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1 Introduction

Consider a deformed body in a state with two coexistent phases separated by a
phase interface. If a bounded open set © ⊂ R3 is the reference region, then the
state is described by a deformation function y Ú © r R3 and by an open subset
E of © occupied by the first phase; the region occupied by the second phase is the
complement of E in ©. The phase interface S is the part of the boundary of E that

Preprint, Institute of Mathematics, AS CR, Prague. 2008-10-22 IN
ST
IT
U
TE

of
M
ATH

EMATICS

A
ca
d
em

y
o
f
Sc
ie
n
ce
s

C
ze
ch

R
ep
u
b
lic



2

t1

t2

energy

deformation

Fig. 1.1.

is contained in © (the rest of the boundary of E being a subset of the boundary of
©, possibly empty). The deformation function y gives the actual position y�x� of the
material point x X ©Ù in particular for x X S the value y�x� ¨ y�x� gives the actual
position of the interface points. We assume that the energy of each of the two bulk
phases α ¨ 1Ù 2 depends on the deformation gradient

F ¨ ∇y
via the response functions tα, α ¨ 1Ù 2, as

fα�x� ¨ tα�F�x��Ù x X EαÙ E1 Ú¨ EÙ E2 Ú¨ ©∼ clE

where throughout, cl and bd denote the closure and boundary. The energy of the
interface depends on the normal n to the interface and on the surface deformation
gradient [19, 16]

F ¨ V yÙ F n ¨ 0Ù
where V denotes the surface gradient (see Section 7), via the response function Ðf Ù

f�x� ¨ Ðf�F�x�Ùn�x��Ù x X SØ
The total energy of the state �yÙE� is

E�yÙE� ¨ Eb�yÙE� + E if�yÙE�
where

Eb�yÙE� ¨ �
E
t1�F� dL3 + �

©∼E
t2�F� dL3Ù

E if�yÙE� ¨ �
S

Ðf�FÙn� dH2 (1.1)

are the bulk and interface energies, with dL3 the referential volume element and dH2

the referential area element. Equilibrium states of the system correspond to minimum
energy under the constraints imposed by the environment of the system. Here the
region E is unknown, its determination is a part of the solution of the problem.

The above format pertains to fluid/fluid interface, solid/melt interface, solid/solid
interface, or grain boundaries. The two bulk energies represent two energy wells of
the substance, see Figure 1.1.
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In case of fluid phases, the problem of energy minimizing states was solved by
Gurtin [14–15]. In this case the bulk energies depend on F via the specific volume
v ¨ detFÙ

tα�F� ¨ Éα�det F�Ù
and it is realistic to assume (and also follows from symmetry considerations) that the
interfacial energy reduces to surface tension, i.e., is proportional to the area of the
deformed surface, Ðf�FÙn� ¨ σ| cofF n|Ù
where σ ± 0 is the surface tension coefficient and cofF is the cofactor tensor of FÙ see
Section 9. Under the external conditions of “canister” type, viz., for states occupying
in the actual configuration a prescribed regionΣ ⊂ R3, the minimum energy states are
either homogeneous, i.e., single phase states of constant specific volume, or pairwise
homogeneous, i.e., states of two coexistent phases, each of constant specific volume,
separated by an interface minimizing the spatial area of the interface under fixed
volumes of the phases. The minimum area is a function of one of the two volumes
and the problem reduces to the minimization of a function of one variable.

The present paper addresses the question of the existence of minimum energy
states �yÙE� in case of solid bulk phases under the prescribed boundary displacement.
Then tα are the energy wells of the two solid phases (e.g., corresponding to the
austenite and martensite phases, or two martensite phases), and Ðf is a function of F

and n that represents the symmetry of the bulk phases. If z0 Ú bd© r R3 is the
prescribed boundary displacement we consider states from the set

A�z0� ¨ !�zÙ F� X G Ú z ¨ z0 on bd©)
where G denotes the collection of all states �yÙE�. The problem is to find a state�yÙE� X A�z0� such that

E�yÙE� ² E�zÙE� for all �zÙ F� X A�z0�Ø (1.2)

It is well known that in the absence of interfacial energy �Ðf ª 0) the problem (1.2)
generally does not have a solution, since in the process of approaching the least energy
the body exhibits states �y iÙE i� of complicated patterns of coexistent phases with
finer and finer microstructure and with the area of the interface approaching infinity.
As the theory does not have any length scale, there is no limit on the fineness of the
microstructure, i.e., it is infinitely fine in the limit. The Young measure minimizers
represent the idealized limiting states. The least energy is given by the quasiconvex
envelope t qc (see [6; Section 6.3] for the definition) of the minimum energy

t �F� ¨ min!t1�F�Ù t2�F�)Ø
In particular, under the affine boundary conditions

y�x� ¨ AxÙ x X bd©Ù
where A is a prescribed constant affine deformation gradient, one has

inf ! E�yÙE� X G Ú y�x� ¨ Ax on bd©) ¨ t qc�A�
where we assume the referential volume of © equal to 1 for simplicity. The quasicon-
vex envelope is schematically represented in Figure 1.1 by the dashed line, although
it must be understood that t qc is not the convex envelope, as the figure might suggest.
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To obtain the existence of the solutions to the problem (1.2), we assume that the
bulk phases are described by two polyconvex wells. The mutual relation of the wells
is arbitrary, so that the geometric incompatibility induced by symmetry can occur.
Thus we assume that

tα�F� ¨ §α�FÙ cofFÙdet F� (1.3)

for all i ¨ 1Ù 2 and all values of deformation gradient FÙ where §α Ú W r R are
convex functions onW ¨ Lin�Lin�R with Lin the set of all second order tensors.
The existence theory for a single phase minimizer with polyconvex energy is well
understood [3, 12, 26, 13] and the corresponding part of the present theory merely
transfers those results.

The paper proposes and discusses convexity notions of the interfacial energy ÐfÙ
viz., the interface quasiconvexity, interface null lagrangians, and interface polycon-
vexity. The interface quasiconvexity ensures the stability of a planar homogeneously
deformed interface T against curved inhomogeneously deformed interfaces S with
the same boundary data. Mathematically it is equivalent to the sequential lowersemi-
continuity of the surface energy term (1.1) under an appropriate convergence, as will
be shown elsewhere [31]. An interface null lagrangian is an interfacial energy Ðf such
that Ðf and −Ðf are interface quasiconvex. An explicit form is given below [(1.5)].
An interface polyconvex surface energy is a convex, positively 1 homogeneous func-
tion of interface null lagrangians; it is automatically interface quasiconvex, and our
existence result is based on the interface polyconvexity. We note that Fonseca [10]
establishes two particular cases of the present notion of interface quasiconvexity as
necessary conditions for metastable minima (see below in this section for a discussion
of the relationship).

In detail, Ðf is said to be interface quasiconvex if

�
S

Ðf�V yÙn� dH2 ³ H2�T �Ðf�GÙm� (1.4)

for every surface deformation gradient GÙ every unit vector m with Gm ¨ 0Ù every
planar 2 dimensional region T of normal m, every (curved) surface S of normal n

and every smooth map y Ú S r R3 such that

bdS ¨ bd T Ù y�x� ¨ GxÙ x X bd T Û
see Figure 1.2. Here bdS and bd T denote the (relative) boundaries of the 2 dimen-
sional surfaces S and T in R3Ø We emphasize that the surface S is not the deformed
interface T but instead a different interface consisting of material points different
from those of T Ø Thus testing (1.4) involves implicitly a change of the interface,
mathematically reflected by the variation of the integration domain, from T to SÙ
with H2�S� ³ H2�T �Ø The last fact, which has no counterpart in the standard bulk
quasiconvexity notion, has strong consequences which we shall mention below. Here
we note that while the constant bulk energies are trivially quasiconvex, a constant
interfacial energy Ðf is interface quasiconvex if and only if the constant value of Ðf
is nonnegative. The interface quasiconvexity rules out surface wrinkling and prefers
homogeneous surface deformations over the inhomogeneous ones.

Working in a different format of the interfacial energy than (1.1), Fonseca [10]
established two related but weaker quasiconvexity properties of the interfacial energy.
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For energies of the format (1.1) they correspond to particular cases of the above
definition. Namely, rephrasing slightly [10], the first condition [10; Proposition 4.3(i)]
amounts to testing (1.4) in the particular case S ¨ T with y as above while the second
condition [10; Proposition 4.9(i)] to S and T as above but y�x� ¨ Fx for all x X S

where F X Lin is constant and such that Fx ¨ Gx for all x X T Ø Individually,
each of these conditions is weaker (less restrictive) than the interface quasiconvexity;
whether the combination of these two is equivalent to the interface quasiconvexity is
an open question.

A surface energy is said to be an interface null lagrangian if it satisfies (1.4)
with the equality sign for all objects listed above. It will be proved [31] that Ðf is an
interface null lagrangian if and only ifÐf�FÙn� ¨ c ċ n +© ċ �F � n� + a ċ cof F n (1.5)

for each F and n with F n ¨ 0Ù where c and a are constant vectors and© a constant
second order tensor. Here F � n is a second order tensor defined by

�F � n�t ¨ F�n � t�
for any vector tÛ in components,

�F � n�iA ¨ εABCFiBnC

where εABC is the permutation symbol, summation convention applies, and FiB, nC
are the components of F and n with i ¨ 1Ù 2Ù 3 the spatial indices and AÙBÙC ¨ 1Ù 2Ù 3
the referential indices. Since F n ¨ 0 we have

F ¨ − �F � n� � nÛ
thus F � n carries the same information as FÛ however, it is F � n, and not FÙ that
enters the interface null lagrangians. The list

nÙ F � nÙ cofF n (1.6)

of basic interface null lagrangians consists of the unit interface normal vector nÙ
which need not be commented, of F � nÙ which, like FÙ describes the elongation of
lines in the interface, and of the vector cof F n whose direction is the normal to the
interface in the deformed configuration, and whose magnitude | cofF n| ª | cofF |
is the ratio of the areas of the interface in the deformed and reference configurations.
In dimension 3 there are 15 independent (scalar) interface null lagrangians; we recall
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that there are 20 standard null lagrangians (counting the constant null lagrangians
in them). We note that Ðf ¨ constant © 0 is not an interface null lagrangian, this
being another manifestation of the variation of the integration domain in the interface
quasiconvexity.

