with function
φ∗ instead ofφ.

7.2 Definition of function φ∗∗. Since domainΩt is Lipschitzian for eacht ∈ [0, T r T c, it has
a cone property (see [1, p. 66]) andW 1,2

σ (Ωt) ↪→ L6(Ωt)3. Moreover, if we restrict ourselves to
timest ∈ I(κ), where

I(κ) :=
{
t ∈ [0, T ]; dist(t; T c) > 1

2κ
}
,
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then the cone parameters in the definition of the cone property of domainΩt can be chosen to
be independent oft. Hence the constant in the corresponding imbedding inequality also becomes
independent oft, see [1, p. 103]. Consequently,

‖uN (. , t)‖6;R3 ≤ C
(
‖uN (. , t)‖2;R3 + ‖UN (. , t)‖2;R3

)
for all t ∈ I(κ). From this information and from (6.4), we deduce that the productuN · UN
belongs to the spaceL2

(
I(κ); L1(R3)3

)
∩L1

(
I(κ); L3/2(R3)3

)
. By interpolation, we obtain the

inclusionuN · UN ∈ Lr
(
I(κ); Ls(R3)3

)
for r ≥ 1, s ≥ 1 such that2/r + 3/s = 4. Particularly,

uN · UN ∈ L5/4
(
I(κ); L5/4(R3)3

)
.

Functionφ∗ can be approximated by infinitely differentiable divergence–free vector–functions
with a compact support inQ[0,T ) with an arbitrary accuracy in the norm of the spaceL5/4

(
I(κ);

L5/4(Ωt)3
)
. Hence, givenε2 > 0, there exists such a vector–functionφ∗∗ that satisfies∣∣∣∣∫ T

0

∫
Ωt

uN · UN · φ∗ dx−
∫ T

0

∫
Ωt

uN · UN · φ∗∗ dx
∣∣∣∣ < ε2

for allN ∈ N sufficiently large. Sinceε2 can be chosen to be arbitrarily small, we can prove (6.11)
only with the functionφ∗∗ instead ofφ (respectively instead ofφ∗).

7.3 Partition of function φ∗∗. Let J ∈ N. We denoteτj = jT/m (for j = 0, . . . , J). There
existJ + 1 infinitely differentiable functionsϕ0, . . . , ϕJ on [0, T ] with their values in the interval
[0, 1] such thatsuppϕ0 ⊂ I0 := [τ0, τ1), suppϕj ⊂ Ij := (τj−1, τj+1) (for j = 1, . . . , J − 1),
suppϕJ ⊂ IJ := (τJ−1, τJ ] and

∑J
j=0 ϕj(t) = 1 for 0 ≤ t ≤ T . Now we putφ∗∗j := ϕj φ

∗∗

(for j = 0, 1, . . . , J). The functionsφ∗∗j are divergence–free, they have compact supports inQIj
and

∑J
j=0φ

∗∗
j = φ∗∗ in Q[0,T ].

Denote byG(j) the set
{
x ∈ R3; ∃ t ∈ Ij : (x, t) ∈ suppϕ∗∗j

}
. If J is large enough then the

distance betweenG(j) andΓt is greater than one half of the distance betweensuppφ∗∗ andΓ[0,T ]

for all t ∈ Ij . Thus, there exists a bounded open setΩ(j) in R3 with the boundary of the classC1,1

such thatG(j) ⊂ Ω(j) ⊂ Ω(j) ⊂ Ωt for all t ∈ Ij . So, we conclude that in order to prove (6.11), it
is sufficient to treat it separately withφ = φ∗∗j (for j = 0, 1, . . . , J) and to show that

lim
N→+∞

∫
Ij

∫
Ω(j)

uN · ∇uN · φ∗∗j dx dt =
∫
Ij

∫
Ω(j)

u · ∇u · φ∗∗j dx dt. (7.3)

(SinceG(j) × Ij ⊂ ∪Nn=1Ωn × (tn−1, tn] for sufficiently largeN , we can write∇uN instead of
U
N in (7.3).)

7.4 The local Helmholtz decomposition of functionuN . We denote byP jσ the Helmholtz
projection inL2(Ω(j))3. PutwN

j := P jσuN . The function(I − P jσ)uN has the form∇ϕNj for an
appropriate scalar functionϕNj . (7.3) can now be written as

lim
N→+∞

∫
Ij

∫
Ω(j)

[
wN
j · ∇wN

j · φ∗∗j + wN
j · ∇2ϕNj · φ∗∗j +∇ϕNj · ∇wN

j · φ∗∗j

+∇ϕNj · ∇2ϕNj · φ∗∗j
]

dx dt =
∫
Ij

∫
Ω(j)

u · ∇u · φ∗∗j dx dt. (7.4)

Since∇ϕNj · ∇2ϕNj = ∇
(

1
2 |∇ϕ

N
j |2
)

andφ∗∗j (. , t) ∈ L2
σ(Ω∗j ), the integral of∇ϕNj · ∇2ϕNj ·φ

∗∗
j

onΩ(j) equals zero.
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Fig. 2: SetsQ[0,T ], suppφ∗∗, suppφ∗∗j , G(j) and Ω(j)

The convergence (6.6) and (6.7), the coincidence ofU
N with∇uN onΩ(j)×Ij and the bound-

edness of operatorP jσ in L2(Ω(j))3 and inW 1,2(Ω(j))3 imply that

wN
j ⇀ wj := P jσu, and ∇ϕNj ⇀ ∇ϕj := (I − P jσ)u for N → +∞ (7.5)

weakly inL2(Ij ; W 1,2(Ω(j))3) and weakly–∗ in L∞(Ij ; L2
σ(Ω(j))).

7.5 Strong convergence of a subsequence of{wN
j }. We are going to show that there exists

a subsequence of{wN
j } that tends towj strongly inL2(Ij ; L2

σ(Ω(j))) asN → +∞. We shall
therefore use the next lemma, see J. L. LIONS [21, Theorem 5.2].

Lemma 4. Let0 < α < 1
2 and letH0,H andH1 be Hilbert spaces such thatH0 ↪→↪→ H ↪→ H1.

LetHα(R; H0, H1) denote the Banach space
{
w ∈ L2(R; H0); |ϑ|α ŵ(ϑ) ∈ L2(R; H1)

}
with

the norm

|||w|||α;R :=
(
‖w‖2L2(R;H0) + ‖ |ϑ|α ŵ(ϑ)‖2L2(R;H1)

)1/2
.

(Here ŵ(ϑ) is the Fourier transform ofw(t).) LetHα(a, b; H0, H1) further denote the Banach
space of restrictions of functions fromHα(R; H0, H1) onto the interval(a, b), with the norm

|||w|||α; (a,b) := inf |||z|||α;R

where the infimum is taken over allz ∈ Hα(R; H0, H1) such thatz = w a.e. in(a, b). Then
Hα(0, T ; H0, H1) ↪→↪→ L2(a, b; H).

Let j ∈ {1; . . . ; M} be fixed. We shall use Lemma 4 with(a, b) = Ij , H0 = W 1,2
σ (Ω(j)),

H = L2
σ(Ω(j)) and H1 = W−1,2

0,σ (Ω(j)). (HereW−1,2
0,σ (Ω(j)) denotes the dual toW 1,2

0,σ (Ω(j)),
whereW 1,2

0,σ (Ω(j)) is the closure ofC∞0,σ(Ω(j)) in W 1,2(Ω(j))3. The norm inW−1,2
0,σ (Ω(j)) will be

denoted by‖ . ‖−1,2; Ω(j)
.)

We claim that{wN
j } is bounded in the spaceHα(Ij ; H0, H1).

