On a fluid model of neutron star.
Preprint, Institute of Mathematics, AS CR, Prague. 2008-11-20

Bernard Ducomet ® and Sérka Necasové °

@ Département de Physique Théorique et Appliquée, CEA/DAM Ile de France
BP 12, F-91680 Bruyéres-le-Chatel, France
E-mail: bernard.ducomet@cea.fr

b Mathematical Institute AS CR
Zitnd 25, 115 67 Praha 1, Czech Republic
E-mail: matus@math.cas.cz

SUMMARY

We consider an initial boundary value problem for the equations of a fluid spherical model of
neutron star considered by Lattimer et al. We estimate the asymptotic decay of the solution,
which may serve as a crude estimate of a “thermalization time” for the system.

1 Introduction

In a recent paper, C. Monrozeau et al. [27] analyze the influence of neutron superfluidity on the
cooling time of inner crust matter in neutron stars, in the case of a rapid cooling of the core of the
star. The model used to describe the evolution of temperature [23] in the star follows Lattimer
et al. [23]. It supposes a linear dependence of the specific heat as a function of temperature and
assumes that a mechanical equilibrium is reached, so the problem reduces to the study of large
time asymptotics for a Fast Diffusion Equation satisfied by the temperature.

In a more general setting, it is interesting to consider the complete problem where temperature
is coupled to density and velocity fluctuations through a thermo-mechanical system. The simplest
description of such a model is achieved [21] through the compressible Navier-Stokes system.

Concerning the fully 3D compressible case with heat conductivity the basic references are the
works of Lions [26], Feireisl [11, 12] and Bresch-Desjardins [3], in which global existence of a
weak solution is proved. Concerning asymptotics we can mention results done by Feireisl and his
collaborator on the problem of the long-time behavior of solutions to the complete system with a
time - dependent driving force [13].

However spherical symmetry is considered in the major part of astrophysical literature [4, 5, 14,
21] as a quite reliable approximation (at least when rotation and magnetic aspects are neglected)
and in this quasi-monodimensional situation, global existence and uniqueness of a classical solution
and its large-time behavior have been obtained in some spherically symmetric cases (see [19, 16,
15]).  Our purpose is then to prove well-posedness and large time asymptotics for this model
(the compressible Navier-Stokes system for a spherical symmetric flow with specific temperature-
dependent specific heat and thermal conductivity) leading to a simple estimate of a “cooling time”,
in the spirit of Lattimer et al. [23].

The general formulation of the system reads [15]
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in the domain @ := w x R* with w := (R, Ry), where Ry is the radius of the internal rigid core
of the star and R; is the exterior boundary, for the density p(r,t), the velocity v(r,t) and the
temperature 0(r,t).

The state functions of our model are recovered by using standard thermodynamical arguments
[33] from the expression of the specific heat at constant volume cy = ¢, + %nli—ﬁ' The pressure



is then p(n,0) = % nﬁ—fﬁ, the internal energy e(n,6) = %0 + ﬁnf—iﬂ, where ¢, > 0, 4 >0
and 3 > 2, the specific entropy is s(n, ) := ¢, log 0 + %n%g and the heat flux ¢ is given by the
Fourier law ¢(n, 6) := k(n, 0)0,., with the following constraints on the thermal conductivity

E(1407) < k(n,0) <E(1+067), (2)
[t (0, )] + |iny (1, 0)] < K1 (14 67), (3)
|19 (n, 0)] < K2 (1+0771), (4)

for any # > 0, with positive constants x, &, K, Ko and ¢ > 4. As a simple model, we suppose
in the following that the first viscosity coeﬁiment 1 is a positive constant and that the second
viscosity coefficient v is zero.

In the original model of [23], the following choice is made: ¢, = 0 and x(n,0) = eﬁ% for
Ay, > 0, with the two possibilities (m, «) = (1,1) or (m, ) = (0,2/3), corresponding to ¢ = 0 and
g =11n (2), (3) and (4). Unfortunately, our results do not cover this situation, but a precise study
of the “purely thermal” Lattimer’s model considering these values is actually possible and will be
the object of a future work [9].

The viscosity of the medium is considered here as a simple regularization, and we consider the
simplest model u = Cte > 0 and v = 0. Finally F(r,t) is a given external field force (gravitation).

Writing the system in lagrangian (mass) coordinates (x,t), with

r(z,t) :=ro(x) Jr/o v(z, s) ds, (5)

where ro(z) == [R} + 3 [ n°(y) dy] Y3 for z € Q, we get

e = (TQU)W

v = 12 (—p + g(r%)x>$ + .
q—%+(w+ﬁWva%% Y

Tt =0,

in the fixed domain @Q := Q x R* with Q := (0, M), where the specific volume 7 (with n := %),
the velocity v, the temperature 6 and the radius r depend on the lagrangian mass coordinates.
4
The lagrangian heat flux is now ¢(n,0) = x(n,0) % 0, and the external field-force is given

by the Newton’s law f(z) := —G%, where G and M; are positive constants (we neglect the
selfgravitation of the gas), and we denote the stress o by

amwﬁ>mmm+%v%n

We consider the boundary conditions

v|._ =0,
{ |:c_O,JV[ (7)

Q|m:0 =0, e‘z:M =or,
for t > 0, with fr > 0, and initial conditions
Mo = 1°(@), vleg =0°(2), 7l =7"(), Ol,_o=0"2) onQ (8)
We study weak solutions for the above problem with properties

n € L>(Qr), m € L>([0,T], L3(%)), NG (r?v), € L>([0,T
v e L>([0,T], L*(Q)), v € L=([0,T)],L*(R2)), o, € L>([0,T
0 € L>([0,T],L*()), /p 0. € L>=([0,T], L*(2)).

and
r € C(Qr) and for all t € [0,T],x — r(x,t) is strictly increasing on €, (10)



where Qr = Q x (0, 7).
We also assume the following conditions on the data:

n"°>0o0nQ, n°e Ll(Q),

vy € L*(Q \/ 00 € L2(Q), (11)
60 c LQ(Q), lan 90 > 0.

We look for a weak solution (1, v,6) such that
t
W t) =@ + [ (%), (2,9) ds, (12)
0

for a.e. € Q and any ¢t > 0, and such that for any test function ¢ € L?([0,T], H*(2)) with
6, € LV([0,T], L2(Q)) such that ¢(-, T) = 0

/[@w(% 2’7“5)19—“‘2”1 ¢m}+f¢>}ddt /¢0x @) de, (13)

and

/ [qbte + w0 bp — 200D, — T200w¢:| dx dt = / #(0,2) 6°(x) da. (14)
T n Q

Then our first result is the following

Theorem 1 Suppose that the initial data satisfy (11) and that T is an arbitrary positive number.
Then the problem (6)(7)(8) possesses at least one global weak solution satisfying (9) and (10)
together with properties (12), (13) and (14). Moreover, the solution is unique.