The surface energy Ðf is said to be interface polyconvex if Ðf is the supremum of
some family of interface null lagrangians. The interface polyconvexity is a sufficient
condition for the interface quasiconvexity, as in case of the bulk counterparts of these
notions. The energy Ðf is interface polyconvex if and only if it is of the formÐf�FÙn� ¨ §�nÙF � nÙ cofF n� (1.7)

where § Ú X r R is a positively 1 homogenous convex function on X ¨ R3 �
Lin�R3Ù where the positive 1 homogeneity of § means

§�tA� ¨ t§�A�
for each t ³ 0 and each argumentA X XØThe positive 1 homogeneity requirement does
not occur in the definition of the standard (bulk) polyconvexity (1.3); the convexity of
§α suffices. This is again related to the increase of the area of the competitor interface
S as the use of Jensen’s inequality similar to that in case of bulk polyconvexity
involves an integration with respect to two measures of which one has a bigger total
mass.

For the existence result, we define the state space as follows.

Definition 1.1. Let © ⊂ R3 be a bounded open set with Lipschitz boundary, and let
2 ² p ° ðÙ 3/2 ² q ° ðØ We denote by G pÙq�©ÙR3� the set of all pairs �yÙE� where

(i) y X W 1Ùp�©ÙR3�Ù cof∇y X Lq�©ÙLin�,

(ii) E is a subset of © of finite perimeter,

(iii) there exist measures D and p on©with values in LinÙ andR3Ù respectively, such
that − �

E
∇y curl v dL3 ¨ �

©

dDvÙ �
E
cof∇y ċ ∇v dL3 ¨ �

©

v ċ dp
for every infinitely differentiable testvectorfield v with support in©Ø

We call the elements �yÙE� of G pÙq�©ÙR3� states. If y is smooth then the integration
by parts and the identities

curl∇y ¨ 0Ù div�cof∇y� ¨ 0
show that the measures D and p automatically exist and are given by

D ¨ F � n H2 SÙ p ¨ cofF n H2 S (1.8)

where H2 S is the area measure restricted to the interface S Ú¨ © P bd  E with
bd  E the measure theoretic boundary of EØ Hence the measures

b ¨ n H2 SÙ DÙ p (1.9)

provide measure theoretic generalizations of the basic interface null lagrangians (1.6).
We then define the interfacial energy as the§ function of the triplet (1.9) of measures,
i.e., we put
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E if�yÙE� ¨ �
©

§�A� d |J| (1.10)

where we interpret J Ú¨ �bÙDÙp� as a measure with values in X, the symbol |J|
denotes the total variation measure of J and A Ú ©r X is a vectorfield such that we
have the polar decomposition identity J ¨ A |J|Û cf. [1; Corollary 1.29 and Section
2.6] for the discussion of these notions in a general context. The definition (1.10)
reduces to (1.1) in case of a state �yÙE� with y smooth by (1.8) and (1.7). The
requirement (i) in the above definition comes from the refinement of Ball’s existence
theory given in [26].

Theorem 1.2. Let 2 ² p ° ðÙ 3/2 ² q ° ð and assume that

(i) tα, α ¨ 1Ù 2Ù are polyconvex in the sense of (1.3) where §α Ú W r �0Ù ð� are
continuous convex functions, Ðf is interface polyconvex in the sense of (1.7) where
§ Ú Z r �0Ù ð� is a positively 1 homogeneous convex function,

(ii) for all α ¨ 1Ù 2Ù all F X LinÙ allA X X, some c ± 0 and some d X R we have

tα�F� ³ c�|F|p + | cofF|q� + dÙ §�A� ³ c|A|Ù (1.11)

(iii) tα�F� ¨ ð if det F ² 0Ø
If z0 X W 1Ùp�©ÙRm� and E is finite for some element of the set

A�z0� ¨ !�zÙ F� X G pÙq�©ÙR3� Ú z ¨ z0 on bd©)
then the problem (1.2) has a solution, i.e., there exists an �yÙE� X A�z0� such that

E�yÙE� ² E�zÙ F�
for all �zÙ F� X A�z0�Û each solution �yÙE� of the problem satisfies

det∇y ± 0 for L3 a.e. point of ©Ø (1.12)

We allow tα to take the value ð not only to incorporate Condition (iii), which leads
to the orientation preserving property (1.12), but also to allow the effective domains

eff dom tα ¨  F X Lin Ú tα�F� ° ð(
be proper subsets of the set Lin+ of deformation gradients of positive determinant.
Thus one may assume that the effective domains are disjoint, and/or exclude states
with deformation gradient in the spinodal region.

The solvability of (1.2) rules out the minimizers with infinitely fine microstructure
occurring in the absence of interfacial energy. Indeed, the surface energy Ðf introduces
a length scale

l ' f/f

where f and f are the typical values of Ðf and tα of the problem. The infimum energy

E eff�A� ¨ inf! E�yÙE� X G Ú y�x� ¨ Ax on bd©)
is a minimum under the conditions of the existence theorem. The function Eeff is
schematically shown in Figure 1.1 by the bold line; thus the quasiconvex envelope
of t is now only a lower bound for EeffØ Moreover, the function Eeff is different for
different shapes of ©Ù presumably approaching t qc for Ðf approaching 0 or for the
size of the specimen© approaching ðØ

The coercivity condition (1.11)2 excludes surface energies Ðf that depend only on
the interface normal nÛTheorem 6.6 (below) gives an existence result in this situation.
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2 Constitutive theory. States

We denote by Lin�V ÙW � the set of all linear transformations from a vectorspace V
into a vectorspace W Ø Throughout the paper, let mÙ n be positive integers and write
Lin Ú¨ Lin�RnÙRm� unless stipulated otherwise. Denote by Sn−1 the unit sphere in
RnØ We model the reference configuration of the body by an open bounded subset ©
of Rn and consider deformations y Ú ©r RmØ In applications, m ¨ n ¨ 3Û however,
the considerations presented below for general m and n do not simplify if m ¨ n ¨ 3
although they occasionally simplify if m ¨ nØ

In the treatment of the constitutive theory for the interface it is necessary to
take into account that the surface energy Ðf ¨ Ðf�FÙn� is defined on pairs satisfying
F n ¨ 0Ù this set G forms a submanifold of the space Lin�Rn. Thus the derivatives
of Ðf belong to the tangent space of G and hence the “partial derivatives” with respect
to F and n are not independent. The derivative of a map on a manifold is defined
in Section 7; Remark 2.2 (below) discusses other possible consistent choices of the
constitutive theory for the interface.

Definitions 2.1 (Constitutive information and response functions).

(i) The two bulk phases are indexed by α ¨ 1Ù 2Ù each phase is described by the bulk
energy tα Ú Uα r R where Uα ⊂ Lin is an open set and tα are class 2 functions.
We define the response functions for the standard and configurational stressesÐSα Ú Uα r Lin�RnÙRm�Ù ÐCα Ú Uα r Lin�RnÙRn� byÐSα ¨ D tαÙ ÐCα ¨ tα1 − FTD tα (2.1)

for each F X UαÙ where ÐSαÙ ÐCαÙ tα and its derivatives are evaluated at FØ
(ii) The interface is desctibed by the interfacial energy Ðf Ú U r R where U is a

(relatively) open subset of the class ð manifold

G ¨ !�FÙn� X Lin� Sn−1 Ú F n ¨ 0)
(see Proposition 8.1, below) and Ðf is a class 2 function. The derivative of Ðf at�FÙn� X G is an element of the tangent space Tan�GÙ �FÙn�� of G at �FÙn�
given by (8.1) (below); we write D Ðf ¨ �D1 ÐfÙD2 Ðf� for its components in Lin
and RnÙ respectively. We define the response functions for the standard and
configurational stresses ÐS Ú Gr Lin�RnÙRm� and ÐC Ú Gr Lin�RnÙRn� byÐS ¨ D1 Ðf PÙ (2.2)ÐC ¨ Ðf P − FTD1

Ðf P + n � �FTD1 Ðf n −D2 Ðf� (2.3)

for every �FÙn� X G where P ¨ 1 − n � n and ÐSÙ ÐC, Ðf and its derivatives are
evaluated at �FÙn�Ø

The form of the stress relations (2.2) and (2.3) is motivated by the variations formulas
for the total energy, (3.1) and (3.2), by the correponding balance equations (3.4) and
(3.5), and by the fact that with the above definitions ÐS and ÐC neatly exchange their
roles under the exchange of the actual and reference configurations, Section 4 (below).
Some authors call the configurational stress only the part
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Ðf P − FTD1
Ðf P

and the remaining part
n � �FTD1 Ðf n − D2 Ðf�

the configurational shear. The ‘partial derivatives’D1 Ðf and D2 Ðf satisfy

D1
Ðf�FÙn�n + FD2

Ðf�FÙn� ¨ 0Ù n ċD2 Ðf�FÙn� ¨ 0 (2.4)

by (8.1) (below).

Remarks 2.2. We discuss other equivalent and consistent forms of the stress relations
with different partial derivatives employed in the literature (often tacitly); the reader
is referred to Section 8 for proofs.

(i) Assume that the domain U of Ðf isGØ The response function Ðf has a ‘canonical’
extension to a function Îf Ú Hr R where H Ú¨ Lin� Sn−1 r R given byÎf�FÙn� ¨ Ðf�FPÙn�Ù P Ú¨ 1 − n� n (2.5)

for any �FÙn� X HØ The variables F X Lin and n X Sn−1 are now independent. The
set H is a class ð manifold in Lin�Rn of dimension �m + 1�n − 1 with the tangent
space given by (8.2) (below). We writeD Îf ¨ �D1 ÎfÙD2 Îf� for the components of the
derivative of Îf in Lin and RnÙ respectively. The stress relations (2.2) and (2.3) then
read ÐS ¨ D1 Îf Ù (2.6)ÐC ¨ Îf P − FTD1 Îf − n� D2 Îf (2.7)

where ÐSÙ ÐC are evaluated at �FÙn� X G and Îf and its derivatives at any �FÙn� X H
satisfying F ¨ FPØ For a given FÙ there are infinitely many F satisfying the last
relation. The four most natural choices of F are: the tensor F itself, the two limiting
values Fα, α ¨ 1Ù 2Ù of the bulk deformation gradient on the interface and their mean
value E Ú¨ 〈F〉 Ú¨ 1

2
�F1 + F2� (see below).