The boundedness of{wN
j } in L2(Ij ; H0) follows from (6.2), (6.3), from the coincidence ofUn

with∇un onΩ(j)×Ij and from the boundedness of operatorP jσ in L2(Ω(j))3 and inW 1,2(Ω(j))3.
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Thus, we only need to verify that the sequence{|ϑ|α ŵN
j } is bounded in the spaceL2(Ij ; H1),

i.e. inL2(Ij ; W
−1,2
0,σ (Ω(j))). Let zNj be an extension by zero ofwN

j from the time intervalIj onto
R. Then

ẑNj (ϑ) =
∫ +∞

−∞
e−2π i tϑ wN

j (t) dt =
∑
n∈ΛNj

∫ tn

tn−1

e−2π i tϑ P jσUn dt (7.6)

whereΛNj is the set of such indicesn ∈ {1; . . . ;N} that [R3 × (tn−1, tn)] ∩ suppφ∗∗j 6= ∅. ΛNj
has the formΛNj = {l; l + 1; . . . ; q} where1 ≤ l ≤ q ≤ N . Calculating the integrals in (7.6), we
obtain

ẑNj (ϑ) =
q∑
n=l

1
2π iϑ

[
e−2π i tn−1ϑ − e−2π i tnϑ

]
P jσUn

=
1

2π iϑ
[
e−2π i tl−1 P jσUl − e−2π i tq P jσUq

]
+

1
2π iϑ

q∑
n=l+1

e−2π i tn−1ϑ [P jσUn − P jσUn−1].

SinceΩ(j) ⊂ Ωs for all s ∈ Ij , we also haveΩ(j) ⊂ Ωn for all n ∈ ΛNj (if N is large enough).

If |ϑ| ≤ 1 then, using (7.6) and (6.4), we can estimate the norm of|ϑ|α ẑNj (ϑ) in W−1,2
0,σ (Ω(j)) as

follows: ∥∥ |ϑ|α ẑNj (ϑ)
∥∥
−1,2; Ω(j)

≤ C(Ω(j)) |ϑ|α
q∑
n=l

dn ‖Un‖2: Ω(j)
≤ C(Ω(j)) |ϑ|α. (7.7)

If |ϑ| > 1 then we must proceed more subtly:

∥∥ |ϑ|α ẑNj (ϑ)
∥∥
−1,2; Ω(j)

≤ |ϑ|
α−1

2π
(
‖P jσUl‖−1,2; Ω(j)

+ ‖P jσUq‖−1,2; Ω(j)

)
+
|ϑ|α−1

2π

q∑
n=l+1

‖P jσUn − P jσUn−1‖−1,2; Ω(j)

≤ C(Ω(j)) |ϑ|α−1
(
‖Ul‖2: Ω(j)

+ ‖Uq‖2: Ω(j)

)
+
|ϑ|α−1

2π

q∑
n=l+1

sup
ψn

1
‖ψn‖1,2; Ω(j)

∣∣∣∣∫
Ω(j)

(Un −Un−1) ·ψn dx
∣∣∣∣ (7.8)

where the supremum is taken over allψn ∈W
1,2
0,σ (Ω(j)) such that‖ψn‖1,2; Ω(j)

> 0.
The sum in (7.8) can be split to two parts and estimated byZ1 + Z2 where

Z1 =
q∑

n=l+1

sup
ψn

1
‖ψn‖1,2; Ω(j)

∣∣∣∣∫
Ω(j)

[
Un(x)−Un−1

(
X(tn−1; tn,x)

)]
·ψn(x) dx

∣∣∣∣,
Z2 =

q∑
n=l+1

sup
ψn

1
‖ψn‖1,2; Ω(j)

∣∣∣∣∫
Ω(j)

[
Un−1(x)−Un−1

(
X(tn−1; tn,x)

)]
·ψn(x) dx

∣∣∣∣.
The estimate ofZ1. Functionψn, extended by zero toR3

+ r Ω(j), belongs toW 1,2
σ (Ωn). Hence

the integral of
[
Un(x)−Un−1

(
X(tn−1; tn,x)

)]
·ψn(x) onΩ(j) equals the integral of the same
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function inΩn and it can be therefore expressed by means of (5.2). Thus,Z1 can be estimated:

Z1 ≤
q∑

n=l+1

sup
ψn

1
‖ψn‖1,2; Ω(j)

∣∣∣∣dn ∫
Ωn

Un · ∇ψn · a(. , tn) dx

− dn

∫
Ωn

Un · ∇Un ·ψn dx− 2dn
∫

Ωn

ν
{

[∇a]n +∇Un

}
s

: ∇ψn dx

− dn

∫
Γn

γ
[
Ak + Un −Vn

]
·ψn dS + dn

∫
Ωn

gn ·ψn dx
∣∣∣∣.

The surface integral onΓn equals zero because the functionψn is zero onΓn. All other terms
on the right hand side can be estimated byC(Ω(j)) by means of (6.4), (6.5), standard inequalities
based on the Sobolev imbedding theorem (applied inΩ(j)) and the Ḧolder inequality. Let us
show the procedure in greater detail, for example, in the case of the terms containing the product
Un · ∇Un ·ψn:

q∑
n=l+1

sup
ψn

1
‖ψn‖1,2; Ω(j)

∣∣∣∣dn ∫
Ωn

Un · ∇Un ·ψn dx
∣∣∣∣

≤
q∑

n=l+1

‖ψn‖6; Ω(j)

‖ψn‖1,2; Ω(j)

dn ‖∇Un‖2; Ωn ‖Un‖1/22; Ωn
‖Un‖1/26; Ωn

≤ C(Ω(j))
q∑

n=l+1

dn

(
‖∇Un‖2; Ωn ‖Un‖2; Ωn + ‖∇Un‖3/22; Ωn

‖Un‖1/22; Ωn

)
≤ C(Ω(j), c5) dn

[( q∑
n=l+1

‖∇Un‖22; Ωn

)1/2

N1/2 +
( q∑
n=l+1

‖∇Un‖22; Ωn

)3/4

N1/4

]
≤ C(Ω(j), c5, c6).

The estimate ofZ2. In order to estimateZ2, we use the identities

Un−1(x)−Un−1

(
X(tn−1; tn,x)

)
=
∫ tn

tn−1

d
dξ

Un−1

(
X(ξ; tn,x)

)
dξ

=
∫ tn

tn−1

a
(
X(ξ; tn,x), ξ

)
· ∇Un−1

(
X(ξ; tn,x)

)
dξ.

Then the sumZ2 can be estimated by means of condition (a4) and (6.5) as follows:

Z2 ≤ C(Ω(j)) sup
ψn

‖ψn‖6; Ω(j)

‖ψn‖1,2; Ω(j)

q∑
n=l+1

[∫ tn

tn−1

∫
Ω(j)

∣∣∇Un−1

(
X(ξ; tn,x)

)∣∣2 dx dξ
]1/2

·
[∫ tn

tn−1

(∫
Ω(j)

∣∣a(X(ξ; tn,x), ξ
)∣∣3 dx

)2/3

dξ
]1/2

≤ C(Ω(j))
[ q∑
n=l+1

∫ tn

tn−1

∫
Ωk−1

∣∣∇Un−1(x)
∣∣2 dx dξ

]1/2 [∫ T

0
‖a(. , ξ)‖21,2; Ωξ dξ

]1/2

≤ C
(
Ω(j), c6,

∫ T
0 θ1(t) dt

)
.
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Application of Lemma 4. Substituting the estimates ofZ1 andZ2 to (7.8), we finally obtain∥∥|ϑ|α ẑNj (ϑ)
∥∥
−1,2; Ω(j)

≤ C
(
Ω(j), c5, c6,

∫ T
0 θ1(t) dt

)
|ϑ|α−1. (7.9)

The constantC
(
Ω(j), c5, c6,

∫ T
0 θ1(t) dt

)
is independent ofN . Recall that inequality (7.9) holds

for |ϑ| > 1. Since the exponentα satisfies0 < α < 1
2 , the right hand side of (7.9) is in-

tegrable on(−∞,−1) ∪ (1,+∞) with power 2. This, together with (7.7), implies that the
sequence{|ϑ|α ẑNj (ϑ)} is bounded inL2(R; W−1,2

0,σ (Ω(j))). This further implies that the se-

quence{wN
j } is bounded inHα

(
Ij ; W

1,2
σ (Ω(j)), W

−1,2
0,σ (Ω(j))

)
. This space is reflexive, hence

there exists a subsequence (we denote it again by{wN
j }) which converges weakly inHα

(
Ij ;

W 1,2
σ (Ω(j)),W

−1,2
0,σ (Ω(j))

)
. Due to (7.5), the limit must bewj . Applying now Lemma 4, we have:

wN
j −→ wj = P jσu strongly inL2

(
Ij ; L2(Ω(j))3

)
.

