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Abstract. The main result of the present note states that it is consistent
with the ZFC axioms of set theory (relying on Martin’s Maximum MM
axiom), that every Asplund space of density character ω1 has a renorming
with the Mazur intersection property. Combined with the previous result of
Jiménez and Moreno (based upon the work of Kunen under the continuum
hypothesis) we obtain that the MIP renormability of Asplund spaces of
density ω1 is undecidable in ZFC.

The Mazur intersection property (MIP for short) was first investigated by
S. Mazur in [10] as a purely geometrical isometric property of a Banach space,
and has since been studied extensively over the years. An early result of Mazur
claims that a Banach space with a Fréchet differentiable norm (necessarily an
Asplund space) has the MIP ([10]). Phelps [12] proved that a separable Banach
space has a MIP renorming if and only if its dual is separable, or equivalently, if
it is an Asplund space. Much of the further progress in the theory depended on
an important characterization of MIP, due to Giles, Gregory and Sims [6], by
the property that w∗-denting points of BX∗ are norm dense in SX∗ . This result
again suggests a close connection of MIP to Asplund spaces, as the latter
can be characterized in a similar way as spaces such that bounded subsets
of their dual are w∗-dentable. It has opened a way to applying biorthogonal
systems to the MIP. Namely, Jiménez and Moreno [9] have proved that if a
Banach space X∗ admits a fundamental biorthogonal system {(xα, fα)}, where
fα belong to X ⊂ X∗∗, then X has a MIP renorming. As a corollary to this
criterion ([9]), they get that every Banach space can be embedded into a
Banach space which is MIP renormable, a rather surprising result which in
particular strongly shows that MIP and Asplund properties, although closely
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related, are distinct. We remark that MIP has connections with other parts of
Banach space theory, such as the ball topology ([7]) etc..

On the other hand, all known examples of an Asplund space without MIP
renorming ([9], [8]), such as C(K) space, where K is a compact space con-
structed by Kunen ([11]), were constructed using additional set theoretical
assumptions, such as the continuum hypothesis CH (or ♣). In fact C(K),
where K is Kunen’s compact, has density character ω1, the smallest density
for which such a result may hold in view of Phelps’ theorem.

The main result of the present note goes in the positive direction. Namely,
it is consistent with the ZFC axioms of set theory (relying on a powerful
additional axiom - Martin’s Maximum MM [5]), that every Asplund space of
density character ω1 has a renorming with the Mazur intersection property.
This answers a question of Godefroy, communicated to the authors by Zizler.
We thank V. Zizler for suggesting the problem and sharing his insights with
us. Combined with the previous result of Jiménez and Moreno we obtain that
the MIP renormability of Asplund spaces of density ω1 is undecidable in ZFC.

Our proof has three main ingredients. It combines a recent result of Todorčević,
claiming that under MM every Banach space with density ω1 has a fundamen-
tal system, with the machinery of projectional generators, and a criterion of
MIP renormability due to Jiménez and Moreno via fundamental systems. We
recall that MM is an axiom consistent with ZFC, see [5] for details. We prefer
not to state MM explicitly, as we do not enter into any axiomatic arguments
here, and our reliance on MM is solely through the use of Todorčević’s theorem
in [13] (see also [8]). In order to explain in some detail the role of these results,
we need some preliminary definitions.

Let (X, ‖ · ‖) be a Banach space, denote its closed unit ball BX and its unit
sphere SX . More generally, B(x, ρ) = {y ∈ X : ‖y− x‖ ≤ ρ} is a ball centered
at x with radius ρ ≥ 0. The dual of X is denoted X∗, and by w∗ we mean
the weak∗ topology on X∗, that is σ(X∗, X). The symbol τp stands for the
topology of pointwise convergence in c0(ω1). The set of rational numbers and
the linear hull with rational coefficients are denoted Q, Q–span, respectively.

A Banach space X is an Asplund space if every separable subspace of X has
a separable dual space. We say that a Banach space (X, ‖ · ‖) has the Mazur
intersection property if every bounded closed convex set K is an intersection
of closed balls. More precisely, K = ∩αB(xα, ρα), for some system of points
xα ∈ X, and radii ρα.

Let X be a Banach space and Γ a nonempty set. A family {(xγ, x
∗
γ)}γ∈Γ of

pairs xγ ∈ X, x∗γ ∈ X∗ is called a biorthogonal system in X ×X∗ if x∗α(xβ) =
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δαβ, where δαβ is Kronecker’s delta, for all α, β ∈ Γ. A biorthogonal system is
fundamental if span{xγ}γ∈Γ = X.