(ii) The possibility discussed in (i) has the interface normal n restriced by |n| ¨ 1Ø
It is further possible to extend the function Îf Ú Lin� Sn−1 r R to a functionÏf Ú Lin��Rn ∼  0(� r R by settingÏf�FÙ t n� ¨ Îf�FÙn�
for all F X Lin and n X Sn−1 and all t ± 0Ø If we write D Ïf ¨ �D1 Ïf ÙD2 Ïf� for
the components of the derivative of Ïf in Lin and RnÙ respectively, then the stress
relations (2.2) and (2.3) read ÐS ¨ D1 Ïf ÙÐC ¨ Ïf P − FTD1 Ïf − n� D2 Ïf
where ÐSÙ ÐC are evaluated at �FÙn� X G and Ïf and its derivatives at any �FÙn� such
that FP ¨ FØ

(iii) Let m ¨ n and assume that the domain U of Ðf is

G0 ¨  �FÙn� X G Ú cof F © 0(Ø
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Then the normal n in the pair �FÙn� X G0 is locally a function of F [see Proposition
8.3 (below)]. This in turn implies that there exists a function f�defined on a relatively
open subset of

Linn−1 Ú¨ !F X Lin Ú det F ¨ 0Ù cofF © 0)
such that

f��F� ¨ Ðf�FÙn� (2.8)

for each �FÙn� from some neighborhood of an arbitrarily chosen point of G0Ø (The
last relation is global if Ðf satisfies the mild constraint Ðf�FÙn� ¨ Ðf�FÙ −n� for each�FÙn� X G0Ø) The derivative of f� is an element of the tangent space of Linn−1 [see
(8.3) (below)]. The interfacial stress relations (2.2) and (2.3) readÐS ¨ D f�PÙ (2.9)ÐC ¨ f�P − FTD f�P + n � FTD f�n (2.10)

for arguments related as above.

Definition 2.3 (States). Given the constitutive information from Definitions 2.1, we
say that �yÙE� is a state if y Ú ©r Rm is a continuous map and E is an open subset
of © such that

(i) S Ú¨ ©P bdE is a class 2 surface of dimension n − 1 of normal n Ú S r Sn−1;
(ii) with the notation

E1 Ú¨ EÙ E2 ¨ ©∼ clE
the maps yα Ú¨ y|EαÙ α ¨ 1Ù 2Ù and y Ú¨ y|S are of class 2with their gradients∇yαÙ
and V y having continuous extensions Fα and F to the closure of their respective
domains;

(iii)we have ranFα ⊂ UαÙ α ¨ 1Ù 2Ù and ran F ⊂ UØ
Here f |M denotes the restriction of a map f to a subset M of its domain of definition
dom f and ran f ¨  f �x� Ú x X dom f( denotes the range of f Ø One has

F1 ¨ ∇y in E, F2 ¨ ∇y in ©∼ clE, (2.11)

and the values of Fα on clEα ∼ Eα are the limits of the gradients in (2.11). In
particular, Fα are well defined on S and we denote by �F� Ú¨ F1 |S − F2 |S the jump
of the deformation gradient across the interface. However, let us emphasize that y is
continuous. Also,

F ¨ V y ¨ V y on S (2.12)

and F Ú clS r Lin is the continuous extension of the surface gradient in (2.12).

Definition 2.4 (Energy and stresses associated with states). Let �yÙE� be a state. We
define

(i) the energy E�yÙE� of the state by

E�yÙE� ¨ Eb�yÙE� + E if�yÙE� (2.13)

where
Eb�yÙE� ¨ �

E
t1�∇y� dLn + �

©∼E
t2�∇y� dLnÙ (2.14)
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E if�yÙE� ¨ �
S

Ðf�V yÙn� dHn−1
are the bulk and interfacial energies, respectively;

(ii) the bulk standard stress SÙ the bulk configurational stress C and the bulk energy
density f on©∼ S by

S ¨




ÐS1 � F1 on EÙÐS2 � F2 on ©∼ clEÙ
and similarly for C and f Û here and below ÐS1 �F1 denotes the composition of the
maps ÐS1 and F1Ù i.e., �ÐS1 � F1��x� ¨ ÐS1�F1�x�� for each x X domF1 ¨ clE and
similarly for compositions of general maps;

(iii) the jumps �S�Ù �C� �f � of the bulk stresses on S and of the bulk energy on S by�S� ¨ ÐS1 � F1 |S − ÐS2 � F2 |S
and similarly for �C�, �f � and �Sn ċ Fn�;

(iv) the interfacial standard stress S, interfacial configurational stress C, and the
interfacial energy density f on S by

S ¨ ÐS � �FÙn�
and similarly for CÙ and f Ù where we use the notation of Definition 2.3.

As in case of the jump of FÙ the jumps defined in (iii) are the differences of the limits
of the corresponding bulk fields from the two sides of the interface. Note that S and
C are superficial tensors, i.e., Sn ¨ Cn ¨ 0Ø

3 Smooth minimizers of energy and equilibrium equations

The condition of minimum energy leads to equilibrium equations in the bulk phases
and on the interface. Below I present a derivation within the framework of the present
constitutive theory emphasizing the role of outer and inner variations to obtain the
balances of standard forces and configurational forces, respectively. In the absence
of interfacial energy, the outer and inner variations (to be defined below) are known
to lead to the Euler Lagrange and to the Noether equations, respectively, [11; Chaper
3], and indeed the bulk equations (3.4)1Ù2 are the respective instances of these.

Definition 3.1 (Local perturbations and minima).

(i) A state �zÙ F� is said to be a local perturbation of the state �yÙE� if there exists
a compact subset K of © with

z|�©∼ K� ¨ z|�©∼ K�Ù F P �©∼ K� ¨ E P �©∼ K�Ø
(ii) The state �yÙE� is said to be a local minimizer of energy if E�yÙE� ² E�zÙ F�

for each local perturbation �zÙ F� of �yÙE�Ø
Thus a local perturbation �zÙ F� is identical with the state �yÙE� near the boundary
of © and (ii) considers the minima of total energy in this class of states. For the
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considerations below, and in particular for the validity of the interfacial configuration
force balance, it is crucial that the interface in the state �zÙ F� can be different from
that of �yÙE� (apart from the mentioned coincidence near the boundary of ©). Thus
in passing from �yÙE� to �zÙ F�Ù part of the phase 1 is transformed into the phase
2 and/or conversely. A stronger notion of minimum is considered in the existence
theorems in Section 6. The reader is referred to [27] and [10] for different but related
notions of minima.

Lemma 3.2 (Outer and inner variations). Let �yÙE� be a state. With the notation
of Definitions 2.3 and 2.4 we have the following statements, in which t X R is a
parameter and δ ± 0 a number with |t|, δ sufficiently small:

(i) Let ª X Cð0 �©ÙRm� and let yt Ú ©r Rm be defined by

yt ¨ y + tªØ
Then �ytÙE� is a state that is a local perturbation of �yÙE�, the function t w
E�ytÙE� is continuously differentiable and

dE�ytÙE�
dt

∣∣∣
t¨0

¨ �
©∼S

S ċ ∇ª dLn + �
S

S ċV ª dHn−1Ø (3.1)

The family  �ytÙE� Ú |t| ° δ( is said to be an outer variation of �yÙE�Ø
(ii) Let « X Cð0 �©ÙRn� and let ½t Ú ©r Rn be defined by

½t�x� ¨ x + t «�x�Ù
x X ©Ø Then ½t maps © bijectively onto©; if we define

yt ¨ y � ½−1t Ù Et ¨ ½t�E�
then �ytÙEt� is a state that is a local perturbation of �yÙE�, the function t w
E�ytÙEt� is continuously differentiable and

dE�ytÙEt�
dt

∣∣∣
t¨0

¨ �
©∼S

C ċ ∇« dLn + �
S

C ċV « dHn−1Ø (3.2)

The family  �ytÙEt� Ú |t| ° δ( is said to be an inner variation of �yÙE�Ø
The outer variations do not change the referential position of the interface, whereas
the inner variations do. The role of standard and configurational stresses was analyzed
from different standpoints in many works (apart form the pioneering work of Eshelby
[7–8], the reader is referred to [17, 22, 28–29] for bulk quantities and [20, 19, 16–17,
32] for the interface quantities). The derivation below justifies the particular forms
of the interfacial stress relations postulated above. Note also that the stress relations
continue to hold also in dynamical situations, although it is well known that variational
arguments do not suffice [17, 29].

Proof Throughout the proof, a superimposed dot denotes the derivative of a quantity
parametrized by t at t ¨ 0 and F, F and n refer to the deformation gradients and the
normal of the state �yÙE� with the interface SØ Continuity considerations show that
for sufficiently small values of |t| the pairs �ytÙE� and �ytÙEt� of (i) and (ii) satisfy
the requirements of Definition 2.3 and thus are states. We omit the derivations of the
bulk contributions in (3.1) and (3.2).
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(i): The surface deformation gradient Ft corresponding to �ytÙE� is

Ft ¨ F + tV ªÛ
while the interface normal is unchanged; hence

E if�ytÙE� ¨ �
S

Ðf�F + tV ªÙn� dHn−1Û
a differentiation and the interfacial stress relation provide

dEif�ytÙE�
dt

∣∣∣
t¨0

¨ �
S

D1
Ðf ċV ª dHn−1 ¨ �

S

S ċV ª dHn−1
where we have employed V ª ¨ V ªPØ Thus (3.1) follows.