7.6 Completion of the proof of Theorem 1. This strong convergence, together with the weak
convergence (7.5), enables us to pass to the limit in the first three terms on the left hand side of
(7.4). The procedure is standard (see e.g. J. L. LIONS [21] or R. TEMAM [30]), therefore we omit
the details. Using also the identity∫

Ω(j)

(∇ϕj · ∇)∇ϕj · φ∗∗j dx = 0,

following from the inclusionφ∗∗j ∈ L2
σ(Ω(j)) and from the fact that(∇ϕj · ∇)∇ϕj equals

∇
(

1
2 |∇ϕj |

2
)
, we can verify the validity of (7.4), and consequently also the validity of (6.11).

This confirms thatu is a weak solution of the problem (1.1)–(1.5). The proof of Theorem 1 is
completed.

8 Example: The flow around two striking bodies with ball–shaped front surfaces

The geometrical configuration. We assume that two compact bodiesBt
1 andBt

2 move inR3

in the time interval[0, T ] and they strike at the time instanttc ∈ (0, T ). Thus, the time–variable
domainΩt has the formΩt = R

3
r (Bt

1 ∪ Bt
2) and setT c of critical times in(0, T ), when the

considered bodies collide, is the one point setT c = {tc}. We assume that conditions (a1) and (a2)
from Section 2 are fulfilled (withD = R

3 andK = 2). Furthermore, we assume that

(a0) bodiesBt
1 andBt

2 touch themselves at timetc by material pointsP t1 ∈ ∂Bt
1 andP t2 ∈ ∂Bt

2,
in whose neighbourhoods the surfaces ofBt

1 andBt
2 coincide with surfacesSt1 andSt2 of the

balls with the radiiR1 andR2.

We can deduce from these assumptions that there existsτ > 0 such that fort in the time interval
(tc − τ, tc + τ):

• The shortest line segment`t connectingBt
1 andBt

2 has the end points on surfacesSt1 andSt2.

• There exists a Cartesian coordinate systemyt1, yt2, yt3 such that̀ t is a subset of theyt3–axis,
the originOt is in the middle of̀ t and the transformationyti = U tijxj + V t

i (i, j = 1, 2, 3)
between the Cartesian coordinatesx1, x2, x3 andyt1, yt2, yt3 is smooth: i.e. the entries of the
3 × 3 unitary matrixU t = (U tij) and the components of the vectorVt = (V t

1 , V
t

2 , V
t

3 ) are
functions fromC2

(
[0, tc) ∪ (tc, T ]

)
, continuous on[0, T ].
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• The lengthδt of line segment̀ t, as a function of variablet, is continuous on[0, T ] and such
thatδt = 0 for t = tc andδt > 0 for t ∈ [0, tc) ∪ (tc, T ]. Moreover, it belongs toC2

(
[0, tc) ∪

(tc, T ]
)
.

• There existsr > 0 so that the graph of the functionyt3 = g1(yt1, y
t
2, δ

t) (respectivelyyt3 =
−g2(yt1, y

t
2, δ

t)), where

gk(yt1, y
t
2, δ

t) := 1
2δ
t +Rk −

√
R2
k − (yt1)2 − (yt2)2 for k = 1, 2 and(yt1)2 + (yt2)2 ≤ r2,

is a subset of∂Bt
1 ∩ St1 (respectively∂Bt

2 ∩ St2), containing pointP t1 (respectivelyP t2), for
tc − τ < t < tc + τ . We further denote the mentioned graphs bySt1c (respectivelySt2c).

• The integral ofφ · ∇n · φ onΓt on the left–hand side of inequality (2.5) in condition (a3) can
be split to the integral onSt1c ∪ St2c, where∇n is negative semi–definite, and the integral on
Γtr (St1c∪St2c), where∇n is bounded and one can use the continuity of the operator of traces
from W 1,2

σ (Ωt) into L2
(
Γt r (St1c ∪ St2c)

)3
with a constant in the corresponding inequality

independent oft. Thus, we can verify that condition (a3) holds in our concrete considered
situation.
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yt1, y
t
2

yt3

St1c : yt3 = g1(yt1, y
t
2, δ

t)

St1

St2

St2c : yt3 = −g2(yt1, y
t
2, δ

t) r
r
r
Ot

`t

Bt
1

Bt
2

r

r

P t1

P t2

Ωt
c

6

?

?

6

1
2δ
t

1
2δ
t

Fig. 3: The shapes of bodiesBt
1 andBt

2 near the point of the collision
at timest close to the instanttc of the collision

We denote byΩt
c the critical sub–domain ofΩt, where the collision occurs, namelyΩt

c :=
{
yt =

(yt1, y
t
2, y

t
3) ∈ R3; (yt1)2 + (yt2)2 < r2 and − g2(yt1, y

t
2, δ

t) < yt3 < g1(yt1, y
t
2, δ

t)
}

.
In order to apply Theorem 1 in this geometrical configuration, we need to construct functiona,

satisfying the equation of continuity (2.6), the boundary condition (2.7) and conditions (a1)–(a5)
formulated in Section 2.We confine ourselves only to the definition of functiona in domain Ωt

c

for t ∈ (tc− τ, tc)∪ (tc, tc+ τ). We consider an appropriate extension ofa to the setQ∗[0,tc)∪(tc,T ]
to be only a matter of standard techniques and therefore we do not describe it here. In accordance
with this philosophy, we will sketch the verification of conditions (2.6), (2.7) and (a1)–(a5) only
for the part of functiona, defined inΩt

c.

9.1 Definition of the auxiliary function a in Ωt
c. At first we define vectorial potentialsw1 and

w2 as functions of the spatial variablesyt = (yt1, y
t
2, y

t
3):
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wk(yt, δt, δ̇t) := ±δ̇t
(

yt2y
t
3

2gk(yt1, y
t
2, δ

t)
, − yt1y

t
3

2gk(yt1, y
t
2, δ

t)
, 0
)

(8.1)

for k = 1, 2 in the closure ofΩt
c, where the sign “+“ holds for k = 2 and “−” holds for k = 1.

Further, we define vectorial potentialw as an interpolation betweenw1 and w2 such thatw
coincides withw1 in the neighbourhood of surfaceSt1 and withw2 in the neighbourhood ofSt2:

w(yt, δt, δ̇t) := w1(yt, δt, δ̇t) η(yt, δt) + w2(yt, δt, δ̇t)
[
1− η(yt, δt)

]
, (8.2)

where

η(yt, δt) := ζ

(
yt3 + g2(yt1, y

t
2, δ

t)
g1(yt1, y

t
2, δ

t) + g2(yt1, y
t
2, δ

t)

)
;

ζ is an infinitely differentiable cut–off function on the interval[0, 1], such that0 ≤ ζ(s) ≤ 1 for
0 ≤ s ≤ 1, ζ(s) = 0 for 0 ≤ s ≤ 1

4 and ζ(s) = 1 for 3
4 ≤ s ≤ 1. Now we define

ã(yt, δt, δ̇t) := curl w(yt, δt, δ̇t); (8.3)

curl being calculated with respect to the spatial variableyt. Formula (8.2) yields

ã = η ã1 + [1− η] ã2 + δ̇t
[
∇η ×w1 −∇η ×w2

]
(8.4)

where ã1 := curl wt
1, ã2 := curl wt

2 and∇ is also considered with respect to variableyt.
Finally, functiona arises from̃a by means of the transformation

a(x, t) := (U t)T · ã
(
U t · x + Vt, δt, δ̇t

)
. (8.5)

9.2 Conditions (2.6) and (2.7).The mappingGt(x) := yt = U t·x + Vt represents an isometry
of Gt−1(Ωt

c) ontoΩt
c, smoothly depending ont for t ∈ [0, tc) ∪ (tc, T ]. Thus, we can verify (2.6),

(2.7) and (a1)–(a5) directly for functioña(yt, δt, δ̇t), consideringyt ∈ Ωt
c. Moreover, due to the

smooth dependence of matrixU t and vectorVt on t, we can choose the coordinate systemyt1, yt2,
yt3 to be the new reference frame for our calculations at each time and consequently, not to take
into account the dependence of the coordinatesyt1, yt2, yt3 on t any more. Thus, we shall further
write onlyy or y1, y2, y3 instead ofyt or yt1, yt2, yt3.