If A is a subset of a Banach space X and B ⊂ X∗, we say that A countably
supports B, (or that B is countably supported by A), provided {a ∈ A : b(a) 6=
0} is at most countable, for all b ∈ B. A subset N ⊂ X∗ is 1–norming if
‖x‖ = sup{x∗(x) : x∗ ∈ N ∩BX∗}, for all x ∈ X.

For a nonseparable Banach space X of density µ, we define projectional
resolution of identity (PRI) as a family {Pα : ω ≤ α ≤ µ} of linear projections
on X such that Pω = 0, Pµ is the identity mapping on X, and for all ω ≤
α, β ≤ µ :

(i) ‖Pα‖ = 1,
(ii) densPαX ≤ cardα,
(iii) PαPβ = PβPα = Pα, if α ≤ β,
(iv) ∪α<βPα+1X is norm dense in PβX, if ω < β.

A standard way of obtaining PRI on Banach spaces is using the Projectional
Generator. This technique has an advantage of allowing some additional prop-
erties for the PRI, important in our proof.

Let X be a Banach space and W ⊂ X∗ be 1–norming set closed under
linear combinations with rational coefficients. Let Φ : W → 2X be an at most
countably valued mapping such that for every nonempty set B ⊂ W with linear

closure, Φ(B)⊥ ∩ B
w∗

= {0}. Then the couple (W, Φ) is called a projectional
generator (PG).

Let {Pα : ω ≤ α ≤ µ} be a PRI on X, G ⊂ X. We will say that the given
PRI is subordinated to the set G if Pα(x) ∈ {0, x} for all α and x ∈ G.

We are now going to present the main theorems, whose combination leads
to the proof of our main result.

Theorem 1. [8, Theorem 3.42]
Let X be a nonseparable Banach space with a projectional generator (W, Φ),

and a set G ⊂ X that countably supports W . Then X has a PRI {Pα : ω ≤
α ≤ µ}, which is subordinated to the set G.

We shall use the following theorem of Jiménez and Moreno ([9], see also [8,
Theorem 8.42]).

Theorem 2. Let X∗ be a dual Banach space with a fundamental biorthogonal
system {(x∗α, xα)}α<ω1 ⊂ X∗ × X∗∗, with the property that xα ∈ X ⊂ X∗∗.
Then X admits an equivalent norm with the Mazur intersection property.

The next theorem, due to Todorčević ([13], see also [8, Theorem 4.48]), is
the main ingredient of our proof.
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Theorem 3. (MM) Every Banach space of density ω1 has a fundamental
biorthogonal system.

For proofs of the above results, additional references and more information
we refer to the recent book [8]. The main result of our note is following theorem.

Theorem 4. (MM) Let X be an Asplund space of density ω1. Then X admits
an equivalent norm with the Mazur intersection property.

Proof. Because X is an Asplund space, we have that densX∗ = ω1. (One way
of seeing this is to use the Jayne-Rogers continuous selectors of the duality
mapping together with the Bishop-Phelps’ theorem, see [2] for details). Ac-
cording to Theorem 2, it suffices to find a fundamental biorthogonal system
of X∗, with {(x∗α, xα)}α<ω1 ⊂ X∗ × X. We claim that if there exists a linear
continuous mapping T : (X∗, w∗) → (c0(ω1), τp) with a nonseparable range,
such that

(0.1) T (x∗) = (x∗(yγ))γ∈Γ, for some Γ uncountable, and yγ ∈ SX ,

then X∗ has a fundamental biorthogonal system {(x∗α, xα)}α<ω1 ⊂ X∗ × X.
The proof of this claim follows by inspection of Todorčević’s argument in [13]
(or [8, Theorem 4.45]) which shows the same implication without w∗-topology
involved. As a matter of fact, during the construction of a fundamental system,
one only passes to a suitable long subsequence of {yγ}, which then becomes
the {xα} ⊂ X ⊂ X∗∗.

It remains to find {yγ}γ∈Γ ⊂ SX , Γ uncountable, that define the operator
in (0.1). By Theorem 3, there exists a fundamental biorthogonal system in X,
denoted by {(eγ, fγ)}γ<ω1 ⊂ X×X∗. We may without loss of generality assume
that ‖eγ‖ = 1 for all γ < ω1. We shall show that the desired sequence {yγ}γ∈Γ

can be found as an uncountable subsequence of (eγ)γ<ω1 , (hence Γ ⊂ ω1).
Since X is an Asplund space, there exists a projectional generator (W, Φ) on

X∗, where W = span{eγ}γ<ω1 . Indeed, the set W is dense in X, and thus it is 1–
norming for X∗. By [3, Proposition 8.2.1], there exists a projectional generator
(X, Φ) on X∗, so the restriction of Φ to W will give the needed mapping. Note
that the set G = {fγ}γ<ω1 is subordinated to (W, Φ). By Theorem 1, there
exists a PRI {Pα : ω ≤ α ≤ ω1} and such that

(0.2) Pα(fγ) =

{
fγ, or
0,

for all ω ≤ α ≤ ω1 and γ ∈ ω1. We claim that we are allowed to put another
additional condition on our PRI, namely we require that



MAZUR INTERSECTION PROPERTY FOR ASPLUND SPACES 5

(0.3) P ∗
α(eγ) =

{
eγ, or
0,

and moreover P ∗
α(eγ) = eγ if and only if Pα(fγ) = fγ.