(ii): (Cf. [10; Proof of Proposition 3.2] for a similar derivation within a different
constitutive framework.) The interface corresponding to the state �ytÙEt� is St ¨
½t�S�. The normal nt to St is calculated using the standard formula; the composition
of nt with ½t is then given byÏnt Ú¨ nt � ½t ¨ ∇½−Tt n/|∇½−Tt n|Ø
The surface deformation gradient Ft of yt Ú¨ yt |St ¨ y � ½−1t |St is calculated by the
chain rule for the surface gradients as the product of the surface deformation gradient
F of y ¨ y|S and the surface deformation gradient∇½−1t �1− Ïnt� Ïnt� of ½−1t |StØ The
composite map Ft � ½t is given byÏFt Ú¨ Ft � ½t ¨ F½−1t �1 − Ïnt � Ïnt�Ø
Then

E if�ytÙEt� ¨ �
St

Ðf�FtÙnt� dHn−1Ø
By the change of variables formula,

E if�ytÙEt� ¨ �
S

ÏftJt dHn−1 (3.3)

where Jt ¨ | cof∇½t n| and Ïft Ú¨ Ðf�ÏFtÙ Ïnt�Ø To calculate the time derivative of the
integrand, first note that ËÏnt ¨ −P∇ Ë½Tt nÙËÏFt ¨ −F∇ Ë½t P + F∇ Ë½Tt n � nØ
The chain rule givesËÏft ¨ −D1 Ðf ċ F∇ Ë½t P +D1 Ðf ċ F∇ Ë½Tt n � n −D2 Ðf ċ P∇ Ë½Tt n

where the derivatives of Ðf are evaluated at �FÙn�Ù which can be written asËÏft ¨ �−FTD1
Ðf P + n � �FTD1 Ðf n − D2 Ðf�	 ċ ∇ Ë½t

where (2.4)2 has been employed. Thus the differentiation of (3.3) using ËJt ¨ P ċ ∇ Ë½t
gives

dEif�ytÙEt�
dt

∣∣∣
t¨0

¨ �
S

C ċ « dHn−1Ø
Thus (3.2) follows. è
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Proposition 3.3. If �yÙE� is a local minimzer of energy then

div S ¨ 0Ù divC ¨ 0 in ©∼ SÙ (3.4)

div S + �S�n ¨ 0Ù div C + �C�n ¨ 0 on SÙ (3.5)

where we use the notation of Definitions 2.3 and 2.4. Equation (3.4)2 and the tangen-
tial component of (3.5)2 is a consequence of (3.4)1 and (3.5)1Ø Granted (3.5)1Ù the
normal component of (3.5)2 is equivalent to

�f − Sn ċ Fn� − �fP − FTS� ċ L + div t ¨ 0 on SÙ (3.6)

where L ¨ V n is the curvature tensor and t Ú S r Rn is given by

t ¨ FTD1
Ðf � �FÙn�n −D2 Ðf � �FÙn�Ø

These are the balances of standard and configurational forces. Here (3.4)1 is standard,
(3.4)2 is derived in [7–8], (3.5)1 in [18], (3.5)2 in [20, 19, 16–17], and (3.6) in [20,
19, 16–17]. See also [17] for further references.

Proof If �ytÙE� and �ytÙEt� are the variations of �yÙE� as in Lemma 3.2(i), (ii),
one obtains from the local minimum condition that

�
©∼S

S ċ ∇ª dLn + �
S

S ċV ª dHn−1 ¨ 0Ù (3.7)

�
©∼S

C ċ ∇« dLn + �
S

C ċV « dHn−1 ¨ 0 (3.8)

for any ª X Cð0 �©ÙRm� and « X Cð0 �©ÙRn�Ø Employing the divergence theorem on
E and © ∼ clE to the volume integral and the surface divergence theorem (Section
7) to the surface integrals one obtains

�
©∼ S

ª ċ divS dLn + �
S

ª ċ ��S�n + div S	 dHn−1 ¨ 0Ù
�

©∼ S

« ċ divC dLn + �
S

« ċ ��C�n + div C	 dHn−1 ¨ 0Û
the arbitrariness of ª and « gives the balance equations.

To obtain (3.4)2 and the tangential component of (3.5)2 as a consequence of
(3.4)1 and (3.5)1Ù we note that the last two relations are equivalent to (3.7) for each
ª X Cð0 �©ÙRm�Ø Let « X Cð0 �©ÙRn� be such that

« ċ n ¨ 0 on SÙ (3.9)

and apply (3.7) with ª given by

ª ¨ 



F« on ©∼ SÙ
F« on SØ

By (3.9), ª is a continuous vectorfield that is continuously differentiable on © ∼ S

and on SØ Using the stress relation (2.1)1 and the identity

∇�F«� ¨ ∇«F + F∇«Ù
in which ∇«F is the directional derivative of F in the direction «Ù one obtains
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S ċ ∇�F«� ¨ « ċ ∇f + FTS ċ ∇«
where f is the field of the free energy corresponding to the state �yÙE�Ø Integrating
by parts the term « ċ ∇f and using (3.9) one obtains

�
©∼S

S ċ ∇ª dLn ¨ − �
©∼S

C ċ ∇« dLnØ
Similarly, we use the stress relation (2.2), the chain rule, the commutation formula

V �F«� ¨ V«F + F L« � n + FV «

and [see (3.9)]
L« ª V «n ¨ −V «Tn

to obtain

S ċV �F«� ¨ « ċV f + �D2 Ðf − FTD1
Ðf n� ċV «Tn + FTD1

Ðf ċ ∇«Ø
Integrating by parts the term « ċV f one obtains

�
S

S ċV ª dHn−1 ¨ − �
S

C ċV « dHn−1Ø
Hence (3.7) implies (3.8) for all « X Cð0 �©ÙRn� satisfying (3.9). The arbitrarines of
« then gives (3.4)2 and the tangential component of (3.5)2.

Finally, we multiply (3.5)2 by n to obtain

n ċ div C + n ċ �C�n ¨ 0
and use the formulas

div�CTn� ¨ n ċ div C + C ċ LÙ
C ċ L ¨ �fP − FTS� ċ LÙ n ċ �C�n ¨ �f − Sn ċ Fn�Ù CTn ¨ t

to obtain (3.6). è

4 The exchange of the actual and reference configurations

This section we discusses the exchange of the roles of the standard and configurational
stresses under the exchange of the actual and reference configurations. We consider
the format the energy of Section 2 with m ¨ n.

Given a state �yÙE� with y injective, the actual configuration of the body is ç Ú¨
y�©�, the actual configuration of the interface is ½S Ú¨ y�S�, and the spatial interface
normal Ïn�y ¨ cofF n/| cof F n | ¨ cofF n/| cof F |Ø The fields of referential energy
densities f , f and referential stresses SÙ CÙ SÙ C associated with the state �yÙE� can
be transformed to the actual configuration of the body via the formulas

É � y ¨ f /J Ù ÏS � y ¨ SFT/J Ù ÏC � y ¨ CFT/J ÙÏf � y ¨ f/JÙ ÏS � y ¨ SFT/JÙ ÏC � y ¨ CFT/JÙ
where J ¨ |detF| and J ¨ | cofF | are the bulk and interface jacobians, measuring
the change of the volumes and areas under the passage to the actual configuration. The



16

above transformation formulas are dictated by the geometry alone. The equilibrium
equations take the forms

Div ÏS ¨ 0Ù Div ÏC ¨ 0 in ç∼ ½SÙ
Div ÏS + �ÏS�Ïn ¨ 0Ù Div ÏC + � ÏC�Ïn ¨ 0 on ½SÙ

where DivÙDiv denote the spatial bulk and surface divergences.
Let the symbol t stand for any of the energy functions tαÙ α ¨ 1Ù 2Ø Assume that

the domain of definition of t is

U ¨ Lin+ Ú¨ !F X Lin Ú detF ± 0)Ù
and that the domain of definition of Ðf is

U ¨ G0 ¨ !�FÙn� X Lin� Sn−1 Ú F n ¨ 0Ù cof F © 0)Ø
Under the exchange of the actual and reference configurations, the deformation y is
replaced by its inverse y−1 and hence the bulk deformation gradient F is replaced by
the inverse F−1, the surface deformation gradient F by the pseudoinverse F−1 (see
Section 7) and the referential interface normal n by the spatial normal ÏnØ

Using the above transformation formulas, one finds that under the exchange of
the actual and reference configurations the response functions t and Ðf change to the
response functions t # Ú U r R and Ðf # Ú U r R given by

t #�F� ¨ det F t �F−1�ÙÐf #�FÙn� ¨ | cof F |Ðf�F−1 Ù cofF n/| cof F |� (4.1)

for each F X U and each �FÙn� X UØ In these definitions, we have denoted by F
and �FÙn� the natural variables of t # and Ðf #Ù i.e. the variables previously denoted
by F−1 and �F−1Ù Ïn�Ø We let ÐSÙ ÐCÙ ÐS and ÐC denote the response functions for the
stresses calculated from t and Ðf and the same letters with the superscript # denote the
response functions for the stresses calculated from t # and Ðf # according to Definition
2.1.

Proposition 4.1. Under the passage from the response functions from t and Ðf to t #

and Ðf # the standard and configurational stresses echange their roles according toÐS#�F� ¨ det F ÐC�F−1�F−TÙ ÐC#�F� ¨ det F ÐS�F−1�F−TÙ
for each F X U andÐS#�FÙn� ¨ | cofF | ÐC�F−1Ù Ïn�F−TÙ ÐC#�FÙn� ¨ | cof F | ÐS�F−1 Ù Ïn�F−T (4.2)

for each �FÙn� X U where we write Ïn ¨ cofF n/| cof F | for brevity.

The assertion about the bulk response functions is a result of [5], see also [30]; the
reader is referred to the proofs there. Assertions (4.2) are the surface counterparts of
these; see also [32]. The factor | cof F | and of F−T in (4.8) indicates that the tensors
S#ÙC# are transformed from the actual configuration for the reference configuration.
The exchange of the roles of S and C suggests the interpretation that the Eshelby
tensor is a stress tensor of configurational forces associated with deformations and
defects in the reference configuration [22, 17].
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Proof By Remark 2.2(iii) on some neighborhood N of an arbitrarily chosen point of
U there exist functions f�Ù S�Ù C� such thatÐf�GÙm� ¨ f��G�Ù ÐS�GÙm� ¨ S��G�Ù ÐC�GÙm� ¨ C��G�
for each �GÙm� X N Ø Similarly on some neighborhood N Þ of an arbitrarily chosen
point of U there exist functions f #� Ù S#� Ù C#� such thatÐf #�FÙn� ¨ f #� �F�Ù ÐS#�FÙn� ¨ S#� �F�Ù ÐC#�FÙn� ¨ C��F�
for each �FÙn� X N ÞØ By (4.1) we have

f #� �F� ¨ | cofF |f��F−1� (4.3)

for each point F from some neighborhood of an arbitrarily chosen point of Linn−1.
Evaluating the stress relations (2.9) and (2.10) for the response functions f�Ù S�Ù C�
at F−1 one obtains

S�¨ D f�
ÏPÙ (4.4)

C� ¨ f�
ÏP − F−TD f�

ÏP + Ïn� F−TD f� Ïn (4.5)

with the response functions evaluated at F−1 and where Ïn is a unit vector related to
F−1 by F−1 Ïn ¨ 0 and ÏP ¨ 1 − Ïn � ÏnØ Evaluating the stress relations (2.9) and (2.10)
for the response functions f #� Ù S#� Ù C#� at F one obtains

S#� ¨ D f #� PÙ (4.6)