For that purpose, we first prove a classical existence result in the Holder category. We denote by
C*(€2) the Banach space of real-valued functions on € which are uniformly Hélder continuous with
exponent a € (0,1), and C**/2(Qr) the Banach space of real-valued functions on Qr := Q2 x (0, T)
which are uniformly Hoélder continuous with exponent « in x and «/2 in t. The norms of C*(Q2)
(resp. C**/2(Qr)) will be denoted by || - ||o (resp. ||| - |||a)-

Theorem 2 Suppose that the initial data satisfy
(n°,n2, 00,02, 02,,0°,609,60,) € (C*(Q))°,

»Yxy Y xx

for some a € (0,1). Suppose also that n°(z) > 0 and 0°(z) > 0 on Q, and that the compatibility
conditions

62(0) =0, 6°(M) = 0r; v°(0) = v (M) =0,
hold. Then, there exists a unique solution (n(z,t),v(z,t),0(x,t)) with n(z,t) > 0 and 6(z,t) > 0
to the initial-boundary value problem (6)(7)(8) on Q = Q x Ry such that for any T >0

(77 Ny Nty Naty U,y UI)vt7v$179 gmaeta rz) (CQ(QT)) 5

and

(et ot Oat) € (L2(Q1))° -

Then Theorem 1 will be obtained from Theorem 2 through a regularization process.
Finally we prove

Theorem 3 Suppose that the initial data satisfy (11).

Let (ns,vs,0s) be the asymptotic state defined in Proposition 1 (see below). Then the solution
of the problem (6)(7)(8) follows the following large time behavior: there exist positive constants
Tos, C and X\ such that fort > Ty

In = nsllz2@) + v — vsllz2@) + 10 = 0sllL2@) < Ce ™. (15)



Remark 1 After the previous result, we get a natural (rough) estimate of the cooling time T, as
the inverse of the constant X\ in (15), which is of qualitative nature as it depends on the initial data
and the physical constants of the problem. A major improvement would be to get a more precise
behaviour of the type 6 — s — Ce™ >t — 0, with a constant \. independent of the initial data. As
stressed previously, at least in the purely thermal Lattimer model, it is possible to prove such an
estimate [9].

The previous spherical symmetric Navier-Stokes system has been the subject of a great number
of studies in the past (among them [19, 15, 16, 29, 30, 31, 8, 10, 34]) in the barotropic, or the
temperature dependent situations (perfect gas, possibly including radiation). Recently S.Yanagi
proved the stability [35] in the case p(n,0) = Rr% (see also [25] and [24] for the same model in the
pure onedimensional case).

In the present work, the nonlinear dependence in temperature of the state functions complicates
the analysis.

The plan of the article is as follows: in section 2 we give a priori estimates sufficient to prove in
section 3 global existence of a unique solution, then we give in section 4 the asymptotic behaviour
of the solution for large time.

2 A priori estimates

In the spirit of [15], we first suppose that the solution is classical in the following sense

{ n € Cl(QT)a P > 07 (16)
v,0 € CY([0,T],CO(Q)) N CO([0, T], C2(Q)), 6> 0,
and
r>0 foralltel0,T] (17)

Our first task is to prove the following regularity result

Theorem 4 Suppose that the initial-boundary value problem (6)(7)(8) has a classical solution de-
scribed by Theorem 2. Then the solution (1,v,v,,0,0,) is bounded in the Holder space C*/3/5(Qr)

nlllys + vlll/z + [vallli/z + 116115 + [[102]]]1/3 < C(T),
where C' depends on T, the physical data of the problem and the initial data. Moreover

0<n<n<7y, 0<6<O<L0.

Let N and T be arbitrary positive numbers. In all the following, we denote by C' = C(N) or
K = K(N) various positive non-decreasing functions of N, which may possibly depend on the
physical constants M etc., but not on 7.

Lemma 1 Under the following condition on the data
9]y + 1 1y + 116°] oy < (18)

1. The mass conservation holds
/n(x,t) dx:/no(w) dzx. (19)
Q Q

2. The following energy-entropy inequality holds

/Q B“QJFMALD " (9—9p)2} dz

+/OT /Q <"“(’777992)7A 02+ [(7"211)3;]2> do dt < K(N). (20)



3. The following estimate holds

0 —0r)?
||77HL°°(0,T;L1(Q)) + ||U||L°°(O,T;L2(Q)) + H(Tll'g)

L>(0,T5L1(2))

Proof:

1. Integrating the first equation (6) gives (19).

2. Multiplying the second equation (6) by v and adding the result to the first and third
equations (6), we get first

4
(77 + 1 v? + e) = (mrﬂz) + (r’vo) + (GMO> . (22)
2 ¢ n P ¢ L

Using now an argument of Jiang [18], we define the function

E0,0) = ¢(1,0) = ¢(1,6r) = ¥y(1,00)(n — 1) = vo(n,0)(6 — br),

where 1 := e — 0s is the Helmholtz free energy. Elementary computations give the relations

e
o= s, Yy =—p and g =~
We have ) oM
(E—|—2 v? — 0> = ey +vvy — Opsy — ¥y(1, 0r) Ny (23)
t
Computing the time-derivative of the entropy s(n,0), we get
r ) K 1

st = | k—wy —1——93—1—— r20),]%, 24
o= (5] + T B L 6P (24)

where w := §~! (note that the Gibbs-Duhem inequality s; + (%)x > 0 is satisfied). Plugging (22)
and (24) into (23), we obtain the identity

4
<E + %’02 _ &M + 9y, (1, 0r) n) =0r (117;7 (1 - 0;) 096) + (Tzva)m
t T

r

4
RT
O 62 — Gp% [(r20))2. (25)

Integrating on €2, we have

d 1 GM, Kt I
— E+ -v?— —p(1,0 d Or— 02+ 0r— [(r?v),]* | dx =0.
i [ (B g = 0 e 0) o [ (005 ot (0%0.1) do =0

Integrating in time and using (19) we find

1 G M, T krd W
E+ —v? — — 9 L 1(r%0),)? < K(N). 2
/Q< +2v . ) dw+/0 /§2(9F7792 9w+9pn0 [(r*v).]* ) dax dt (N) (26)

After Taylor’s formula and using the fact that 1, = —p,, we get

1
E(Uﬁ) - w(nag) +¢(7779F) + (0 - 01‘)1/}9(77’0) = (77 - 1)2A (1 - U)T/}m] (1 -I-U(’I] - 1)a0) du = 0.

The same formula for the second argument reads

1
B(1.8) — 0, 0r) — (6 — Or)bo(n, 6) = — (6 — br)? / (1~ u)dos (m, 1+ u(6 — 6r)) ds.



As g9 = —eg/0, the right-hand side rewrites

(0 — 9p)2/ (1 —8)thge (1 +5(0 —0r)) ds=c [(1+6—60p)log(1+6—0r)— (6 —6p))

A, ,
+m7l L (0 —6r),

where the right-hand-side is not negative. Then plugging into (26), we obtain

A 4 , 1, GM,
/(2@_1)77 (6 — 0r) +§’U - >dx

Q
+/T/ a*ﬁeueﬂ[(ﬂﬁ dz dt < K(N)
0o Ja F7792 * F779 " v A .

Then (20) follows, by using (19) and Ry < r < R;.
3. The estimate (21) follows directly from (19) and (20) O

In order to get an absolute lower bound of the specific volume, it is simpler to go back to
the Eulerian formulation (1), following the strategy of [10]. Let us introduce the static (eulerian)
problem (vg(r) = 0)

lp'l‘(pSa 95) = PFS(T)y (27>
5 (r*n(ps, 05)6,), =0,
in Q, with Fg(r) = —G22, the mass constraint
/ r?ps(r) dr = M = / r2p%(r) dr, (28)
Q Q
and the boundary condition
(0s)r(Ro) =0, Os(R1) = Or. (29)
Proposition 1 The problem (27)(29)(28) has a unique solution (ps(r),0s(r)) given by
Os(r) =0r forreQ,
1
(B—1)2GM, (1 1\]77 (30)
= |l - — Q
pS(T) |: (6_2)14912" r To fOT”I’E )
where the constant ro depends only on the data, provided that
KF, <M< KFy, (31)

where K, F, F1 are positive constants given below.