This is achieved by entering into the construction of PRI using the PG
(W, Φ). In fact, reading through the proof of Theorem 3.42 in [8], we see that
the auxiliary multi-valued mapping Ψ : X → 2W may be without loss of
generality chosen so that eγ ∈ Ψ(fγ) for all γ < ω1. We also adjust the orig-
inal Φ (which in the case of an Asplund space may be chosen a sequence of
Jayne-Rogers’ selectors restricted to W ) by adding finitely many extra ele-
ments {fγi

}n
i=1 to the set Φ(v), for every v =

∑n
i=1 rieγi

, ri ∈ R. The adjusted
pair (W, Φ) is again a PG for X∗. In the case of the first adjustment it is
obvious, because the defining properties of the originally chosen Ψ have not
been violated. In the second case, it suffices to note a simple general fact, that
for any given PG (W, Φ), upon replacing Φ by any countably valued map-
ping Φ̃, with the property that Φ(f) ⊂ Φ̃(f), the pair (W, Φ̃) will remain a
PG. This is apparent from the definition of PG, since Φ̃(B) ⊇ Φ(B) implies
(Φ̃(B))⊥ ⊆ Φ(B)⊥. Having these extra conditions at hand, it is easy to ob-
serve that the set Bα in the proof of Theorem 3.42 in [8] equals to the Q–span
of the (countable) set {eλ}λ∈Λα , where Λα = {γ : eγ ∈ Bα}. This implies,
using Goldstine’s theorem, that P ∗

α(X∗∗) = spanw∗{eλ : λ ∈ Λα} and also
(Id − P ∗

α)(X∗∗) = spanw∗{eλ : λ /∈ Λα}. Thus P ∗
α(eγ) = eγ if γ ∈ Λα and

P ∗
α(eγ) = 0 otherwise. Denote Γα = {γ < ω1 : fγ ∈ (Pα+1 − Pα)X∗}. Let

Γ = {α : Γα 6= ∅}. We claim that cardΓ = ω1. Indeed, Pα(X∗) is a separa-
ble Banach space for every α < ω1, while span{fγ}γ<ω1 is nonseparable. For
convenience we may without loss of generality assume that Γ = [ω1, ω1). For
every α ∈ Γ we choose γ(α) < ω1, such that γ(α) ∈ Γα. Since the mapping

x∗ 7→ (‖(Pα+1 − Pα)(x∗)‖)ω≤α<ω1

is into c0 ([ω, ω1)) (Lemma VI.1.2 in [2]), we have that the mapping

T : x∗ 7→
(
eγ(α)((Pα+1 − Pα)(x∗))

)
α∈Γ

is into c0(Γ). However, it is a consequence of (0.3) that eγ(α) = eγ(α)◦(Pα+1−Pα)
on X∗. It follows that

T : x∗ 7→ (x∗(eγ))γ∈Γ

is a w∗ − τp continuous operator from X∗ into c0(Γ). Further, from (0.2) and
the choice of Γ, we get that the range of T in not separable. This finishes the
proof.

�
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We will conclude the paper by making a few remarks. Note that on the one
hand, the dual to our original Asplund space, X∗, admits a PG, so it has an
M-basis, and thus it has a bounded injection into c0(ω1) (for these facts see [8]).
On the other hand, X∗ in general does not admit injections into c0(ω1), that
are continuous in the w∗ − τp topology, since the last condition characterizes
WCG spaces X, and not every Asplund space of density ω1 is WCG. The
main point of our construction is that under MM one can actually construct
a ”large” (nonseparable range) operator from X∗ into c0(ω1), which is at the
same time w∗ − τp continuous.

There remains a number of interesting questions on MIP in Asplund spaces.
An example of an Asplund space with MIP but having no Fréchet renorming
is not known. (According to a result of Deville [1], the long James space has
MIP renorming, but the existence of Fréchet renorming on this space is open.)
It is an open problem due to Zizler, if an Asplund space with a C1-smooth
bump function is MIP renormable. It seems to be open whether the statement
claiming that every Asplund space is MIP renormable, is consistent in ZFC.
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