Functionã is divergence–free because it is defined to be a curl of the vectorial potentialw.
Naturally, condition (2.7) for functioña makes sense only onSt1c ∪ St2c. Functionã coincides

with ã1 in the neighbourhood of surfaceSt1 and it coincides with̃a2 in the neighbourhood ofSt2.
Calculating the curl ofw1, we obtain

ã1(y, δt, δ̇t) = δ̇t ·
(
− y1

2g1
, − y2

2g1
,
y3

g1
− y1y3(∂1g1) + y2y3(∂2g1)

2g2
1

)
whereg1 abbreviatesg1(y1, y2, δ

t). OnSt1c, the outer normal vectorn equals(
∂1g1, ∂2g1,−1

)
/
√

(∂1g1)2 + (∂2g1)2 + 1 becausey3 = g1. Hence we have

ã · n
∣∣
St1c

= ã1 · n
∣∣
St1c

= δ̇t
(
− y1

2g1
, − y2

2g1
, 1− y1 ∂1g1 + y2 ∂2g1

2g1

)
· n

=
(−δ̇t)√

(∂1g1)2 + (∂2g1)2 + 1
=
(
0, 0, δ̇t

)
· n. (8.6)
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Since the velocityV of material points on surfaceSt1c, expressed in the reference framey1, y2, y3,
equals the sum of the vertical component(0, 0, δ̇t) and a component tangential toSt1c (due to the
rotation of bodyBt

1), the right hand side of (8.6) equalsV · n. Thus, condition (2.7) holds on
surfaceSt1c. The validity of (2.7) onSt2c follows in the same way.

9.3 Conditions (a4)–(a6) and (a8). Since the verification of all the conditions is lengthy and
technical, we choose only the first termη ã1 in the sum on the right hand side of (8.4) and we sketch
the procedure for this term. Moreover, it is advantageous to work in the cylindrical coordinatesρ,
ϕ, y3, whereρ = (y2

1 + y2
2)1/2. The form of functioña1 in the cylindrical coordinates is

ã1(y, δt, δ̇t) =
(
ã1ρ, ã1ϕ, ã13

)
= δ̇t ·

(
− ρ

2g1
, 0, −y3ρ g

′
1

2g2
1

+
y3

g1

)
,

whereg1 is now considered to be a function of the variablesρ andδt: g1(ρ, δt) = 1
2δ
t + R1 −√

R2
1 − ρ2 (for ρ ≤ r).

The gradient ofη ã1 is ∇(ηã1) = η∇ã1 + ∇η ⊗ ã1. Calculating the non–zero cylindrical
components of∇ã1 and∇η and substituting there the explicit forms of the derivatives(g1)′ and
(g2)′, we obtain

∂ρã1ρ = − δ̇t

2g1
+

δ̇tρ2

2g2
1

√
R2

1 − ρ2

∂ρã13 = −y3δ̇
tρ(4R2

1 − 3ρ2)
2g2

1 (R2
1 − ρ2)3/2

+
y3δ̇

tρ3

g3
1 (R2

1 − ρ2)
,

∂3ã13 = − δ̇
tρ g′1
2g2

1

+
δ̇t

g1
,

∂ρη = ζ ′
(
y3 + g2

g1 + g2

) [
− ρ (y3 − g1)

(g1 + g2)2
√
R2

2 − ρ2
− ρ (y3 + g2)

(g1 + g2)2
√
R2

1 − ρ2

]
,

∂3η = ζ ′
(
y3 + g2

g1 + g2

)
1

g1 + g2
.

Using these formulas, one can show thatη ã1 and∂t(ηã1) are continuous in{(y, t) ∈ R4; t ∈
[0, T ]r T c, y ∈ Ωt

c ∪ St1c ∪ St2c} and the norms‖ηã1‖1,2; Ωtc
and‖ηã1 −V‖2;St1c∪St2c are square

integrable (as functions oft) in (0, T ). Showing the same for the other terms on the right hand side
of (8.4) and considering an appropriate extension of functiona from Ωt

c to Ωt, we verify conditions
(a4)–(a6) and (a8). Moreover, we find out that functionθ1 in condition (a5) is inLq(0, T ) for each
1 ≤ q < +∞.

9.4 Condition (a7). Of inequalities (2.9) and (2.10) in condition (a7), we focus on (2.10), which,
as we shall see, induces a certain restriction on the size ofδ̇t in the neighbourhood of the critical
time instanttc of the collision. Thus, letφ ∈W 1,2

σ (Ωt).
Using assumption (a4) and the continuous imbeddingL6(Ωt) ↪→W 1,2(Ωt), we can derive that∣∣∣∣∫

Ωt
φ · ∇a · φ dx

∣∣∣∣ ≤ c15 a(t) ‖φ‖22; Ωt +
ν

10
‖∇φ‖22; Ωt (8.7)

wherea(t) := θ1(t) + θ4
1(t). Inequality (8.7) holds at timest 6= tc when domainΩt has the cone

property andW 1,2(Ωt)3 is therefore continuously imbedded intoL6(Ωt)3. Constantc15 depends
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on ν and it also generally depends ont through the cone parameters appearing in the definition
of the cone property ofΩt, see e.g. [1, p. 103]. However, if we use (8.7) only at timest such
that |t − tc| > τ thenc15, although depending onτ , can be considered to be independent oft.
Consequently, inequality (2.10) is satisfied (withθ5(t) := c15a(t)) for t ∈ [0, tc− τ)∪ (tc+ τ, T ].

On the other hand, sincec15 blows up fort→ tc, we use another techniques in order to estimate
the integral ofφ · ∇a · φ for t ∈ (tc − τ, tc) ∪ (tc, tc + τ). As we have already mentioned, we
confine ourselves only to the critical sub–domainΩt

c of Ωt. We have∣∣∣∣∫
Ωtc

φ · ∇φ · a(. , t) dy
∣∣∣∣ ≤ ‖∇φ‖2; Ωtc

(∫
Ωtc

|ã(. , t)|2 |φ|2 dy
)1/2

. (8.8)

Following the restriction that we explain the important steps only with the first termη ã1 on the
right hand side of (8.4), instead with the whole right hand side, and taking into account that the
decisive contribution to|η ã1| comes from the the component ofηã1ρ, we get

∫
Ωtc

|ηã1ρ|2 |φ|2 dy = |δ̇t|
∫ r

0
ρdρ

∫ 2π

0
dϕ

g1(ρ,δt)∫
−g2(ρ,δt)

|η| ρ2

4g2
1(ρ, δt)

[
φ2
ρ + φ2

ϕ + φ2
3

]
dy3

≤ |δ̇t|
∫ r

0

ρ3 dρ
4g2

1(ρ, δt)

∫ 2π

0
dϕ

g1(ρ,δt)∫
−g2(ρ,δt)

∑
j∈{ρ;ϕ; 3}

[
φj
(
ρ, ϕ, g1(ρ)

)
+

y3∫
g1(ρ)

∂3φj(ρ, ϕ, ξ) dξ
]2

dy3

≤ |δ̇t|
∑

j∈{ρ;ϕ; 3}

∫ r

0

ρ3 dρ
4g1(ρ, δt)

∫ 2π

0
dϕ
[[
g1(ρ, δt) + g2(ρ, δt)

]
φ2
j

(
ρ, ϕ, g1(ρ, δt)

)

+
[
g1(ρ, δt) + g2(ρ, δt)

]2 g1(ρ,δt)∫
−g2(ρ,δt)

[
∂3φj(ρ, ϕ, ξ)

]2 dξ
]

≤ c9(R1, R2) |δ̇t|
∫ r

0
ρ dρ

∫ 2π

0

∣∣φ(ρ, ϕ, g1(ρ, δt)
)∣∣2 dϕ

+ c10(R1, R2) |δ̇t| r2

∫ r

0
ρ dρ

∫ 2π

0
dϕ

g1(ρ,δt)∫
−g2(ρ,δt)

∣∣∂3φ(ρ, ϕ, y3)
∣∣2 dy3

≤ c9(R1, R2) |δ̇t| ‖φ‖22; Γt + c10(R1, R2) |δ̇t| r2 ‖∇φ‖22; Ωt .