Proof: One computes easily the static solution by integrating the system of ordinary differential
equations (27). As pg(r) > 0 on (Rp, Ry), the constant ry is greater than R;. It is implicitly
defined by the mass constraint (28)

M = KF(rg), (32)
3 1
where K := {%:1;7?5%0} " and F(z) := 1];)1 (L —2)™Fr2dr. One checks that = — F(x)
o
is monotone decreasing on (R, 00) and that Fy := lim, g, F(z) = 12)1 (% — I%) 7 2dr and
1
Fy :=lim, .., F(z) = If;)l (1)™7 r2dr then equation (32) has a unique solution ro = F~! (4£),

under condition (31) O

Lemma 2 The following bound holds for 2a < g

T
/ ma (6% (1) — 08)° di < C, (33)
0



Proof: ;From the identity 0% — 6% = « ngM 6210, dy, we get

4 1/2 92 1/2
9“—9?|<a</ﬁ0292 ) (/ZT4920‘2d> + 02
Q

Using (2)(19) and (20), taking the square and integrating on (0,7) we get (33) O
Now we have the classical representation formula of the specific volume (see [1])

Lemma 3 The following formula holds

- exp (% fot O (z, s) ds) 0

()25 + A [t ey (<258 [ b(2.0) do) ds

2

where ®(x,t) = 4 [ % dy + [ (2;2, + GMO) dy +0(0,t) and o(x,t) = o(n(x,t),0(z,t)).
Proof: Integrating the momentum equation on [0, 2] we find

o(xz,t) = —p+ u% = ®(x,t).

Multiplying by % 7?2, we get

Integrating on [0, t]

1772 exp (2 p / pd5> = (°)%2 exp <2uﬁ t[@(x,s)] ds>. (35)

Multiplying by A#? and integrating on [0,t] gives

t
(222 [ ) <10 220 (s [y (20 [ty 0 s

Plugging this into (35) gives (34) O

Proposition 2 Under the previous condition on the data, there exists positive constants n and 7
depending only on N such that

0<n<n(x,t) <y for(t,z) e Qr. (36)

Proof: After an idea of [35], from the formula giving ® we get

2?2 GM, _
——ndt/ ol 77/ <T3+ T40> dy — An° 7107 +

* T2 M,
—(n/ 2dy) <7"2v/ dy> *77/ <2+G40) dy — An®~10% + .
o T 0 - 0 T T

Integrating on 2 x [0,t] we get

1 t x T
(R:{’—RS)/U(O,S)ds:/nO(/ 2dy) dx—/n(/ UQdy> dz
3 0 Q o 70 Q o T
x 2
f/ (v2+A775102+77/ (21;+ G]\f()) dy> dz ds.
. 0 T T




Finally we end with the formula

/0 D(x,8) ds = Wy (x,t) + Ua(x,t),

with

T 0 T v 3 T 0 T
v = Zoay- [ 2 0 . - =
1(z,t) /0 e 5 dy /O 2 4y — Fom [/n (/O T dy) dx /ngI(/o . dy> d:c],
and . )
z 2v GMO
v =/ |- =
o [ 1L (25)
3 _ T2 GM,
R3 R3/ <v2+A77'6 16’2+77/0 <r3+r40> dy> dl’:| ds.

Clearly, after the energy bound (19), one has for some C; = C1(N) > 0 and Cy = C2(N) >0

Crl < Wy(x,t) <Cp  for any (,t) € Qr, (37)
and
Uy(z,t) < Cy for any (z,t) € Qr, (38)
Moreover for 0 < s <t < T and some C3 = Cy(N) > 0
Cit(t—s) / 0%n° =" do < Wy(x,t) — Ua(x, s) < O3t —s) (1+||n)|2572). (39)
Plugging (37), (38) and (39) into (34) gives
[ g
t
_ e#\pl(z,t) {(no)ﬁ—z e%%(z,t) n A(Z—ﬂ)/ 9267¥\P1(1,8)6¥[‘1’2(I¢)*‘I’2(%5)] dS}H
K 0 o
t
<Oy (1 + 162(-, 5| oo o~ T Ca(t=s) (1+nl12%7) d3> ) (40)
0

Observing that
102 )]l < N16°(8) = Orll% + 200 ]16% (-, 5) — Orlo + 07,

2
and that the identity 6(-,s) — r = (91/2(~7 s) — 91{/2) + 2911/2 <91/2(-, s) — 91{/2> implies that

106 5) = rlloe < 2016"2(,5) = 01|13 + b,
after the Cauchy-Schwarz inequality, and using Lemma 2, we have
16%(,8)lloe < C + F(1),

where F' € L'(0,00). Plugging this estimate into (40) implies the upper bound n <7
Using a similar approach to get a lower bound, we see after (39) that

t -1
Il < o [ ore e g5
0

-1

t -1 2 -1
0

where G € L'(0, 0).
Using the upper bound for F' € L(0,00) 7, we find

—1

t
Il < Co( [ (=G e as) <,
0

which gives a lower bound for 1 and ends the proof [



Lemma 4 The following uniform bound holds

T
/ max v*(-,t) dt <C, (41)
Y

Proof: From the energy estimate, we have

)] < %2/Q|(r2v)m\ dx < C (/Q % [(r?v).]? dw) v (/QVLG dx) 1/2.

1/2

Observing that the last integral is bounded by ( fQ 62 dx) , taking the square and using (20), we

get (41) O
Proposition 3 The following bounds hold
M2l o< (0,1, 22(2)) < K(NV), (42)

1012 |2 (@r) < K(N), (43)

Proof: ;From the momentum equation, we have

202 f

v
[772 - u(logn)xL = Pe + )

Multiplying by -% — u(logn), and integrating on €2, one gets

d lro 2 20® Y
- ) 5 [ﬁ — u(log n)w} dr = /Q (—pgew — PyNe — ey + :;) (ﬁ — p(log 77)1) dzx.

Integrating by parts and using Proposition 2

d 11w 2 ) 9 9
S e R
i ), 2 [TQ 1( Ogn)x} dsc+/Q 0°n; dx
Af v 03:7790
=— | — 0, wdx+ | pA dx
/Q n?=p 2 Q n3=p

A(2 — - 203
7/%92%nzdx+/f—fdx7/uf%dx—/%d
a 2n r Qr Q TN o

We first observe that the second integral in the left-hand side rewrites

7
dr =: Y Jy.
k=1
A2-5 A2-p A2-8
/Q“ 2(774_5)(9—(%)2775 dm+2op/u 2(4 g)(‘) Or) 12 d:c—i—é)r/ 2(774_5)7793 dz,
so we get the inequality
8
d lro 2 1, 9
— | 2= = - <
di [Tz uﬂogn)m} dx + 507 /Q 1y do < ’;Jk, (44)

with Js = C [, (0 — 6r)* n2 da.
Now, after (20), Proposition 2 and (2)

/ ?93 dr € L'(0,00) and W(t) := A % v2 dx € L*(0, 00).