C#� ¨ f #� P − FTD f #� P + n� FTD f #� n (4.7)

with the response functions evaluated at F and where n is a unit vector related to F

by F n ¨ 0 and P ¨ 1 − n � nØ
If H and ÐJ are maps on Linn−1 defined byÐH�F� ¨ F−1 Ù ÐJ�F� ¨ | cofF |

then
D ÐH�F�A ¨ −F−1AF−1 + n � F−TF−1An + F−1F−TAT Ïn � ÏnÙ

D ÐJ�F� ¨ | cofF |F−T

for any F X Linn−1 and anyA X Linwhere nÙ Ïn are any of the two pairs of unit vectors
such that F n ¨ F−1 Ïn ¨ 0Ø Differentiating (4.3) with the help of these formulas one
obtains the relationship between the derivatives of f� and f #� as follows:

D f #� ¨ | cofF |�f�F
−T − F−T D f�F

−T + F−TF−1 D f T� n� n + Ïn� F−1F−T D f�Ïn	
where D f #� is evaluated at F and f� and its derivatives at F−1 and nÙ Ïn are as above.
Combining this formula with (4.6), (4.7) one obtains

S#� ¨ | cofF |�f�
ÏP − F−TD f�

ÏP + Ïn � F−T D f�Ïn	F−T
C#� ¨ | cofF |D f�F

−T

which by (4.4) and (4.5) gives

S#� �F� ¨ | cofF |C��F−1�F−T Ù C#� �F� ¨ | cof F |S��F−1�F−TÙ (4.8)

i.e., (4.2). è
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5 Interface quasiconvexity, null lagrangians and polyconvexity

Let n ³ 2 and put

s Ú¨ min  mÙ n(Ù t Ú¨ min mÙ n − 1(Ø
For the purpose of the following definition, by an oriented surface S of normal

n we mean a bounded class ð surface in Rn of dimension n − 1 for which n is a
continuous field of unit normal, such that the boundary bdS Ú¨ clS ∼ S is a classð surface of dimension n − 2, with the orientation of bdS dictated by the Stokes
theorem. We say that T is a planar surface of normal m if T is a subset of some n− 1
dimensional hyperplane in RnØ
Definitions 5.1. Let Ðf Ú Gr RT  ð( be a continuous function. We say that Ðf is

(i) interface quasiconvex if

�
S

Ðf�V yÙn� dHn−1 ³ Hn−1�T �Ðf�GÙm� (5.1)

for every �GÙm� X G, every planar surface T of normal m, every orented surface
S of normal n and every continuous map y Ú clS r Rm that is class 1 on S such
that

bdS ¨ bd T and y�x� ¨ Gx if x X bd T Û
(ii) an interface null lagrangian if Ðf is finite valued and± Ðf are interface quasiconvex

[in other words, (5.1) holds with the equality sign for each collection of objects
listed in (i)];

(iii) interface polyconvex if Ðf is the supremum of some family of interface null
lagrangians.

Remarks 5.2.
(i) Recall from the introduction that the interface quasiconvexity involves a

change of the referential position of the interface, and note that this is in accordance
with inner variations of Section 3.

(ii) It is easily seen that if Ðf is the supremum of some family of interface quasicon-
vex functions then Ðf is interface quasiconvex; in particular any interface polyconvex
function is interface quasiconvex. Any standard (bulk) polyconvex function is also
the supremum of some family of standard (bulk) null lagrangians.

(iii) The technical details of the definition of interface quasiconvexity will be
discussed in [31]. Thus one may consider the function Ðf occurring above to be a
Borel function with locally bounded negative part, one may require that the surface
S be a part of the boundary of an open n dimensional set in RnÙ replace the classð quality of S by its Lipchitz character or even require that S is an integral n − 1
dimensional current. Similarly, the deformation y of S may be required to be Lipschitz
continuous with V y interpreted as the approximate surface derivative of yØ

(iv) When lifted to the graphs of y and G in Rm+n ª Rn � Rm, the interface
quasiconvexity is closely related to the semiellipticity of parametric integrands of
degree n − 1 by Almgren and Federer [9; Subsection 5.1.2] as follows. The functionÐf defines [31] a parametric integrand § of degree n − 1 in Rm+n defined on simple
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nonvertical n − 1 vectors (those with the projection onto Rn different from 0). Then
modulo the existence of a continuous extension of § to the set of all simple n − 1
vectors, the interface quasiconvexity of Ðf becomes equivalent to the semiellipticity of
§Ø It is interesting to note that under this identification, the interface polyconvexity
translates to the convexity of the parametric integrand. Recall that the graphs of
the bulk deformation (interpreted as n dimensional currents in Rm+n) are basic to
the approach to nonliner elasticity of bulk phases by Giaquinta, Modica & Souček
[12–13].

(v) The main motivation of the interface quasiconvexity comes from two related
sources. (a): the necessity of the interface quasiconvexity along y corresponding to a
minimizer of the total energy and (b): the necessity and sufficiency of the lowersemi-
continuity of the surface energy Eif with respect to a suitable convergence of states�yÙE� with migrating interface. These matters are counterparts of the corresponding
“bulk” assertions [23–24, 3–4]. Assertions (a) (b) depend on the definition of mini-
mizer, definition of the interface quasiconvexity, and on the convergence in the space
of states, as will be discussed in detail in [31]; here we mention only the following
versions.

(vi) Roughly, (a) reads: if �yÙE� is a sufficiently smooth minimizer of the total
energy E on the space of states �yÙE� consisting of a Lipschitzian deformation y
and a subset E of © of finite perimeter, then Ðf is interface quasiconvex at every�GÙm� ¨ �V y�x�Ùn�x�� corresponding to x X S. Here a slightly modified version
of the interface quasiconvexity is needed, along the lines discussed in (ii). We recall
from the introduction that Fonseca [10; Propositions 4.3(i) and 4.9(i)] established
quasiconvexity properties of Ðf crresponding to particular choices of S and y in
Definition 5.1(i) as a consequence of minima defined in [10].

(vii) For the property (b), we mention the followingW 1Ùð version of lowersemi-
continuity: If Ðf is a finite valued, continuous and interface polyconvex energy and�y iÙE i�Ù i ¨ 1ÙÜ Ù and �yÙE� are states (consisting of a Lipschitz deformation and
of a set of finite perimeter) such that

y i r y uniformly on ©Ù sup !Lip�y i� Ú i ¨ 1ÙÜ) ° ðÙ
∇1E i u  ∇1E in M�©ÙRn�

then
lim inf
irð

E if�y iÙE i� ³ E if�yÙE�Ø (5.2)

Here Lip�f � denotes the Lipschitz constant of the map f Ù 1M is the characteristic
function of the set M , the gradients of 1E i and 1E are interpreted as measures in
the space M�©ÙRn� of vector valued measures in © and u  denotes the weak 

convergence of measures. Equation (5.2) can be reconstructed from the proof of
Theorem 6.4 (below).

(viii) If m ¨ nÙ the interface quasiconvex functions, interface null lagrangians,
and interface polyconvex functions are preserved unter the exchange of the actual
and reference configurations discussed in Section 4, i.e., if Ðf has any of these 3
properties then Ðf # defined by (4.1) has the same property. This is analogous to the
bulk assertions [2].
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We now give a complete description of interface null lagrangians as linear com-
binations, with constant tensorial coefficients, of the members of the list

bkF ` nÙ k ¨ 0ÙÜ Ù t (5.3)

for each �FÙn� X GØ The reader is referred to Section 9 (below) for the notation. In
particular, b0 F ` n ¨ nÙ
and if m ¨ n then bn−1 F ` n ¨   �cof F n�

For m ¨ n ¨ 3 the list (5.3) is equivalent to the list (1.6) described in the
introduction. In dimension 3 there are 15 independet (scalar) interface null lagrangians;
we recall that there are 20 standard null lagrangians (counting the constant).

Theorem 5.3. A function Ðf Ú G r R is an interface null lagrangian if and only if it
is of the form Ðf�FÙn� ¨ t�

k¨0
©k ċ �bkF ` n�

for all �FÙn� X G where

©k X Lin�bk+1RnÙ bkRm�
are constants for all k ¨ 0ÙÜ Ù tØ If m ¨ n ¨ 3 then a general form of an interface
null lagrangian is Ðf�FÙn� ¨ c ċ n +© ċ �F � n� + a ċ cof F n

for each �FÙn� X G where cÙ a X R3 and© X Lin�R3ÙR3� are constants.

The reader is referred to [31] for a proof and an interpretation of this proposition as
well as for the proofs of the assertions below in this section.

Theorem 5.4. A function Ðf Ú G r R T  ð( is interface polyconvex if and only if
there exists a positively 1 homogeneous function¨ Ú Y r RT  ð( defined on

Y Ú¨ t�
k¨0
Lin�bk+1RnÙ bkRm�

such that Ðf�FÙn� ¨ ¨�b0 F ` nÙ b1 F ` nÙÜ Ùbt F ` n�
for each �FÙn� X G. If m ¨ n ¨ 3 then Ðf is interface polyconvex if and only if there
exists a a positively 1 homogeneous convex function § on the space X such thatÐf�FÙn� ¨ §�nÙF � nÙ cofF n� (5.4)

for each �FÙn� X G.

Assume that m ¨ n ¨ 3 and discuss some interface polyconvex energies. The
principle of objectivity requires that realistic energies satisfyÐf�RFÙn� ¨ Ðf�FÙn�
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for all �FÙn� X G and all rotations R X SO�3�Ø In addition, the symmetry of the
substance imposes restrictions of the type

Ðf�FRÙRTn� ¨ Ðf�FÙn� (5.5)

for all �FÙn� X G and all rotations R from the symmetry group of the substance;
these will not be discussed here.

We first give a sufficient confition for the interface polyconvexity of “isotropic
interfaces” in analogy with the sufficient condition for polyconvexity of isotropic
materials by Ball [3].

Proposition 5.5. Let n ¨ 3 and let g Ú �0Ù ð�3 �R3 r R be a positively 1 homoge-
neous convex function such that

(i) for each s ± 0Ù p X R3 the function g�ċÙ ċÙ sÙ p� is symmetric under the exchange
of its two arguments,

(ii) for each p X R3 the function g�ċÙ ċÙ ċÙ p� is nondecreasing.

Let Ðf Ú Gr R be defined by

Ðf�FÙn� ¨ g�λ1Ù λ2Ù λ1λ2Ùn�
for each �FÙn� X G where λ1Ù λ2Ù 0 are the singular numbers of F. Then Ðf is interface
polyconvex.

The following three examples consider polyconvex energies corresponding to
the three varibles on the right hand side of (5.4). Of these examples, the first and the
third have direct mechanical relevances.