Considering all the terms in the expansion (8.4) ofã (and not only the termη ã1), with all their
components (i.e. not only with the componentηã1ρ), we can derive the same inequality, only with
different constantsc11 andc12 instead ofc9 andc10:∣∣∣∣∫

Ωtc

|ã(. , t)|2 |φ|2 dy
∣∣∣∣ ≤ c11(R1, R2) |δ̇t| ‖φ‖22; Γt + c12(R1, R2) |δ̇t| r2 ‖∇φ‖22; Ωt .

Substituting these estimates to (8.8), we obtain∣∣∣∣∫
Ωtc

φ · ∇φ · a dy
∣∣∣∣ ≤ |δ̇t| ‖∇φ‖2; Ωt

[
c11 ‖φ‖22; Γt + c12 r

2 ‖∇φ‖2; Ωt
]1/2
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≤ |δ̇t|
√
c11 ‖∇φ‖2; Ωt ‖φ‖2; Γt + |δ̇t|

√
c12 r ‖∇φ‖22; Ωt

≤ |δ̇t|
(
εt c11 +

√
c12 r

)
‖∇φ‖22; Ωt +

|δ̇t|
4εt
‖φ‖22; Γt

for anyεt > 0. Considering an appropriate smooth extension of functiona from Ωt
c to Ωt, we get

additional terms on the right hand side which are analogous to (8.6) and we arrive at the estimate∣∣∣∣∫
Ωt
φ · ∇φ · a dx

∣∣∣∣ ≤ [
|δ̇t|
(
εt c11 +

√
c12 r

)
+ ξ
]
‖∇φ‖22; Ωt +

|δ̇t|
4εt
‖φ‖22; Γt

+ c13(ξ) ‖φ‖22; Ωt (8.9)

which is valid fort ∈ (tc − τ, tc) ∪ (tc, tc + τ) andξ > 0.
Except for (8.9), there is another possibility how one can estimate the integral ofφ · ∇φ · a

in Ωt: integrating by parts, we show that this integral equals the negative integral ofφ · ∇a · φ
in Ωt. Confining again ourselves to the critical sub–domainΩt

c of Ωt and to the partη∇ã1 of
∇ã, we find out that the decisive contribution to the integral ofφ · (η∇ã1) · φ comes from the
termη(∂ρã1ρ)φ2

ρ. Using the explicit form of∂ρã1ρ and applying Poincaré’s inequality (see e.g. [5,
R. Dautray and J. L. Lions, p. 127]), we obtain

∣∣∣∣∫
Ωtc

η(∂ρã1ρ)φ2
ρ dy

∣∣∣∣ ≤ C(R1) |δ̇t|
∫ r

0

ρ

2g1(ρ, δt)
dρ

g1(ρ,δt)∫
−g2(ρ,δt)

dy3

[∫ 2π

0
φ2
ρ dϕ

]

≤ C(R1) |δ̇t|
∫ r

0

ρ

2g1(ρ, δt)
dρ

g1(ρ,δt)∫
−g2(ρ,δt)

dy3

[
4π
∫ 2π

0
(∂ϕφρ)2 dϕ+

1
2π
|φ̃ρ|2

]

≤ C(R1, R2) |δ̇t| ‖∇φρ‖22; Ωtc
+ C(R1) |δ̇t|

∫ r

0

ρ

2g1(ρ, δt)
dρ

g1(ρ,δt)∫
−g2(ρ,δt)

|φ̃ρ|2 dy3 (8.10)

whereφ̃ρ(ρ, y3) :=
∫ 2π

0 φρ(ρ, ϕ, y3) dϕ. Using the incompressibility of the flowφ and the con-

dition φ · n = 0 on St1c ∪ St2c, we can deduce that
∫ g1

−g2
φ̃ρ dy3 = 0. This implies that to each

ρ ∈ (0, r) there existsyρ3 between−g2 andg1 such that̃φρ(ρ, y
ρ
3) = 0. Thus, the second term on

the right hand side of (8.10) can be estimated:

. . . ≤ C(R1) |δ̇t|
∫ r

0

ρ

2g1(ρ, δt)
dρ

g1(ρ,δt)∫
−g2(ρ,δt)

(
φ̃ρ(ρ, y

ρ
3) +

∫ y3

yρ3

∂3φ̃ρ(ρ, ξ) dξ
)2

dy3

≤ C(R1, R2) |δ̇t|
∫ r

0
ρ dρ

g1(ρ,δt)∫
−g2(ρ,δt)

(∂3φ̃ρ)2 dξ ≤ C(R1, R2) |δ̇t| ‖∇φρ‖22; Ωtc
.

This estimate, (8.10) and analogous estimates of all other terms in the expansion ofφ · ∇a · φ
successively enable us to arrive at the inequality∣∣∣∣∫

Ωt
φ · ∇a · φ dx

∣∣∣∣ ≤ c14 |δ̇t| ‖∇φ‖22; Ωt . (8.11)
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Multiplying inequality (8.9) byκ (where1 ≤ κ ≤ 1), inequality (8.11) by1− κ and summing
afterwards both the inequalities, we get the estimate which generalizes (8.9) and (8.11):∣∣∣∣∫

Ωt
φ · ∇φ · a dx

∣∣∣∣ ≤ [(
κεtc11 + κ

√
c12r

)
|δ̇t|+ κξ + (1− κ)c14 |δ̇t|

]
‖∇φ‖22; Ωt

+ κ
|δ̇t|
4εt
‖φ‖22; Γt + κc13 ‖φ‖22; Ωt . (8.12)

Comparing (8.12) with (2.10), we observe that we need(
κεtc11 + κ

√
c12r

)
|δ̇t|+ κξ + (1− κ)c14 |δ̇t| ≤

ν

10
,

κ
|δ̇t|
4εt
≤ γ

4

for t ∈ (tc − τ, tc) ∪ (tc, tc + τ). The second inequality is satisfied if we chooseεt := κ|δ̇t|/γ.
Substituting thisεt to the first inequality, we obtain the condition

c11
κ2

γ
|δ̇t|2 + κ

√
c12r |δ̇t|+ κξ + (1− κ)c14 |δ̇t| ≤

ν

10
.

Since we can work withr andξ arbitrarily small, it is sufficient to have

c11
κ2

γ
|δ̇t|2 + (1− κ)c14 |δ̇t| ≤

ν

20
(8.13)

fulfilled for t ∈ (tc− τ, tc)∪ (tc, tc + τ) and someκ ∈ [0, 1]. For instance, the choiceκ = 0 leads
to the requirement that|δ̇t| ≤ ν/20c14. The choiceκ = 1 yields the condition|δ̇t| ≤

√
γν/20c11.

Generally, (8.13) is satisfied for someκ ∈ [0, 1] if

|δ̇t| ≤ sup
0<κ≤1

−(1− κ)c14γ +
√

(1− κ)2c2
14γ

2 + 1
5κ

2c11γν

2κ2c11
(8.14)

for t ∈ (tc − τ, tc) ∪ (tc, tc + τ). Thus, we can conclude that the auxiliary functiona satisfies
condition (a4), namely inequality (2.10), if

(a9) there existsτ > 0 such that|δ̇t| satisfies inequality (8.14) fort ∈ (tc − τ, tc + τ)r {tc}.
Condition (a9) can be interpreted as the condition on smallness of the speed with which bodiesBt

1

andBt
2 collide at time instanttc. We observe that the larger is the coefficientγ of friction between

the fluid and the surface of bodiesBt
1, Bt

2 or the coefficient of viscosityν, the larger can be the
speed|δ̇t|.