Let us now estimate all of the contributions of the right-hand side.
94
PARS c/ 616, 0] dz < CV (1) + c/ O da.
Q ok
But as ¢ > 2 we get
|J1|<CV(t)+C/92112dx +C/ (0— HF dx+C/U2dx
Q Q
<CV(t)+CW(t

1l < [ ol0un.] ds < f/a%g dx + CV (1)
Q 2 Jo

| Js] </92|,7IU‘ dz < 5/92775 da:—&-Ce/ 6202 dx < 5/92173 dz + C.V(t).
Q 2 Q Q 2 Q

GM() dxr
Jy = — | .
! 3 (/Q Tg)t

J5| < C nx dach—i—E 2 dz.
| 5 | M
Q

2
\Jﬁ\g/ '“' dr < Cmax|o] < OW (1),
Q

2
|J7] §/ 'Lw [n:| da < / V2|0, | de < C maxv? <1 —|—/ 2 dx) < CW(t) <1—|—/ n2 dm) .
o nr Q Q Q Q

s <oV / 02 d.
Q

Collecting all of these estimates and taking & small enough, we obtain

au
— 4+ U<C,
dt +
Where Ut) == [o3[% —nlogn). }2 dx, which implies that U(t) < C and then after (19)

Jonz dx < C’ and Jo, %03 da: dt < C, which ends the proof [

Proposition 4 The following bounds hold for w := r?v

lwell Lo (0,1, 22(0) < K(N), (45)
[wllL=(@r) < K(N), (46)
[weal2(@r) < K(N). (47)

Proof: ;From the momentum equation, we have
wy =1t <—p+u wm> + 72 f 4 2r02.
n z

Multiplying by —w,, and integrating by parts on ), we get

d 1 4 2Ar*
2 - dx +/ —_— wm daz—/ % Ng We Wy dfo/ T3 Way der/ " 00, Wy, dz
dt Q" Q o N

Art >
ﬁgfﬁ %0 wey do — / 1 fwg, dr =: ZHk'
n Q —1

Q

10



We estimate the right-hand side as follows
1 2 1 2, 2
|Hi| < C N2 WrWae| dr < 3 e | w;, dx + % NyW; dx
Q Q €Ja
1 1
<z 5/ w?, dr + — <maxwg max/ n? dac)
2 Jo 2¢ \' Q 0,71 Jo
1 C
<z 5/ w?, dr + — maxw? dz
2 0 2 Q

C [&? C
<= 2 v e 2 v 2
S35 5/me- dxr + 5 (C/wu da:+€2/wx dx)

Ss/wiw da:+0/wi dzx.
Q Q

Hy| <C v? Wye| dx < & w2 dx + C maxv?.
xrxr Q
Q Q

[t

|Hs| < c/ 0|0, | dxgs/ w?, da;+c/ 6262 da.
Q Q Q

|Hy| < C'/ 02 |Npwaz| d < 5/ w2, dx—l—C/ 0?02 dx.
Q Q Q

|H5|<C/ |wm|dx<5/ng dx + C.
Q Q

Using these estimates, we get the inequality

4 w? dx +/ w?, de < C (1 + / (w? 4 6262) dx + max (0 — 0r)° + maxv2> . (48)
dt Jo Q Q Q Q

Now, multiplying the momentum equation by v and and integrating by parts on 2, we get

i 1, GMy K9 2 _ / 2
o 9(20 . )da:—#/ﬂn[(r V)g]” dx = ngcrvdx

Af? 2A0
= / % nerv dx —/ W 0,72v dx.
Q Q

Then

r

i/ va—GMO dx—f—/wi dmés/@‘lni dx+C/920§ dx + C'max v?. (49)
dt Q 2 Q Q Q Q

Multiplying (48) by e and adding to (49) gives

1 M, 1 M,
4 fv2—G 0—|—6w§ dm—i—/ fUQ—G O—I—Ewi dz
dt Q 2 r Q 2 r

<C (1+/ 620> dm+max(9—9p)2+maxv2+0/ 0*n? dm).
Q Q Q Q

It is now routine to show that the right-hand side is bounded by C(1+ G(t)), where G € L'(0, )
provided that ¢ > 4, which gives the bounds (45) and (47).
Estimate (46) then follows from (45), which ends the proof O

Remark 2 After (36) Lemma 2 is improved: for any2a—1 < g, fOT maxq (0%(-,t) — 0%)* dt < C.
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Now, following [18], let us define the positive quantities

Y(t) = orilai%/ (14692 62 dr and X(t) := / (1+6)(1+07) 62 dx ds.
ISR JQ +

Lemma 5 The following inequality holds

Xt)+Y(#) <C, foranytel0,T]. (50)

Proof: We follow the main steps of [18] (see the proof of Theorem 1.1). We first observe that

o 2 - 1/2 92a+2 1/2 12
(aq — 02 )gc(/ﬂ(1+oq)9xdz> (/ﬂ(lwq)zdx) <0(1+Y )

1
2q+4

maxf) < C (1 + Y1/2) . (51)

then

Now, from the energy equation, we have
B wr 4 4B
€9 Oy +0pg wy — = wy, = — 0, =4drer 0, +r" | =0, ) .

Defining K(n,0) := 19 @ ds, multiplying the previous equation by K, dividing by r* and
integrating by parts on €2, we get

0 4k0,,
/(efﬁﬂrﬂ@wx—fwi— i ) thSC-l-/EQIKmd:E:O.
Q T T ’I"’I] T er]

Computing K; = K,,wx—i—% 0; and K,; = (% 9x> + K Waa + Koy Wa s + (ﬁ) 7.0¢, and observing
t n

n
that | K| + [Ky,| < C(1+0)(1+ 607), we can estimate all the contributions in the sum

€p Ope w5 4kl K

+/ K 0 (ﬁ Gm) + Kywes + Kypwgng + (K> N:0; | dzr =0.
Qn n o)y n).,

Rearranging the first term in the second integral and integrating on [0, t], we get

1 2 1 42
/“gegdx—[/“zegdx] +/Ee—30§dxds
Q2 a2 =0 N

4KK, 4K?
:_/ @ Kyfaw, do ds—/ PG, d ds—/ - 0,0, du ds
Qt'/" + T Qt ren

K
—/ (9]99 ww—'uwi>fwz dx ds—/ (9}99 ww—uwi) %95 dx ds
. n r . n n

8
—/ k K0z wyn, do ds —/ i <K> 0105 dzx ds —/ r K0, wy, dx ds =: ka, (52)
N Q: M \T7 n e M k=1

where we notice that

/ g i—i 0? dx ds > coX (1),
Q1

12



with ¢ = min<{c? , 4‘371&_, . We estimate the various integrals of the right-hand side as follows,
Vo Rigt-P
using Cauchy-Schwarz inequality together with Propositions 3 and 4.

t
L] <C | 1+60)1+607 |0sw,| de ds < eX(t) + CI%&X (14071 / max w? dx
Q1 ¢ 0

<eX(t)+ Cr%ax (1+ 67T,

using the identity w2(z,t) < C [, w2, dz and Proposition 4.

L] <C [ (146092 |0,w,| dv ds
Qt

< Crrbax(l + 02q)/ (02 +w?) do ds < Cr%ax(l + 6%9),

t

by using Proposition 4.