Example 5.6 (Wulff energy). Let Ðf Ú Gr R be given by

Ðf�FÙn� ¨ ¾�n� (5.6)

for each �FÙn� X G and ¾ Ú Sn−1 r R is an even function; we call Ðf the Wulff
energy. It is used to model the growth of crystals, with ¾ restricted by the symmetry
of the lattice. One finds that the stress response functions are

ÐS ¨ 0Ù ÐC ¨ ¾�n�P − n �D¾�n�
where P ¨ 1 − n � nØ The energy (5.6) produces no standard stress, the interface
equilibrium is governed solely by the configurational stress. Already the special case

Ðf�FÙn� ¨ τ ¨ const ± 0 (5.7)

leads to nontrivial phenomena with ÐC ¨ τPØ [The assumption (5.7) is sometimes
confused with the surface tension (see Example 5.8 below).] The energy Ðf is interface
polyconvex if and only if the positively 1 homogeneous extension of ¾ is convex on
RnØ It is known that there are substances for which the positively 1 homogeneous
extension of ¾ is not convex.
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Example 5.7 (“Self–dual” energy). Let Ðf Ú Gr R be given byÐf�FÙn� ¨ ¨�F � n�Ø (5.8)

for each �FÙn� X G where¨ Ú Linr R. One hasÐS ¨ −D¨ � nÙÐC ¨ ¨P + FTD¨ � n + n � P�FTD¨��
where for any M X Lin we define the axial vector M� X R3 of a tensor M X Lin
by M� ċ a ¨ tr�M � a� for any a X R3Ø The energy Ðf is interface polyconvex if
and only if ¨ is a positively 1 homogeneous convex function. One can show that if
¨ is positively 1 homogeneous function then the function Ðf # corresponding to the
exchange of the actual and reference configurations (Section 4) is of the same format
as Ðf in (5.8), viz., Ðf #�FÙn� ¨ ¨T�F � n�
for each �FÙn� X GÙ where¨T Ú Linr R is given by

¨T�A� ¨ ¨�AT�
for each A X LinØ In this sense Ðf is self–dual. The energyÐf�FÙn� ¨ c|F |

for each �FÙn� X G where c is a nonnegative constant is a particular case with Ðf
polyconvex since |F | ¨ |F � n|Ø
Example 5.8 (Surface tension). Let Ðf Ú Gr R be given byÐf�FÙn� ¨ À�cofF n�Ù (5.9)

for each �FÙn� X G, where À Ú Rn r R is a given function. One obtainsÐS ¨ ��v ċDÀ�ÏP − v�DÀ	F−TÙÐC ¨ �À − �v ċDÀ�	P
where v ¨ cofF n andÀ and its derivative are evaluated at vØThe energy Ðf is interface
polyconvex if and only if À is a positively 1 homogeneous convex function. One finds
that if Ðf is of the form (5.9) with À positively 1 homogeneous then Ðf # is of the form
considered in Example 5.6, with ¾ ¨ ÀÙ i.e.,Ðf #�FÙn� ¨ À�n�
for each �FÙn� X GØ In this sense the present example and Example 5.6 are dual to
each other. However, unlike Example 5.6, in the present example for a realistic model
the function À in (5.9) cannot be arbitrary. Namely, the objectivity (5.5) requires
À�Rv� ¨ À�v� for each v X R3Ù R X SO�3� which implies that À is a multiple of the
euclidean norm,

À�v� ¨ σ|v|
for each v X R3 where σ is a constant, nonnegative if Ðf is polyconvex, i.e.,
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Ðf�FÙn� ¨ σ| cofF | (5.10)

for each �FÙn� X GØ The stresses corresponding to this particular case areÐS ¨ σ| cofF |F−T Ù ÐC ¨ 0Ø (5.11)

Equation (5.10) and (5.11) are the constitutive equations of the surface tension. We
note that the spatial standard stress reduces toÏS ¨ σ ÏP
where ÏP ¨ 1− Ïn� Ïn with Ïn ¨ cofF n/| cof F | the normal to the actual configuration
of the interface. The surface tension produces no configurational stress.

6 The existence of energy minimizing states

This section outlines the existence theory for the minimizers of energy. We first
enlarge the state space in Definition 6.1. The reader is referred to Section 9 for the
necessary notions of multilinear algebra; furthermore, M�©ÙV � denotes the set of
all measures on an open set © ⊂ Rn with values in a finite dimensional vectorspace
V Ø Recall

s Ú¨ min  mÙ n(Ù t Ú¨ min mÙ n − 1(Ø
Definitions 6.1 (State spaces for the existence theory). Let © ⊂ Rn be a bounded
open set with Lipschitz boundary and t ² p ² ðÙ 1 ² q ² ðØ
(i) We denote by G p�©ÙRm� the set of all pairs �yÙE� with y X W 1Ùp�©ÙRm� and
E ⊂ © a Ln measurable set such that for each k with 0 ² k ² t there exists a
measure Bk X M�©ÙLin�bk+1RnÙ bkRm�� satisfying

�
E
bk∇y ã¸ dLn ¨ �−1�k+1 �

©

dBk ¸ (6.1)

for each ¸ X Dk+1�©� [in the integral on the right hand side of (6.1) the integration
measure Bk precedes the integrand ¸ for algebraic reasons].

For the definitions in (ii) and (iii) we assume that m ¨ nØ
(ii) We denote by G pÙq�©ÙRn� the set of all �yÙE� X G p�©ÙRn� with

bn−1∇y X Lq�©ÙLin�bn−1RnÙ bn−1Rn��Ø (6.2)

(iii)We denote by G pÙq0 �©ÙRn� the set of all pairs �yÙE� where y X W 1Ùp�©ÙRn�,
(6.2) holds, and E is a subset of © of finite perimeter.

We call the elements �yÙE� of the sets introduced in (i)–(iii) states. In (i), we call
the measure Bk the interface null lagrangian of order k corresponding to �yÙE�. We
write Bk ¨ Bk�yÙE� to indicate the dependence on �yÙE�Û we abbreviate J�yÙE� ¨�B0ÙÜ ÙBt�Ø

The set G p�©ÙRm� with p ± s ¨ min mÙ n( will be employed in Theorem
6.5 (below) with m and n arbitrary. If m ¨ n and only states with deformation
gradient of positive determinant can have finite energy, one may work in larger
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spaces G pÙq�©ÙRn� where p ³ n − 1 and q ³ n/�n − 1� by employing the results
of [26], see Theorem 6.5 (below). Finally, the set G pÙq0 �©ÙRn� is employed in case
m ¨ n with the interfacial energy depending only on the normal to the interface,
Theorem 6.6 (below).

Remarks 6.2.
(i) Underlying the definition of the interface null lagrangians is the vanish-

ing of the exterior derivative of the bulk jacobian minors bk∇yØ Namely, if
y X W 1Ùp�©ÙRm� with p ³ k then

�
©

bk∇y ã¸ dLn ¨ 0 (6.3)

for each ¸ X Dk+1�©�Û we here recall that the interior derivative ã is dual (formal ad-
joint) of the exterior derivative. The reader is referred to [13; Corollary 2, Subsection
3.2.3] for a coordinate version of (6.3). Since (6.1) involves the bulk integral over
EÙ one expects that the integration by parts will result in an object Bk concentrated
on the boundary of EØ This is indeed the case, as we shall show now (the reader is
referred to [31] for the proofs of (ii)–(iv)).

(ii) If �yÙE� X G p�©ÙRm� with p ³ t then E is a set of finite perimeter and

B0 ¨ n Hn−1 bd �EÙ©�
where bd �EÙ©� Ú¨ ©P bd  EØ Moreover, if 1 ² k ² t then

sptBk ⊂ cl bd �EÙ©�Ø
(iii) We note that Gð�©ÙRm� ⊂ G p�©ÙRm� for all p ³ tØ The set Gð�©ÙRm�

is the set of all pairs �yÙE� where y Ú © r Rm is Lipschitz and E ⊂ © is a set of
finite perimeter.

(iv) If �yÙE� X Gð�©ÙRm� then the measures Bk are given by

Bk ¨ bkV y ` n Hn−1 bd �EÙ©�
were y ¨ y| bd �EÙ©� and V y is the approximate surface gradient of the Lipschitz
map y on the Hn−1 rectifiable set bd �EÙ©�Ø Thus Bk are the measure theoretic
generalizations of the interface null lagrangians.

Definition 6.3 (Energy functionals for the existence theory). Let tα Ú Linr �0Ù ð�,
α ¨ 1Ù 2Ù be functions of the forms

tα�F� ¨ §α�b1FÙÜ ÙbsF� (6.4)

for all α ¨ 1Ù 2 and all F X LinÙ where §α Ú Z r �0Ù ð� are continuous convex
functions on

Z ¨ s�
k¨1
Lin�bkRnÙ bkRm�Ø

(i) Let Ðf Ú Gr �0Ù ð� be a function of the formÐf�FÙn� ¨ §�b0 F ` nÙÜ Ùbt F ` n� (6.5)

for each �FÙn� X Gwhere§ Ú Yr �0Ù ð� is a positively 1 homogeneous convex
funtion. If t ² p ² ð, we define the total energy E Ú G p�©ÙRm� r �0Ù ð� by
(2.13) for each �yÙE� X G p�©ÙRm� where Eb is given by (2.14) and
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E if�yÙE� ¨ �
Rn
§�A� d |J�yÙE�| (6.6)

where |J�yÙE�| is the total variation of J�yÙE� and A Ú © r Y satisfies
J�yÙE� ¨ A |J�yÙE�|Û cf. [1; Corollary 1.29 and Section 2.6].

(ii) Let m ¨ n and let ¾ Ú Rn r �0Ù ð� be a positively 1 homogeneous convex
function. We define the total energy E Ú G pÙq0 �©ÙRn� r �0Ù ð� by (2.13) for
each �yÙE� X G pÙq0 �©ÙRn� where Eb is given by (2.14) and

E if�yÙE� ¨ �
bd �EÙ©�

¾�n� dHn−1 (6.7)

where n is the measure theoretic normal to E.

The definition (6.6) reduces to

E if�yÙE� ¨ �
bd �EÙ©�

Ðf�V yÙn� dHn−1
if �yÙE� X Gð�©ÙRm� by Remark 6.2(iv). The definition (6.7) corresponds toÐf Ú G r �0Ù ð� given by Ðf�FÙn� ¨ ¾�n�Ø The definition of E in Item (i) will be
used when Ðf is coercive with respect to its variables. The Wulff energy of Example
5.6 does not satisfy these coercivity requirements; neverthesess, one can prove the
existence also in this case; then the definition of E in Item (ii) will be used.