Applying Theorem 1, we obtain:

Theorem 2. Suppose that domainΩt satisfies the conditions (a1), (a2) with the specifications
described at the beginning of Section 8, i.e. withD = R

3 andK = 2. Suppose further that condi-
tions (a0) and (a9) are fulfilled. Then the weak solution of the problem (1.1)–(1.5), introduced in
Definition 1, exists.

Remark 8. We recall that the same theorem cannot hold if no–slip Dirichlet’s boundary condition
is considered instead of Navier’s boundary condition (1.3), due to the results of V. N. STAROVOI-
TOV [24]. Thus, the boundary condition (1.3) enables us to consider a larger class of collisions of
bodies, moving in the viscous incompressible fluid, that the traditional no–slip boundary condition.
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9.5 A note to the stroke of two compact bodies with generalC2 front surfaces. In this case,
the shapes of the bodiesBt

1, Bt
2 are not necessarily ball–like in the neighbourhoods of pointsP t1

andP t2 with which they collide at the time instanttc. Taking also into account relative positions
and motions ofBt

1 andBt
2 in the time interval(tc − τ, tc + τ), we can deduce that there exist

two functionsy3 = gt1(y1, y2, δ
t) andy3 = gt2(y1, y2, δ

t) (for y2
1 + y2

2 ≤ r2) of the classC2,
whose forms generally depend ont and which play the same role as the functionsg1 andg2 in the
previous part of this section. By analogy withg1 andg2, the functionsgt1 andgt2 satisfy:

min
y1, y2

gt1 = gt(0, 0, δt) = min
y1, y2

gt2 = gt2(0, 0, δt) = 1
2 δ

t.

The only restriction we have to impose on the shapes of bodiesBt
1 andBt

2 in the neighbourhoods
of pointsP t1 andP t2 (in addition to their smoothness) is:

(a10) ∃ r > 0 ∃ c15 > 0 : gtk(y1, y2, δ
t) ≥ 1

2δ
t + c15

(
y2

1 + y2
2

)
for k = 1, 2 andy2

1 + y2
2 ≤ r2.

We define, by analogy with (8.1),

wt
k(y

t) := ±
(

(∂2h
t
k)y

t
3

2gtk(y
t
1, y

t
2, δ

t)
, −

(∂1h
t
k)y

t
3

2gtk(y
t
1, y

t
2, δ

t)
, 0
)

(8.15)

for k = 1, 2 in Ωt
c, where the sign “+“ holds for k = 2 and “−” holds for k = 1. The functions

ht1 andht2 of the variablesy1, y2 are chosen so that

∂2htk
∂y2

1

+
∂2htk
∂y2

2

= −ġtk −
∂gtk
∂δt

δ̇t for y2
1 + y2

2 ≤ r2, (8.16)

∂htk
∂y1

(0, 0) =
∂htk
∂y2

(0, 0) = 0 (8.17)

for k = 1, 2, whereġtk denotes the partial derivative ofgtk with respect tot. (Functionsht1 andht2,
satisfying both the conditions (8.16) and (8.17), can be simply expressed as sums of appropriate
Newton’s potentials and single layer potentials.) We can arrive at the same theorem as Theorem
2, with condition (a9) replaced by condition (a10). To do that, we proceed with the construction
of functionsã anda in the same way as in the first part of this section. Obviously, functionã is
divergence–free due to the same reason as the function given by (8.3). Equation (8.16) implies the
validity of condition (2.7), while the identities in (8.17) play the important role in the verification
of conditions (a4)–(a8). However, the verification of validity of (a4)–(a8) requires more space and
we prepare a special paper on this theme.

9 Appendices A1–A3

Appendix A1: Proof of Lemma 1. We write for simplicity onlyU andd instead ofUn and
dn. Sincetn 6∈ T c, domainΩn is Lipschitzian and consequently,W 1,2

σ (Ωn) ↪→ Lq(Ωn)3 for
1 ≤ q ≤ 6. Moreover, there exists a continuous operator of traces fromW 1,2

σ (Ωn) into L2(Γn)3.
Using assumption (a5), one can verify for givenU ∈W 1,2

σ (Ωn) that∫
Ωn

{
U ·Φ− dU · ∇Φ · a(. , tn) + dU · ∇U ·Φ + 2dν (∇U)s : ∇Φ

}
dx +

∫
Γn

dγU ·Φ dS
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is a bounded linear functional in dependence onΦ ∈W 1,2
σ (Ωn). Thus, it can be written in the form〈

A(Un),Φ
〉

Ωn
, whereA(Un) belongs to the dual spaceW−1,2

σ (Ωn) toW 1,2
σ (Ωn) and〈 . , . 〉Ωn

denotes the duality betweenW−1,2
σ (Ωn) andW 1,2

σ (Ωn). Similarly, the difference∫
Ωn

{
Un−1 ◦X(tn−1; tn, .) ·Φ− 2dν [∇a]n : ∇Φ

}
dx

−
∫

Γn

dγ
[
an −Vn

]
·Φ dS + d

∫
Ωn

gn ·Φ dx

can be expressed as〈 F ,Φ〉Ωn whereF ∈ W−1,2
σ (Ωn). We can now write equation (5.2) (for the

unknownU) in the equivalent form as an operator equation in the spaceW−1,2
σ (Ωn):

A(U) = F . (9.1)

A is a bounded and demicontinuous operator fromW 1,2
σ (Ωn) to W−1,2

σ (Ωn). Using condi-
tion (a5), we can verify that operatorA is coercive ifd is sufficiently small. (The integral of
2dν (∇U)s : ∇U must be treated by analogy with (4.4).)

There exists a bounded mappingB : W 1,2
σ (Ωn)×W 1,2

σ (Ωn) −→W−1,2
σ (Ωn) such that〈

B(U1,U2), Φ
〉

Ωn
=

∫
Ωn

{
U1 ·Φ− dU1 · ∇Φ · a(. , tn) + dU2 · ∇U1 ·Φ

+ 2dν (∇U1)s : ∇Φ
}

dx +
∫

Γn

dγU1 ·Φ dS

for U1, U2 and Φ ∈ W 1,2
σ (Ωn). Then, obviously,A(U) = B(U,U). MappingB has the

following properties:
a) GivenU1, U2, Φ, Ψ ∈ W 1,2

σ (Ωn), the real–valued function
〈
B(U1 + sΨ,U2), Φ

〉
Ωn

of
variables is continuous at the points = 0. Indeed, due to the linearity ofB in the first variable,
this is equivalent to the continuity of the functions

〈
B(Ψ,U2), Φ

〉
Ωn

at the points = 0, which

follows from the finiteness of
〈
B(Ψ,U2), Φ

〉
Ωn

.
b) If d is sufficiently small then mappingB is monotone in its main part.It means that〈
B(U2,U2) − B(U1,U2), U2 − U1

〉
Ωn
≥ 0 for all U1, U2 ∈ W 1,2

σ (Ωn). This can be ver-

ified by means of the linearity ofB(. ,U2): denotingU = U2 − U1, we have
〈
B(U2,U2) −

B(U1,U2), U2 − U1
〉

Ωn
=
〈
B(U,U2), U

〉
Ωn

. The non–negativity of this expression ford
small enough can be again proved by means of conditions (a5)–(a7) and by estimating the integral
of 2dν (∇U)s : ∇U in the same way as in (4.4).

c) If Ur ⇀ U for r → +∞ weakly inW 1,2
σ (Ωn) then

〈
B(Ψ,Ur)− B(Ψ,U), Φ

〉
Ωn
−→ 0

asr → +∞ for eachΦ, Ψ ∈W 1,2
σ (Ωn). This property of mappingB follows from the identity〈

B(Ψ,Ur)− B(Ψ,U), Φ
〉

Ωn
= d

∫
Ωn

(Ur −U) · ∇Ψ ·Φ dx,

from the weak convergenceUr ⇀ U in L6(Ωn)3 and from the inclusion∇Ψ · Φ ∈ L3(Ωn)3.
(Both are the consequences of the continuous imbeddingW 1,2