1+ 607
|I5] < C’/ (14092 |0,0| dx ds < eX(t) + C’né?ax(l + 92q+1)/ + 02 dx ds
Q1 ¢

Q ¢
< Cnbax(l + g2ty

after (20) and Proposition 4.

|14] < C/ (14 07) (0°|wy| + w?) |wy| dz ds
Q:

t ¢
< Cmax (14 0772) / max w? dx ds + C max (1 + 69) / maxwg/ |wy| dz ds
Q 0o Qt o Q

t t
< C'max (14 60712) / max w? dr ds + Cmax (1 + 0972) / maxwi/ w? dx ds
Qt o @ Qe 0o @ Q
< Crré?ax (1+6772),

after Proposition 4.

<O [ (149 (Pl + u2) (64 do ds
Q1

< sX(t)+C/ (14 07) (0*w?2 + 20°|w,|* +w}) dx ds

t

<eX(t)+ Crrbax 6*(1 4 07) / w? dx ds + C’rrclgax 62 (1 + 07) / |we|? dx ds

t t

+01%ax (1+67) / w dx ds < C’Hbax (14 09+4),

t

after Proposition 4.

1/2 1/2
|Is] < C/ (14092|0,w,n,| dz ds < C (/ (14609202 dx ds) (/ (14 07)%w2n? da ds)
Qt t Qt

2g+1 1/2 t 1/2 2g+1
< CY (t)4+C max (1+9%) <max/ n? da:) </ max w? ds) < CY(t)+Cmax (1+6 El ),
Qe 0,71 Jo 0o @ oF

after (19) and Propositions 3 and 4.

K K
< [ £ () 0,1,0,
QM i\"1/y

K7”4

2
930) (1+ 6% 92 dr ds

de <eX(t)+C (
Qt

13



Pl et K
< eX(t) + Cmax (1+6*72) + Cmax (1 +6%71) / —0, { 933] dx ds
Qt Qs 0 n n T
<eX(t)+ Cr%ax (14 6%y,
t
|Is| < C/ £ Kp|0pwee| de < C | (14609202 de ds+C | (14 609)*w?2, dv ds
al Q Qt

<COY(t) + Cnégax (1 +629),

after Proposition 4.
Plugging all of these estimates into (52) and taking e small enough, we get

X+Y <o+ max 620ty

t

After (51), we end with the inequality X +Y < C (1 + Y%> , which implies (50) and ends the
proof [

Corollary 1 For anyT >0

max/ 62 do < K, (53)
0,71 Ja
and

max 62 € L'(0,T). (54)
Proof:

1. From Lemma 5, we see that X (¢) < C, for any t < T. Inequality (53) follows directly.
2. The estimate (54) is a direct consequence of Lemma 5 [J

Proposition 5 1. There exist two positive constants 6 and 0 depending only on N, such that

0<0<0(zt)<0 for (z,t) € Qr. (55)
2.
172l 2(Q.) < K(N). (56)
Proof:
1. We have

on ()| <o [Sa<e [ piare [ @l
er Q € Q € Q€

0.
<C/LJM+C/wm+mnm,
Q € Q

where er := e(n(M,t),0r), observing that e(7,0r) < e(n(M,t),0r) < e(n,0r).
As the last integral is bounded after Proposition 3 and Corollary 1, we get

e 1/2 de\ /2
1og<>‘<c+c</9gdx> (/2) : (57)
er Q Q€

To check that the last integral is bounded, we multiply the last equation (6) by —e
integrate by parts, ending with

d 1dx T krieg o krie, P
@/95?2+ Qﬁwxdﬁ/gwoxdx:_ [ b dt | G dr = T

14



Let us estimate the right-hand side. We get

4
|J1\<s/ S 9§dx+05/ni da,
o 7e Q

where the last integral is in L(0,T), and

1 1 1 1
5=, [63(7779) - | P00 s+ [y = ey | e

Wy

, (n,0 d +/ ,0r) )| ————= d
/[P 77 77 F] (7]M 01“ €T [p n F (77M F)]63(77M701") £
(T]M70F
+ EAN LR A
/Q e (77M,91‘ Z

where the last integral K5 is zero due to boundary conditions. Bounding all of these terms,
using Taylor formula and Cauchy-Schwarz inequality, we get

| K] < /—w dz+C/(0 0r)° dz.

|K2|<5/%wg d:chC’s/(nan)de.

|K5) < /—w d:c—l—C’/ (6 — Hp dx.
|K4| < /—w dx+C/ (n —nur)? da.

] < s/ﬂ Ll da - F(0),

Finally

where F' € L1(0,7).
We obtain the inequality

d dx
Z ) g
dt/Q e2 G(e),

where G € L'(0,T). Then we conclude, using Gronwall’s Lemma, which implies finally,
together with Corollary 1, that the left hand side of (57) is finite. Inequality (55) then
follows.

2. After (55) and Proposition 3, one gets (56) O

Proposition 6 The following bounds hold

max [wellp2(@) < C(T),  [lwatllL2(@r) < C(T), (58)
max 104l £2(2) < C(T),  [0z¢ll12(@r) < C(T), (59)
max [wasr2(0) < C(T), X 10aalr2(0) < C(T). (60)

Proof:
1. The first equation (6) rewrites

3|
S
8
S~
8
_l_
[N~}
E
[NV}
|
Q
=

w =r (—p+



We derivate formally this equation with respect to ¢ (this can be made rigorous by taking finite
difference and passing to the limit (see [1])), multiply by w; and integrate by parts in x

d 1 4 4
(/ —w? dx) / ol w2, de = — 'L; www, dr — il wiw; d
dt n Qr Q 1
dur prt
— | — wwpwi dx+ [ — wtw dr — [ dprwiwy, dr + — Wy Wiy dx
o n Q Q o0

4 4
—l—/ = wwt2 dxr —/ = ww; dz —|—/ g wwy dx —l—/ dprwwy, dx —|—/ dprwiw, dx
rf r Tl Q Q

15
+/ drnpywawy dx—|—/ 4rnpeBiwy dm—i—/ r4pnwxth dm—i—/ T pg@tht dr =: ZD
Q Q Q Q

Jj=1
Let us estimate all of these terms.

|Dq| < /|wwth| dr < /w wt derC'/w dx < C’mgxw2/wt2 d:z:+C/w32m dzx.
Q Q Q
|Ds| < /\wwtwﬂ]z\ dr < /w wt dz+C/w dr < C’maxv2/wt2 derC/wix dzx.
Q Q Q Q Q
| Ds| <C’/ |www,e| dxéa/flﬁ w? dx+Cmaxw2/ w?, d.
Q N Q Q
|D4| < C/ lwew?| dr < C/w w? da:+C’/w dz < Cmaxv /wt dx—f—C/w?w dzx.
Q
| Ds| <C’/ |wiwey| dxgs/r = w?, dx—|—C’/wt dx.
Q Q 7N
Dsl < C | w?|wg| de < e 7"4ﬁ w2, de+C | wdx
| | x xt x
Q Q 7 Q
gs/r4ﬁ w?, derC/w?m dx.
o 7N Q
| D7| <C/ lw?w dng/ w? da.
Q Q
| Ds| <C’/ lwew?| de < C—&—C’/wf dx.
Q Q
\D9|<C/|wtw| dxéC’JrC’/wt2 dx.
Q Q
Dl < C WWig| dx < € r4ﬁ w2, de +C | w? dx.
| xt
Q o 7N Q
| D11 gC/ [wgwy dxéC—i—C/w? dzx.
Q Q
|D1o| < C/ |lwiw,| de < C’—i—C’/ wt2 dx.
Q Q
13| < wly| dx < x + wy dz.
| Dy3] C/|9|d c/efd C/fd
Q Q Q
|D14| < C/ polwziw,| dr < 6/ T4H wit daerC’/ wiT dx.
Q o 7N Q

| D15 <C’/p9|th9t| dxés/ s w?, dx—i—C’/ 0? dx.
Q Q 7
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So finally, choosing & small enough

d 1 1
— /fwt2 dx +7/7"4H w?, dngJrC/wfderC/ (w2, +07) dz. (61)
dt \Ja 2 2Ja m Q Q