We first consider the case of general m and nØ
Theorem 6.4. Let s ° p ° ð and assume that

(i) tα, α ¨ 1Ù 2Ù are polyconvex in the sense of (6.4) where §α are continuous convex�0Ù ð� valued functions, Ðf is interface polyconvex in the sense of (6.5) where §
is a positively 1 homogeneous convex �0Ù ð� valued function,

(ii) for all α ¨ 1Ù 2Ù all F X LinÙ allA X Y, some c ± 0 and some d X R we have

tα�F� ³ c|F|p + dÙ §�A� ³ c|A|Ø
Given z0 X W 1Ùp�©ÙRm�, consider the Dirichlet class

A�z0� ¨ !�yÙE� X G p�©ÙRm� Ú y ¨ z0 on bd©)
and let E be given by Definition 6.3(i). If E is finite on some element of A�z0� then
there exists an �yÙE� X A�z0� such that

E�yÙE� ² E�zÙ F�
for all �zÙ F� X A�z0�Ø
Proof LetM�µ� denote the mass of the measure µ X M�©ÙV �Ù i.e.,M�µ� ¨ |µ|�©�
where |µ| denotes the total variation of µØ Let �y iÙE i� X A�z0� be a minimiz-
ing sequence. By the coercivity assumptions on tα and § the sequences |∇y i|L p
and M�J�y iÙE i�� are bounded. Combining the boundedness of |∇y i|L p with the
Dirichlet boundary data, one obtains the boundedness of |y i|

W 1ÙpØ Standard com-
pactness theorems for Sobolev space and for the spaces of measures give that for
some subsequence of �y iÙE i�Ù denoted again �y iÙE i�Ù and some y X W 1Ùp�©ÙRm�,
¡ X M�©ÙY� we have
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y iu y in W 1Ùp�©ÙRm�Ù (6.8)

J�y iÙE i� u  ¡ in M�©ÙY�Ø (6.9)

From B0�y iÙE i� ¨ nE
i
Hn−1 bd �E iÙ©� we deduce that the sequence D1E i is

bounded in M�©ÙRn�ØThe imbedding theorem fromBV functions (e.g., [1; Corollary
3.49, Chapter 3] implies

1E i r 1E in L 1�©�Ø (6.10)

for some set E ⊂ © of finite perimeter, i.e.,

Ln�¡�E iÙE�� r 0Ù (6.11)

where ¡�E iÙE� is the symmetric difference of E i and EØ The inequality s ° pÙ
Equation (6.8) and the weak sequential continuity of minors (e.g., [25; Theorem
2.3(ii)]) gives

bk∇y i ubk∇y in Lp/s�©ÙLin�bkRnÙ bkRm��, 0 ² k ² sØ (6.12)

The equiintegrability of the sequence bk∇y i and (6.11) yield

1E i bk ∇y i u 1E bk ∇y in L 1�©ÙLin�bkRnÙ bkRm��, 0 ² k ² s
and in particular, �

E i
bk∇y i ã¸ dLn r �

E
bk∇y ã¸ dLn

for each ¸ X Dk+1�Rn�Ù which can be rewritten as

�
©

dBk�y iÙE i�¸r �
E
bk∇y ã¸ dLnØ (6.13)

Hence (6.9) yields �
E
bk∇y ã¸ dLn ¨ �

©

d¡k ¸

where we write ¡ ¨ �¡0ÙÜ Ù¡s� for the components of ¡. Thus �yÙE� X
G p�©ÙRm� and Bk�yÙE� ¨ ¡k. Equation (6.13) reduces to

J�y iÙE i� u  J�yÙE� in M�©ÙY�Ø (6.14)

Let ¤ Ú R � Zr �0Ù ð� be defined by

¤�τÙM� ¨ |τ|§1�M�
for each τ X R and M X Y; note that the function ¤�τÙ ċ� is convex for each τ X R.
We have �

E i
t1�∇y i� dLn ¨ �

©

¤�1E iÙ b1∇y iÙÜ Ùbs∇y i� dLnØ
The Ioffe lowersemicontinuity theorem [1; Theorem 5.8, Chapter 5] and (6.10) and
(6.12) then give

lim inf
irð

�
©

¤�1E iÙ b0∇y iÙÜ Ùbs∇y i� dLn ³ �
©

¤�1E Ù b0∇yÙÜ Ùbs∇y� dLnØ
Thus

lim inf
irð

�
E i
t1�∇y i� dLn ³ �

E
t1�∇y� dLnÙ (6.15)
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lim inf
irð

�
©∼E i

t2�∇y i� dLn ³ �
©∼ E

t2�∇y� dLn (6.16)

where the last relation is obtained analogously. Using (6.14) and the Reshetnyak
lowersemicontinuity theorem (e.g., [1; Theorem 2.38, Chapter 2]), one obtains

lim inf
irð

E if�y iÙE i� ³ E if�yÙE�Ø (6.17)

Thus (6.15), (6.16) and (6.17) provide

lim inf
irð

E�y iÙE i� ³ E�yÙE�Ø
Clearly, �yÙE� X A�z0�Ø è

If m ¨ n and the bulk energies tα satisfy Ball’s constraint tα�F� r ð as
detFr 0Ù one can exclude states �yÙE� with det F ² 0 and improve the exponent p
in the definition of the state space as follows.

Theorem 6.5. Let m ¨ nÙ p ³ n − 1Ù q ³ n/�n − 1� and assume that

(i) tα, α ¨ 1Ù 2Ù are polyconvex in the sense of (6.4) where §α are continuous convex�0Ù ð� valued functions, Ðf is interface polyconvex in the sense of (6.5) where §
is a positively 1 homogeneous convex �0Ù ð� valued function,

(ii) for all α ¨ 1Ù 2Ù all F X LinÙ allA X Y, some c ± 0 and some d X R we have

tα�F� ³ c�|F|p + | cofF|q� + dÙ §�A� ³ c|A|Ù
(iii) tα�F� ¨ ð if det F ² 0Ø
Given z0 X W 1Ùp�©ÙRm�, consider the Dirichlet class

A�z0� ¨ !�yÙE� X G pÙq�©ÙRn� Ú y ¨ z0 on bd©)
and let E be given by Definition 6.3(i). If E is finite at some element of A�z0� then
there exists an �yÙE� X A�z0� such that

E�yÙE� ² E�zÙ F�
for all �zÙ F� X A�z0�Ø Each solution �yÙE� of the problem satisfies

det∇y ± 0 for Ln a.e. point of ©Ø (6.18)

The proof follows the lines of the proof of Theorem 6.4; the details will be given in
[31]. Theorem 1.2 is a particular case.

Finally, we consider the case of the Wulff energy.

Theorem 6.6. Let m ¨ nÙ p ³ n − 1Ù q ³ n/�n − 1�Ù and assume that

(i) tα, α ¨ 1Ù 2Ù are polyconvex in the sense of (6.4) where §α are continuous convex�0Ù ð� valued functions, ¾ Ú Rn r �0Ù ð� is a positively 1 homogeneous convex
function;

(ii) for all α ¨ 1Ù 2Ù all F X LinÙ all p X Rn, some c ± 0 and some d X R we have

tα�F� ³ c�|F|p + | cofF|q� + dÙ ¾�p� ³ c|p|Ù
(iii) tα�F� ¨ ð if det F ² 0Ø



28

Given z0 X W 1Ùp�©ÙRm�, consider the Dirichlet class

A�z0� ¨ !�yÙE� X G pÙq0 �©ÙRn� Ú y ¨ z0 on bd©)
and let E be given by Definition 6.3(ii). If E is finite at some element of A�z0� then
there exists an �yÙE� X A�z0� such that

E�yÙE� ² E�zÙ F�
for all �zÙ F� X A�z0�Ø Each solution �yÙE� of the problem satisfies (6.18).

We refer to [31] for the proof.

7 Appendix A. Differentiation on manifolds

We deal with manifolds of (at least) class 1 embedded in finite dimensional vec-
torspaces [9; Subsections 3.1.19–3.1.20], which we call simply manifolds or syn-
onymously surfaces. In this section we define derivatives (gradients) of maps on
manifolds, which we call surface derivatives or surface gradients. We need the sur-
face derivatives in two different ways: (a) for fields defined on the phase interface
S ⊂ Rn, (b) for the response function Ðf Ù which is a function defined on the manifold
G (see Section 8).

Throughout the section, let V ÙW be finite dimensional inner product spaces, and
f is a map with the domain dom f a relatively open subset of a manifold M in V with
the range ran f in W Ø If x X M Ù we denote by Tan�MÙ x� the tangent space to M at
xÙ a k dimensional subspace of V where k is the dimension of MØ

We say that f is differentiable at x X dom f if there exists aD f �x� X Lin�V ÙW �,
called the derivative of f at xÙ such that

D f �x�P ¨ D f �x� (7.1)

where P is the orthogonal projection onto Tan�dom f Ù x� and

lim
yrx

yXdom f Ùy©x

|f �y� − f �x� −D f �x��y − x�|/|y − x| ¨ 0Ø
The map D f �x� is uniquely determined. We note that D f �x� is a linear transfor-
mation defined on the entire space V and not just on the tangent space; however, it
vanishes on the orthogonal complement of the tangent space by (7.1). This convetion
renders the derivatives of f at different points of M belong to the same linear space
Lin�V ÙW �Ø Other authors (e.g., [9; Subsection 3.1.22]) mean by the derivative the
restriction of the derivative in the present sense to the tangent space at the given
point. If f is differentiable at x X M and a X V we denote by Da f �x� Ú¨ D f �x�a
the directional derivative of f at x in the direction aØ If V ¨ Rn and ei is the standard
basis inRn, 1 ² i ² n, we denote byDi f �x� ¨ D f �x�ei ª Dei

f �x� is the i th partial
derivative of f at xØ If the range W of f is RÙ we identify D f �x� X Lin�V ÙR� with
an equally denoted vector in V Ù such that

D f �x�a ¨ a ċD f �x�
for each a X V Û then D f �x� X Tan�MÙ x�Ø
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Observe that if I Ú M r V is the identity map I�x� ¨ x for every x X M then

D I�x� ¨ P�x� (7.2)

for every x X M where P�x� is the orthogonal projection onto Tan�MÙ x�Ø
If T X Lin�V ÙW � is an injective map, we define the pseudoinverse T −1 X

Lin�W ÙV � as the unique linear map such that

T −1T ¨ PÙ T T −1 ¨ Q
where P and Q are the orthogonal projections onto �kerT�þ and ran T Ø One has

�T −1�−1 ¨ T Ø
If T maps V bijectively onto W then the pseudoinverse coincides with the usual
inverse.