σ (Ωn) ⇀ L6(Ωn)3.)
d) If Ur ⇀ U for r → +∞ weakly inW 1,2

σ (Ωn), Ψ ∈ W 1,2
σ (Ωn), z ∈ W−1,2

σ (Ωn) and
B(Ψ,Ur) ⇀ z for r → +∞ weakly inW−1,2

σ (Ωn) then
〈
B(Ψ,Ur), Ur

〉
Ωn
−→ 〈z,U〉Ωn for

r → +∞. In order to verify this statement, we use the estimate∣∣〈B(Ψ,Ur), Ur
〉

Ωn
− 〈z,U〉Ωn

∣∣
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≤
∣∣〈B(Ψ,Ur), Ur −U

〉
Ωn

∣∣+
∣∣〈B(Ψ,Ur), U

〉
Ωn
− 〈z,U〉Ωn

∣∣ (9.2)

and the identity

∣∣〈B(Ψ,Ur), Ur −U
〉

Ωn

∣∣ =
∣∣∣∣∫

Ωn

{
Ψ · (Ur −U)− dΨ · ∇(Ur −U) · a(. , tn)

+ dUr · ∇Ψ · (Ur −U) + 2dν (∇Ψ)s : ∇(Ur −U)
}

dx +
∫

Γn

dγΨ · (Ur −U) dx
∣∣∣∣

The second term on the right hand side of (9.2) tends to zero due to the weak convergence of
B(Ψ,Ur) to z in W−1,2

σ (Ωn). All terms on the right hand side of the identity above, except for
the integral ofdUr · ∇Ψ · (Ur −U), tend to zero due to the weak convergence ofUr to U in
W 1,2
σ (Ωn). The integral ofdUr · ∇Ψ · (Ur −U) can be estimated as follows:∣∣∣∣∫

Ωn

dUr · ∇Ψ · (Ur −U) dx
∣∣∣∣ ≤ d ‖Ur‖6; Ωn ‖∇Ψ‖2; ΩRn

‖Ur −U‖3; ΩRn

+ d ‖Ur‖6; Ωn ‖∇Ψ‖2; ΩnrΩRn
‖Ur −U‖3; ΩnrΩRn

, (9.3)

whereR > 0 andΩR
n := Ωn ∩ BR(0). The sequences

{
‖Ur‖6; Ωn

}
and

{
‖Ur −U‖3; Ωn

}
are

bounded due to the weak convergence of{Ur} in W 1,2
σ (Ωn) and the continuous imbedding of

W 1,2
σ (Ωn) into L6(Ωn)3 andL3(Ωn)3. The norm‖∇Ψ‖2; ΩnrΩRn

can be made arbitrarily small
by choosingR large enough. Thus, the second term of the right hand side of inequality (9.3) can
also be made arbitrarily small by choosingR large enough. The norms‖Ur − U‖3; ΩRn

tend to

zero asr → +∞ becauseW 1,2
σ (ΩR

n ) is compactly imbedded intoL3(ΩR
n )3 and consequently,

Ur → U strongly inL3(ΩR
n )3. Hence the first term on the right hand side of (9.3) can be made

arbitrarily small by choosingr sufficiently large. The proof of statement d) is completed.
We have verified the assumptions of the Leray–Lions theorem, see e.g. J. LERAY, J. L. LIONS

[20] or S. FUČÍK , A. KUFNER [7, p. 231], ford small enough. Due to this theorem, equation (9.1)
has a solutionU ∈W 1,2

σ (Ωn).

Appendix A2: Proof of Lemma 2. a) Let F ∈ C∞0 (Q(0,T ))9. Let us extendF by zero to
[R3× (0, T )]rQ(0,T ). The support ofF belongs to∪Nn=1 Ωn× [tn−1, tn) for all sufficiently large
N , henceUN = ∇uN on suppF. Statement a) now follows from the identities∫ T

0

∫
Ωt
F : U dx dt = lim

N→+∞

∫ T

0

∫
R3

F : ∇uN dx dt

= − lim
N→+∞

∫ T

0

∫
R3

DivF · uN dx dt = −
∫ T

0

∫
Ωt

DivF · u dx dt.

b) Sinceu ∈ L∞(0, T ; L2(Ωt)3), U ∈ L2(0, T ; L2(Ωt)9) and∇u = U a.e. inQ(0,T ), we
deduce thatu ∈ L2(0, T ; W 1,2(Ωt)3). It suffices to show thatu(. , t) ∈ L2

σ(Ωt) for a.a.t ∈
(0, T ). Thus, lett ∈ (0, T ) r T c be fixed. The sequence{uN (. , t)} is bounded inL2(R3)3,
hence there exists a subsequence (we denote it again{uN (. , t)}) and a limit functionut such that
uN (. , t) ⇀ ut weakly inL2(R3)3. Due to (6.6),ut = u(. , t) for a.a.t ∈ (0, T ) r T c. Suppose
that the fixedt is chosen so that it is one of the instants of time when this equality holds. Letp be
an arbitrary function fromW 1,2(Ωt). Functionp can be extended toR3 so that the gradient of the
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extension belongs toL2(R3)3. (See e.g. E. M. STEIN [26], p. 181.) In order not to complicate the
notation, we denote the extended function again byp. Now we have∫

Ωt
u(. , t) · ∇p dx =

∫
R3

ut · ∇p dx = lim
N→+∞

∫
R3

un(. , t) · ∇p dx

= lim
N→+∞

∫
Ωn

UN · ∇p dx = 0, (9.4)

where the appropriaten is determined byt andN so thatt ∈ (tn−1, tn]. (Pointstn−1 and tn
belong to the partition of[0, T ] defined at the beginning of Section 5. The partition depends on
N .) The set of gradients of all functionsp ∈ W 1,2(Ωt) is dense in the orthogonal complement to
L2
σ(Ωt) in L2(Ωt)3. Thus, we have verified thatu(. , t) ∈ L2

σ(Ωt).
c) Let k ∈ {0; 1; . . . ; K}, J be an closed interval in(0, T ) r T c and t′ ∈ J . All these

quantities are considered to be arbitrarily chosen, however fixed. There existsξ > 0 so small that
theξ–neighbourhoodUξ(Bt

k) of thek–the bodyBt
k has the empty intersection withBs

j for all time
instantst, s ∈ J andj ∈ {0; 1; . . . ; K}, j 6= k. The mappingY(t; s, .), which is an isometry
of Bs

k ontoBt
k, can be extended to the isometry ofUξ(Bs

k) ontoUξ(Bt
k).

DenotevN (x′, t) := uN
(
Y(t; t′,x′), t

)
for t ∈ J and x′ ∈ Uξ(Bt′

k ) r Bt′
k . In accor-

dance with the definition of functionuN , we havevN (x′, t) = Un

(
Y
(
tn; t,Y(t; t′,x′)

))
=

Un

(
Y(tn; t′,x′)

)
for t ∈ Jn := J ∩ (tn−1, tn]. It follows from (6.6), (6.7) and from statement

a) of Lemma 2 thatvN (x′, t) ⇀ u
(
Y(t; t′,x′), t

)
weakly inL2

(
J ; W 1,2

(
Uξ(Bt′

k )rBt′
k

)3)
for

N → +∞.
Letψ be an arbitrary vector function fromL2(J ; ∂Bt

k). Then we have∫
J

∫
∂Btk

u∗(x, t) ·ψ(x, t) dS(x) dt = lim
N→+∞

∫
J

∫
∂Btk

uN∗ (x, t) ·ψ(x, t) dS(x) dt

= lim
N→+∞

N∑
n=1

∫
Jn

∫
∂Btk

tr
[
Un

(
Y(tn; t,x)

)]
·ψ(x, t) dS(x) dt

= lim
N→+∞

N∑
n=1

∫
Jn

∫
∂Bt
′
k

tr
[
Un

(
Y(tn; t′,x′)

)]
·ψ
(
Y(t; t′,x′), t

)
dS(x′) dt

=
∫
J

∫
∂Bt
′
k

tr
[
u
(
Y(t; t′,x′), t

)]
·ψ
(
Y(t; t′,x′), t

)
dS(x′) dt

=
∫
J

∫
∂Btk

tr
[
u(x, t)

]
·ψ(x, t) dS(x) dt.