As the last integral in the right-hand side is in L'(0,T) after Lemma 5 and Proposition 4, we get
the inequalities (58).
2. The second equation (6) rewrites

U 207 GMyny 1 U n
w 5 -6 - nxwz"i_*pOez"'_*pnnz
r pr 7 I I

Taking the square and integrating on €2, we get
/wgl dm<C+C’/ (w?+9§+wi+ni+w4) dz,
Q Q

which, after the previous estimates, gives the first estimate (60).
3. Rewriting the third equation (6) as

60925 =4z — 017010:,: + %wia

and derivating this equation with respect to t (this can be made rigorous as previously), and
multiply by ey

1
/ (2 e%@f) dz = / e01qu: dx — / (Opowy)regy da + / (Hwi)tegﬁt dor = Ay + Ay + As,
Q t Q Q Q7

where
A= - / (conabs + coo0.0; + eofia)
Q

4 4 4 4 4
X (anrwxem + KJOLQtew + ﬁwez - %’LUwHLE + m91t> dl‘,
" 7 n 7 1
Ay = _/ (poeows0; + Opoyw? + Opgebiw, + Opewyt ) egbyd,
Q

2
Az :/ (—%egwiet—&— Megwmwm&g) dx.
Q n n

Integrating on (0,¢) for 0 < ¢ < T, we find that, for two positive constant o and (3

20

1
amax | 0%dz+ 3 92wdx dt</ ( 6292> z,0) dx + Ey, 62
was [ o [ 0 (5 9) o a3 (62

where the Ej, are the various contributions corresponding to the integrands in Ay, Ay, As.

Let us estimate all of these terms, using previous bounds and Cauchy-Schwarz.

|Eh| < C [ne0tw, 0, dax dt < C nw?dx dt + C 020%dx dt

x

Qr Qr Qr
T
< C/ maXGf/ 02dx dt—i—maxwg/ nidx dt
o @ Q Qr Qr

T 1/2
<C (1 +/ mgx@?dt) SCH+C | 0044 dedt<CH+C ( 02,dx dt) .
0

Qr

T
1 1
| Es| <C/ 1:026,| dx dtgc/ max 67 (/eﬁdx+/n§dz> dt
Qr 0 Q 2 Ja 2 Jq

17
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T 1/2
< C/ max 07dt < C < 02,dx dt) .
o 9 Qr

|E5] < C’/ [n0:w8;| de dt < C niwide dt + C 020%dx dt
Qr Qr Qr

T
<C’/ max@f/ 02 dx dt+maxw2/ nidx dt
o 9 Q Q T

T

T 1/2
<C (1 +/ mng?dt) SCH+C | 10044 dedt<CH+C ( 02,dx dt) .
0 QT Qr

wﬂ<0/|m&m%Mxﬁ<@&L
QT

|E5| < C [1720:0¢] dx dt < s/ 62,dx dt + C. 02n2dx dt
Qr T QT

T 1/2
<e 02, widx dt + C’E/ max 07dt < e 02,widx dt + C. ( 62,dx dt) .
0

Qr
T

Es| < C we0,0%| dz dt < C max 6? dt + C max w?> 02dz dt

| x t x x

Qr o @ Qr Qr

Qr Qr

1/2
<C+C< 02,dx dt) .

Qr
T 1/2
|E7\<C/ 0762| dx dtgc/ max 67 dt<C+C< 02,dx dt) :
Qr 0 Q Qr

T
|Es| < C |w6,02| dx dt < C’/ max 07 dt + C max w? 02 dx dt
Qr o 9 Qr Qr

1/2
<c+c( 9§tdxdt) .

Qr

|Eo| < 0/ |w,0:02| da dt < C|FEg|.
Qr

Qr
|Eq11| < C/ |0zwy 04| dx dt < 6/ 62,dx dt + C- w20%dx dt
QT Qr Qr

<e 02,widx dt + C..
Qr

Bl < c/ 04000 da dt < C|Ero.
Qr
T

|Bral < c/ 0,200 | dz dt < C|Evy].
Qr

1/2
|E1s| < C/ lw,07| dx dt < C ( 02,dx dt) )
Qr Qr

| Ex6l go/ |w20,| dx dtgc/ w? dr dt+C’/ 07 dx dt
Qr Qr T

18



1/2
<C+C< 02,dx dt> .

Qr

1/2
|E17\<0/ |wz9t2\dxdt<0/ efda;dtgc(/ egtdxdt> .
T T T

|Ers| < C’/ 0:0.¢| dz gs/ 02,dx dt+C’5/ 02dx dt
T

QT T

1/2
<e 02, widz dt + C. ( 62,dx dt) .

QT Qr

1/2
\E19|<C’/ \w§9t|dx<0/ wSdrdt+C | 607 dxdt<c+c< egtdazdt> .
Qr Qr Qr Qr

Qr Qr

Finally, plugging all these estimate into (62) for € small enough, we get

1/2
62,dx dt) ,

1
amax/&fdz+fﬂ HfrdxdthJrC’(/
0,71 Jqo 2 Qr

T

which implies estimates (59).
4. The third equation (6) rewrites

4n 1% 7

1
Ope = +’I"3 0, — W w?c + m(eﬂet + enwz) + H nmoz

Taking the square and integrating on €2, we get
/ 02 dv < c/ (0% + 02 + [wh + 62 +026%) du.
Q Q

Using Corollary 1, together with Proposition 4 and the first bound (60), we can bound the right-
hand side, which provide us with the last estimate (60) O

Lemma 6 The following uniform bounds hold

maxw? < O(T), max6? < C(T), I%axni <C(T) (63)
T

Qr Qr

Proof: The first two inequalities follow after (60). To get the last one, we derive formula (3) with
respect to x and use the first two inequalities together with Propositions 2 and 5 O

Proof of Theorem 4
1. We have first

- 1/2
In(z,t) —n(z,t')] < |t —t')/2 (/ w? dt) <Ot —t'|V2,
0
After Proposition 4
z,t)—n@ )| <Clz — 2|V 1+ 2 dz) < Claz — 2/ |V3,
n n N
Q

so we find that n € CY/2V4(Qr).
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2. From Proposition 6 we have also

T 1/2
0z 1) — 0z, )] < |t —[1/2 ( / 07 dt)
0

<Ot —t'|M/? (/ /9 dxdt) < Clt—t|V/2,

After Propositions 4 and 6

0(x,t) — (', t)| < Cla — 1/2 (T max/@ dm—i—/ /9 dm) <C|x—x’|1/2,

so we find that 6 € C1/21/4(Qr).
As we have also after Propositions 6

1/2
02 (2, 1) — 0,(2 )| < |z — 2|2 (/ 02, dt) < o — 2! V2,
Q

we deduce as in [20], using an interpolation argument of [22], that 6, € C'/31/6(Qr).
The same arguments holding verbatim for w and w,, we have that w, w, € C'/31/6(Qr), which
ends the proof of Theorem 4 [

3 Existence and uniqueness of solutions

In this section we prove existence of classical solution by means of the classical Leray-Schauder
fixed point theorem in the same spirit as in [20, 7], then using a limiting process we will get weak
solutions as in [15].