We retain the symbol D for the derivative of the response functions tα, α ¨ 1Ù 2Ù
and ÐfØ However, if the variable x in the definition above has the meaning of the
referential position x of a material point of ©Ù we write ∇ for D in case of a map f
defined on an open subset of © and V for D in case f is a map defined on the phase
interface S in©Ø If ½ is a local parametrization of S then f is differentiable at x X S

if and only if f � ½ is differentiable at p Ú¨ ½−1�x� and then

V f �x� ¨ ∇�f � ½��p�∇½�p�−1 Ø
If g is a extension of f to a neighborhood of x in Rn that is differentiable at x then

V f �x� ¨ ∇g�x�P�x�
where P�x� is the orthogonal projection onto the tangent space of M at xØ If f is a
map defined in a neighborhood of S we use the notation

V f Ú¨ V �f |S�Ø
If f is a map on a relatively open subset of a manifold we say that f is a class

0 map if f is continuous. We say that f is a class 1 map if f is differentiable at
every point of its domain and the derivative is a continuous function from dom f
into Lin�V ÙW �; we putD 1 f Ú¨ D f Ø Proceeding inductively, we say that f is a class
s ³ 2 map if dom f is a class s manifold and f is class s − 1, D s−1 f is differentiable
at every point of dom f and the derivative D s f ¨ D�D s−1 f � is continuous.

If Q Ú S r Lin�RnÙV � is a class 1map on a surface S of dimension k, we define
the surface divergence div Q Ú S r V by

a ċ div Q ¨ tr�V �QTa�	
for each a X V where the transpose is defined by b ċ QTa ¨ Qb ċ a for each b X Rn
and a X V Ø We say that Q is superficial if Q ¨ QPØ

We define the relative boundary of a surface S ⊂ Rn by bdS ¨ clS ∼ S. The
surface S is said to be a k dimensional oriented surface with Lipschitz boundary
provided the following two conditions hold. (a) The closure of S is a subset of
some k dimensional oriented surface U and (b) for each point x of bdS there is an
orientation preserving diffeomorphism from an open set in Rk onto some (relative)
neighborhood N of x in U whose inverse maps N P S into some Lipschitz region in



30

Rk. There exists an Hk−1 almost unique vectorfield m Ú bdS r Sn−1 such that for
each diffeomorphism of the type just described we have

m � ½ ¨ ∇½−T·/|∇½−T·|
where · Ú bd½−1�S� r Sk−1 is the Lipschitz normal to the Lipschitz region ½−1�S�
and∇½−1 is the pseudoinverse of the injective map∇½Û one has m�x� X Tan�UÙx�
for Hk−1 a.e. x X bdSØ We call m the relative normal of SØ
Theorem 7.1 (Surface divergence theorem). If S is a bounded oriented surface (of
arbitrary dimension) of class 2 with Lipschitz boundary and if Q Ú S r Lin�RnÙV �
is a superficial field of class 1 with bounded derivative and Q can be continuously
extended to clS then �

S

div Q dHk ¨ �
bdS

Qm dHk−1

where on the right hand side Q denotes the continuous extension just mentioned.

8 Appendix B. Derivatives of the interfacial energy

We discuss alternative equivalent forms of the interfacial stress relations (2.2) and
(2.3).

Proposition 8.1. The set G is a class ð manifold in Lin�Rn of dimension�m + 1��n − 1� with the tangent space

Tan�GÙ �FÙn�� ¨ !�GÙm� X Lin�Rn Ú Gn + Fm ¨ 0Ù m ċ n ¨ 0) (8.1)

for every �FÙn� X G.

Proof Let£ Ú Lin�Rn r Rm�R be defined by£�FÙn� ¨ �F nÙ |n|2−1�Ù �FÙn� X
Lin�Rn, so that G ¨ £−1�0�Ø The map £ is class ð on Lin�Rn; its derivative is
evaluated straightforwardly; from its form one finds that ranD£�FÙn� ¨ Rm � R
whenever n © 0. Thus G is a submanifold of Lin�Rn of class ð of dimension
dim�Lin�Rn� − dim�Rm �R� ¨ �m + 1��n − 1� and

Tan�GÙ �FÙn�� ¨ kerD£�FÙn�
which gives (8.1). è
Proposition 8.2. The setH is a classðmanifold inLin�Rn of dimension �m+1�n−1
with the tangent space

Tan�HÙ �FÙn�� ¨ !�GÙm� X H Ú m ċ n ¨ 0) (8.2)

for every �FÙn� X HØ If Îf Ú Hr R is defined by (2.5) then n ċD2 Îf ¨ 0 and

D1
Îf ¨ D1 Ðf PÙ

D2
Îf ¨ D2 Ðf − PFTD1

Ðf n − PD1
Ðf TFn

where the derivatives of Îf are evaluated at �FÙn� X H and the derivatives of Ðf at�FÙn� X G related to �FÙn� by F ¨ FPÛ Equations (2.6) and (2.7) hold.

Proof The manifold character of H and its tangents space are immediate. The
asserted relations follow by differentiating (2.5) respecting the fact that the derivative
must be an element of the tangent space. è



31

Proposition 8.3. If m ¨ n then the set Linn−1 is a class ð manifold in Lin of
dimension n2 − 1 with a continuous unit normal to Linn−1 at F X Linn−1 given by

N�F� ¨ | cofF |−1 cofFØ (8.3)

Each point of Linn−1 has a neighborhood N and a map n Ú N r Sn−1 such that
F n��F� ¨ 0 for each F X N Û the map ¢ Ú N r G given by ¢�F� ¨ �FÙn��F�� for
each F X N is a class ð diffeomorphism from N onto some relatively open subset
of GØ The map n� is locally uniquely determined to within the change of sign; the
derivatives of ¢ and n�at F X N are given by

D¢A ¨ �A − �A ċN�NÙ −F−1An	Ù (8.4)

Dn�A ¨ −F−1An� (8.5)

for each A X LinØ If f� is a function on a relatively open subset of Linn−1 such that
(2.8) holds then

D f� ¨ D1 Ðf − F−TD2
Ðf � n − �D1 Ðf ċN�N (8.6)

where the derivative of f�and N are evaluated at F and the derivatives of Ðf at �FÙn�Ø
Equations (2.9) and (2.10) hold.

Proof If g Ú U r R is given by U ¨  F X Lin Ú cofF © 0( and g�F� ¨ detF for
each F X U then f is class ð and D g�F� ¨ cofF © 0 for every point of the domain
U . Hence Linn−1 ª g−1�0� is a class ð manifold of the indicated dimension and N is
the unit normal to Linn−1Ø The existence of the map n�follows by solving F n ¨ 0 by
the implicit function theorem. Differentiating the relation F n��F� ¨ 0 and using the
requirement that the derivative satisfies Dn�N ¨ 0 as a consequence of (7.1) in the
present case one obtains (8.5). Equation (8.4) is then a consequence of (7.2) and (8.5)
if one observes that id−N�N is the projection onto the tangent space of Linn−1Ø To
prove the assertions about f�Ù we note that f� ¨ Ðf � ¢Ø The derivative D f� of f� at F

is an element of the tangent space to Linn−1 at F which means by (8.3) that

D f� ċ cofF ¨ 0Ø
Evaluating the derivative by the chain ruleD f� ¨ D Ðf D¢ and combining with (8.4)
one obtains (8.6). Equations (2.9) and (2.10) are proved by noting thatD f�P ¨ D1 Ðf P

and that FTD f�n ¨ FTD1
Ðf n −D2 Ðf by using FT cofF ¨ 0 since detF ¨ 0. è

9 Appendix C. Multilinear algebra

We use the conventions from [9; Chapter One]; see also [21; Section 1.7].
If r is an integer with 0 ² r ² n, we denote bybrRn the inner product space of all

r vectors inRnÙ i.e., the set of all r linear completely antisymmetric maps ª from the
dual space ofRn intoRØWe putb0Rn ¨ R, note thatb1Rn is canonically isomorphic
with Rn and recall that bnRn is unidimensional. We also put brRn ¨  0( if r is an
integer with r ° 0 or r ± nØ We denote by ª ` « the wedge product of an r vector ª
and an s vector «; if a1ÙÜ Ù ar are vectors in Rn we denote by a1 `Ý ` ar ª �ri¨1 ai
the wedge product of a1ÙÜ Ù ar , an element of brRn. If ª is an r vector in Rn and «
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and s vector with s ² r we define a contraction ª « of ª by « to be an r − s vector
in Rn such that �ª «� ċ ¬ ¨ ª ċ �¬ ` «�
for each r − s vector ¬Ø

If A X Lin�RnÙRm� where m is a positive integer, we denote by brA the r th
exterior power of AÙ a unique element of Lin�brRnÙ brRm� having the property

brA� r�
i¨1
ai� ¨ r�

i¨1
�Aai�

for each a1ÙÜ Ù ar X RnØ The matrix elements of brA relative to the bases in brRn
and brRm consisting of the r fold wedge products of the standard basis vectors in
Rn and Rm are minors of order r of the matrix of AØ In particular if m ¨ n thenbnA« ¨ detA« for each n vector «Û in the same situation, bn−1A ¨   cofA   where  is the Hodge operator mapping brRn isometrically onto bn−rRnØ We put b0A ¨ 1
in all situations. Clearly, brA ¨ 0 if r ± min  mÙ n(.

If A X Lin�RnÙRm� and a X Rn we define brA ` a X Lin�br+1RnÙ brRm� by

�brA ` a�« ¨ brA�« a�
for each r vector « in RnØ We have b0Aa ¨ a and, if m ¨ n, bn−1A ` a ¨   cofAaØ
If m ¨ n ¨ 3 we can identify b1A` a ¨ A` a X Lin�b2R3ÙR3� with a polar second
order tensor A � aØ

If © ⊂ Rn is open, we denote by Dr�©� the set of all infinitely differentiable
r vectorfields ¸ Ú Rn r brRn whose support is compact and contained in ©Ø We
define the interior derivative ã¸ of ¸ as an element of Dr−1�©� given by

ã¸ ¨ �−1� r n�
i¨1
Di ¸ e iÙ

whereDi denote the partial derivatives and e1ÙÜ Ù en is the standard basis inRnØ If a
is a 1 vectorfield then ãa ¨ −div aØ The factor �−1� r is chosen so as to render valid
the integration by parts formula

�
Rn

ã¸ ċ ! dLn ¨ �
Rn
¸ ċD! dLn

for every smooth r − 1 form ! on Rn where D! denotes the exterior derivative.
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