This completes the proof of Lemma 2. As usually, we mostly omit the denotation “tr” for traces
of functions on the boundary.

Appendix A3: Proof of Lemma 3. Recall thatEN (φ) is defined by (6.9), whereI(uN ,uN∗ ,φ)
= I1(uN ,φ) + . . .+ I4(uN ,φ) + I5(uN∗ ,φ).

We shall further denoteφn := φ(. , tn), where0 = t0 < t1 < . . . < tN = T is the partition of
[0, T ], corresponding to natural numberN .

The integralI1(uN ,φ) can be expressed:

I1(uN ,φ) = −
N∑
n=1

∫ tn

tn−1

∫
Ωt

[ d
dt
φ
(
X(t; ξ,x), t

)]
ξ=t
· uN (x, t) dx dt
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= −
N∑
n=1

∫ tn

tn−1

∫
Ωn−1

d
dt
φ
(
X(t; tn−1,xn−1), t

)
·Un−1(xn−1) dxn−1 dt

= −
N∑
n=1

∫
Ωn−1

[
φn
(
X(tn; tn−1,xn−1)

)
− φn−1(xn−1)

]
·Un−1(xn−1) dxn−1

=
∫

Ω0

U0(x0) · φ0(x0) dx0 +
N−1∑
n=1

∫
Ωn

[
Un(xn)−Un−1

(
X(tn−1; tn,xn)

)]
· φn(xn) dxn .

The integralI2(uN ,φ) equals

I2(uN ,φ) = −
N∑
n=1

∫ tn

tn−1

∫
Ωt

Un(x) · ∇φ(x, t) · a(x, t) dx dt.

The integral onΩt can be replaced by the same integral onΩn becauseUn equals zero outside
Ωn anda(. , t) equals zero outsideΩt. Thus, we can further writeI2(uN ,φ) = I2(uN ,φ)1 +
I2(uN ,φ)2 + I2(uN ,φ)3 where

I2(uN ,φ)1 := −
N∑
n=1

dn

∫
Ωn

Un(x) · ∇φn(x) · a(x, tn) dx,

I2(uN ,φ)2 := −
N∑
n=1

∫ tn

tn−1

∫
Ωn

Un(x) · ∇[φ(x, t)− φ(x, tn)] · a(x, t) dx dt,

I2(uN ,φ)3 := −
N∑
n=1

∫ tn

tn−1

∫
Ωn

Un(x) · ∇φ(x, tn) · [a(x, t)− a(x, tn)] dx dt.

Due to the infinite differentiability of functionφ, assumption (a5) and estimate (6.4), the sum
I2(uN ,φ)2 satisfies

∣∣I2(uN ,φ)2

∣∣ ≤ C(φ, c5)
N∑
n=1

dn ‖a(. , t)‖2; Ωt dt −→ 0 for N → +∞.

In order to understand the behaviour ofI2(uN ,φ)3 asN → +∞, we choose a “small” number
κ > 0 and we use the cut–off functionη defined by (7.2). (Recall thatη(t) equals zero in the
1
2 κ–neighbourhood of critical pointstc1, . . . , t

c
M , which form the setT c, andη(t) equals one at

timest whose distance fromT c is at leastκ.) We putφ1 := η ·φ andφ2 := (1− η) ·φ. Thus, we
haveφ = φ1 +φ2 where functionφ1 coincides withφ at timest such thatdist(t; T c) ≥ κ and it
equals zero at timest such thatdist(t; T c) ≤ 1

2 κ. NowI2(uN ,φ)3 equals the sumI2(uN ,φ1)3+
I2(uN ,φ2)3. The first termI2(uN ,φ1)3 can be estimated by means of the uniform continuity of
functiona on a subset ofQ∗[0,T ], containing only points(x, t) such thatdist(t; T c) ≥ κ:

∣∣I2(uN ,φ1)3

∣∣ ≤ N∑
n=1

c7(dn, κ)
∫ tn

tn−1

∫
Ωn

|Un(x)| |∇φ1(x, tn)| dx dt,

wherec7(dn, κ) → 0 asdn → 0 for eachκ > 0. Hence
∣∣I2(uN ,φ1)3

∣∣ → 0 for N → +∞. The
second termI2(uN ,φ2)3 can be estimated:
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∣∣I2(uN ,φ2)3

∣∣ ≤ C(c5)
(

max
Q∗

[0,T ]

|∇φ2|
)( N∑

n=1

)
κ

∫ tn

tn−1

∫
Ωn

∣∣a(x, t)− a(x, tn)
∣∣ dx dt

where
(∑N

n=1

)
κ

denotes the sum overn running from1 to N such thatdist(tn; T c) ≤ κ. The
right hand side can be made arbitrarily small uniformly with respect toN by choosingκ > 0
sufficiently small. Thus, we can conclude that

I2(uN ,φ) = −
N∑
n=1

dn

∫
Ωn

Un · ∇φn · a(. , tn) dx +RN2 (κ) + S2(κ) (9.5)

whereRN2 (κ)→ 0 asN → +∞ for eachκ > 0 andS2(κ)→ 0 asκ→ 0+ independently ofN .
We can proceed in the same spirit and show that

I3(uN ,φ) =
N∑
n=1

dn

∫
Ωn

Un · UN · φn dx +RN3 (κ) + S3(κ), (9.6)

I4(uN ,φ) =
N∑
n=1

dn

∫
Ωn

2ν
(
[∇a]n + Un

)
s

: ∇φn dx +RN4 (κ) + S4(κ), (9.7)

I5(uN∗ ,φ) =
N∑
n=1

dn

∫
Γn

γ (An + Un −Vn) · φn dS dt+RN5 (κ) + S5(κ), (9.8)

whereRN3 (κ),RN4 (κ),RN5 (κ) behave in the same way asRN2 (κ) andS3(κ),S4(κ),S5(κ) behave
in the same way asS2(κ). Similarly, using assumption (a4) and the smoothness of functionφ, one
can express the integral ofg · φ on the right hand side of (3.2):∫ T

0

∫
Ωt

g · φ dx dt =
N∑
n=1

dn

∫
Ωn

gn · φn dx +RN6 (κ) + S6(κ), (9.9)

whereRN6 (κ), respectivelyS6(κ), also behaves in the same way asRN2 (κ), respectivelyS2(κ). It
means thatRN6 (κ)→ 0 asN → +∞ for eachκ > 0 andS6(κ)→ 0 asκ→ 0+. Summing now
I1(uN ,φ), . . . , I4(uN ,φ) andI5(uN∗ ,φ), expressing them by means of (9.5)–(9.8) and using
(9.1) (with Φn = φn) and (9.9), we verify that the approximationsuN (respectivelyuN∗ on the
boundary ofΩt) satisfy (6.9) with

EN = RN1 (κ) + . . .+RN5 (κ)−RN6 (κ) + S1(κ) + . . .+ S5(κ)− S6(κ).

The statement of the lemma now follows from the asymptotic behaviour ofRNj (κ) andSj(κ)
(j = 1, . . . , 6) for N → +∞ andκ→ 0+.
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[16] E. HOPF: Über die Anfangswertaufgabe für die Hydrodynamischen Grundgleichungen.
Math. Nachr.4, 1950, 213–231.

[17] O. A. LADYZHENSKAYA : The Mathematical Theory of Viscous Incompressible Flow.Gor-
don and Breach, New York, 1969.

32



[18] O. A. LADYZHENSKAYA : Initial–boundary value problem for the Navier–Stokes equations
in domains with time–varying boundaries.Zapiski Nauchnykh Seminarov LOMI11, 1968,
97–128. (Russian)

[19] J. LERAY: Sur le mouvements d’un liquide visqueux emplissant l’espace.Acta Mathematica
63, 1934, 193–248.
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