We recall the classical Leray- Schauder fixed point theorem

Theorem 5 Let B be a banach space and suppose that P : [0,1] x B — B has the following
properties:

e i) For any fized \ € [0,1] the map P(),.) : B — B is completely continuous.

e ii) For every bounded subset S C B the family of maps P(.,x) : [0,1] — B, x € S is uniformly
equicontinuous.

e iii) There is a bounded subset S of B such that any fized point in B of P(\,.),\ € [0,1] is
contained in S.

e ) P(0,.) has precisely one fixed point in B.
Then, P(1,.) has at least one fized point in B.

In our case B will be Banach space of functions 1, v, € B on Q7 with n,v,v,, 8,6, € C/31/%(Qr)
with the norm

(0,018 := [lnlllys + [1lolll/z + valllys + 101173 + 10z]]]1/5-

For \ € [0,1] we define P(),.) as the map which carries {7}, @ = 720,60} € Binto {n,w = r?v,0} € B
by solving the system

Nt = Wy, 2
wy — Bwgy = —ﬁ%ﬁmu? — 75, (77, 0)ne — PP (71, 0)0, + NP2 + 2 o0
. =5 G\ RE 0\ - = _ R R
éo(i, 0)0; — "”"("’ﬁe)’“ O = (“7;) > Oum, + “e(ﬁ’e) 62+ %wg — 0o (77, 0)1,
n
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where 7 = r(7j) = [R} + 3 [, ii(y,t) dy]'/?, together with the boundary conditions
’U)| —0,M — Oa
z=0 65
{ 97«"9::0 = 07 0|w:M = HF’ ( )

for t > 0, and initial conditions

n(x,0) = (1 = X) + Ano(z),
v(x,0) = Avg(x), (66)
0(x,0) = (1 — N)fr + Ap(x).

We can consider the second and the third equations of (64) as parabolic type and apply the classical
Schauder-Friedmann estimates

lwlliys + lwallijs < efllnllys + 110l /s + 10215}

102]1/3 + 101113 < {[|02ll1/s + [[Wall1/3}-
Moreover from first (64), we get
||77H1/3 < ||woc||1/3~
It implies that P(},.) : B — B is well defined and continuous. }
Using a priori estimates from Section 2 it follows that for any {7, 7,6} from any fixed bounded
subset the family P(.,{7,0,0}) : [0,1] — B of mappings is uniformly equicontinuous.
Now, in order to verify (iii), we observe that any fixed point of P will initially satisfy original

problem, therefore n and 6 cannot escape from [n, 7], [0, 6] up to time T'. This fact follows clearly

from Theorem 4. To check (iv) we see by inspection that the unique fixed point of P(0,.) is given
by n(x,t) = 1,v(z,t) = 0,0(x,t) = Or.

All the previous facts allow us to apply Theorem 5, which imply the existence of classical
solutions of (6)-(8) in  x (0,¢*). This ends the proof of Theorem 2.

Let us now consider the existence of a weak solution. From previous results it follows

e v converge to v in LP(0,t*; C°(Q)) strongly and in LP(0,t*; H!(Q)) weakly for 1 < p < oo,
e v — v ae. in Q x [0,*] and in L>(0,t*); L*(Q)) weakly *,
e Oyvp — Ov in L2(0,t*, L(2)) weakly,
e 0} converge to 0 in L2(0,t*,CY(Q2)) strongly and in L?(0,t*, H*(2)) weakly ,
e 0 — 0O ae in Qx[0,¢*] and in L>=(0,t*; L3(Q)) weakly,
e 1, — 1 in C°(Q x (0,t%)),
o prri — Ay in L2(0,t*; HY(Q)),
After the definition of r(z,t), one has

t
r(x,t) = ro(x) —|—/ v(z,t')dt" a. e. Q x (0,T7),
0

then
re(,t) — iy t) = ( / (s, t)ds) /3

y
>e(x—y) \/(z,y,t) € Qx (0,2) x (0,T).
Then from the previous computations we get
r(z,t) —r(y,t) = e(x —y) \/(x,y,t) € Q2 x (0,z) x (0,T7),
It implies that
ng — n a.e. in Q x [0,t*] and L*(Q x [0,¢*]) strongly for all s € [1,00].
This implies that
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o 2mp 5 Ay strongly in L2(0,t*, L2(Q)) ,

Tk

. % — As strongly in L2(0,t*, L2(Q2)),

o fi. — fin C°(Q x (0,t%)),

. “’”a# — Ay weakly in L2(0,t*, HY(Q)),

o rZvio, — As in L?(0,t*, H'()) weakly ,

o r2vg(og)z — Ag in L(0,t*, L?(£2)) weakly *.
Then applying similar technique as in [15] it follows that

e Ay =pr?in L?(0,t*); HY(Q),

o Ay = 2Ipin L2(0,t*, L*(2)),

o Ay = % in L2(0,t*, L?(Q)),

o Ay =" iy 1200, ¢, H'(Q)),
o A5 =r%%0 in L?(0,t*, H (Q)),
o Ag =r%v(0), in L>(0,t*, L3()).

Finally, we prove uniqueness for the solution.
Let n;,v;,0;, i = 1,2 be two solutions of (5), and let us consider the differences: E = 11 — 12,
T =601 — 0y and V = v; — vy. The following simple result holds

Lemma 7 The following bounds hold
[rgt —r*| < c/ |E| dx  for any m € Z,
Q

k(1 61) = K(n2,02)] < C(IT[ +[E]),

lp1 — p2)| < C|E|,
lev(m,01) — ey (n2,02)] < C(|T| +|E]),
Ipo(n1,01) — po(n2,02)| < C(|T|+|E|),

|Ee| < C(IT]+ |E]).

Proof: Using the identity

1 m—_
== =) [ st =) s

we have
m m 3 3
lrg" — 1" <Cm|7“2_7"1|7

m—3

where Cp, = % (2R} — R) * ,ifm >3, and C,,, = @RS"'_B, if m < 3. Then using the definition
of r(z,t), we see that

lry* — ri"| <3Cm/ |E| dx.
Q

The other inequalities follow in the same way from Taylor’s formula together with Propositions
2 and 5, Lemma 6 and formula (3) O
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JFrom the first equation (6) written for 7y, w; and 7y, ws subtracting, multiplying by a test

function y, integrating by part and putting x = E we obtain

2
< .
5 / E%d /QEWm dx < ||E|2[|Well2

Using Cauchy Schwarz inequality for € > 0

d
G [ B <ewLlg+ c IR,
Q

(67)

Denoting now by W the difference r3vy — rfvy, rewritting the second equation (6) for ws and
w1, subtracting, multiplying by a test function ¢, integrating by part and putting ¢ = W we obtain

the following

2 T2 112 _
th/deJr/u W2 dx = ZA“

i=1
with

|AL] =

2-B 2— 2-3_2—
2 Up ﬁ771 / UM ﬁ771 ?

< Wall2(ITll2 + 1 Ell2) < e Wall3 + C=(IT13 + I E]13).

Ar2 P (o2 _ p2 2 2—_25
{ém(% ), B —m )y
Q

where we used Lemma 7 and Cauchy Schwarz inequality for € > 0.
In the same stroke

|Az| =

/ r%(r% - T%)ngz dx
Q

< | Wall2ll ]2 < el W13 + C:|I B3,

and

|As| = ‘/ (A = () (s — wy ) + (7 — 1) By (wy — 1)} da
2T m

< || Ell2|Wall2 < elWall5 + C=| E|l5-

So we get finally, taking & small enough

/ W2dx +/ W2 dz < C(|T|5+ | El3)-
Now, dividing the energy equation by eg, we have

0
gt:,ﬂ wx+qﬁ+iwi
] €o neg

Subtracting this equation written for 7;,w;,#; from the same for 79, ws, 62, multiplying by a

test function 1), integrating by part and putting ) =T we obtain

2 dt eo(m,01) " eg(n2,02)

4 4 2 2
+/[wmwﬁ_Aw@wP%H/ﬂ[zm ws ]Tm— zs
Q Q

meg(n1,01)  n2eq(n2, 02) meg(n1,01) 77266(772792)

pa 1 =— [ [&pa(m,al) o Gapo(ma, ) wh]m
Q

Bounding the B;, using as previously Lemma 6 and 7 and Cauchy Schwarz inequality for € > 0,

we get
1B1] < & (W[5 + I172113) + Ce (1215 + IT°13)

,02)r
Wﬂ<—AW2”210m+e/r&n+@mEﬁ+w@%

n2€0(1)2,62)
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and
|Bs| < el|Wall5 + C:| B3

We obtain finally

d
4 T2dx+/ T2 do < e/ W2 dz + C (|E|2 + |TI3) - (69)
dt Jo Q Q
Then adding inequalities (67), (68) and (69) and choosing e small enough, we get

1d

s | (B2 W24 T%) do < C(IBIE + W3+ ITI3)
Q

which clearly implies uniqueness.

4 Asymptotic behaviour

To prove the result of asymptotic stability of Theorem 3, it is more convenient, following [35], to
go back to the Eulerian formulation.
1. After Proposition 1, the static solution pg, fs is the unique solution (under condition (31))

of CM
—(ps)r = ps T207 fs = Or.

So we rewrite the momentum equation in (1) as

ps

)

Wy r
p('Ut -+ UU’/‘) = —pr + i (ﬁ) + (pS)

where w = 72v. Multiplying by w and integrating on w = (Ry, R1), we get

2
,uw—g dr = /pwr dr+/r2pv 7(]95% dr.
r w w pPs

d [1 5, /
— [ = d
a w2pvr T+

w

Using the second law of thermodynamics ds = de + pdn and (1), we compute the Eulerian energy
equality

d Lo 2 972" wz _ (pS)r 2
dt/wp(Zv +€—9F8>T dr+9r/wf$0—2 dr+9r/w,u% dr—/wpv s redr.

Applying the identity 4 [ pF(r) r?dr = [ pr’vF,(r) dr, with F = ps(ps,0s), and rearranging
the integrand, we obtain finally

d 1, o, (0 0 (0 — 0r)>2
dt/w [”{2” “VaF(or log 1>+A2<ﬁ—1>n1—ﬂ

AbR 23 1-8\ | .2
T3G-1) {P + (2= B)pps } ridr
62 w?
+9p/wn9—2 dr+9r/w,u742—0 dr = 0. (70)

2. The first equation (1) rewrites
1
pe+ 5 (pw)r = 0. (71)

Multiplying by r2(p!=# — p}{ﬁ ) and integrating by parts on w, we have

d [ 2P s\, -8 _ 18
i) (2_5—pps dr—pr(p —pg )r dr.
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Rearranging the integral in the right-hand side, we get

L d [ of ap 1-8 /2—5
=5 dt/wr (p (2= B)prs )dr+ X w, dr

+2=0) [ po5 o) dr o (72)

3. Multiplying now (71) by # and integrating by parts on w, we have after some calculations
1 d

o1 @ / r2ppg  dr = / pps” (ps)rw dr = 0. (73)

4. Putting a := A%, b := AZ(2 — B) and adding (70) + a(72) + b(73), we get
d 1, 0 0 (6 — Or)?
w?

Ay [0 _ (o P (1 -p)pz Y| rPdr+ 0 Cdr 40
p (2—B)pps  + (1 - B)ps 7+ Or 92 r+0p u20

21— )
A6} / P2 Pw, dr + AGR(2 — B) / o0’ (ps)w dr + AO%(2 — B)? / ppa? (ps)ow dr = 0. (74)

This implies the inequality, for a suitable positive constant C'

d 1, 0 0 (6 —6r)?
— — — —log— —1 A—m—7
a u][0{211 + ¢y Or <9F Og&p >—|— 26— 1)y’ P

(= omon w1} Par o [ @ ut e ) ar<o. ()

+

A62
21-2)

5. Multiplying the second equation (1) by —p~! | 1:’:, (p — ps) r2dr, we have

+

’ /

—vt/ (p— ps) rdr — vvr/ (p— ps) rdr

Ro Ry

B r’ Wy _ Ps)r "
o [ o) = (%) 0 (0= ps) = L [ (o ) 2
Ro s w Ps  JRo

Integrating by parts in w, we obtain after elementary manipulations

d "
——/U/ (p—ps) r2dr dr’—/pv r2dr + = /v2(p—pg) r2dr
dt w Ry w
[t e g i o p0)y
- wN T,Q p2 Ro P Ps p P pPs
+/ <p7"/ _ (ps)'l"/>/ (p_ps) Ter d,,,/.
w P pPs Ry

Rearranging the right-hand side leads to

d " 2 /
_dt/wv/RO(p—ps)r dr dr

+/ [ pv® + 1v 2(p— ps) + 2((5:12)) 9%(/?15/)155)(/)%)} r2dr

1 Af "
= /w <2 A(B = 2)p™ p, (6% — ) + MGT) </RU (0= ps) 7"2d7"> dr'

25




’

wy wpr "
+/u72(p—ps) rzdr—/u L / (p = ps) ridr dr'.

2 2
T°p” JR,

Estimating the right-hand side by using Cauchy-Schwarz inequality together with the estimate
J,(0% —0p)?dr < C [ 07 dr, we get the inequality

d
—g/v/ (p— ps) rdr dr’+/ [—pv® +0%(p = ps) + (p — ps)?] rPdr
w Ro w

< C/ (w2 +w? + 0?) dr, (76)

where C' is a positive constant.
6. Multiplying now (76) by a positive number & small enough and adding the result to (75), we

obtain p . ) ) 0 0)?
2 S o (L —tog ~ — 1) 4 AT
a w{ﬂ{f + ¢y fr <9r ogeF >+ 2(5_1)7715}
Ae% 23 1- 2—f3 " 12 500 .2
_ (92— 1_ _ _
+2(ﬁ7 0 {p (2= B)pps 7+ (1—B)pg } €V /Ro(p ps) v’ dr'| r2dr
+C’/ ((p— ps)® +w* +w? +62) dr <0. (77)

Integrating this inequality with respect to time and observing that, for a suitable constant C' > 0

1 2 0 ﬂ i (9_9f)2
/w[”{f +CV9F(9F g g =) T A s

{7 == monk "+ -3t} e [

Ro

AB2

MRS

(p—ps) r’2dr’} ridr > Cd(t),

where

@(t)z/ [(p— ps)? + 0% + (6 — 05)%} dr,

we ends with the inequality ®(t) + fot ®(7) dr < 0 which ends the proof of Theorem 3 [
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