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Abstract

We obtain general conditions sufficient for the solvability of a singular
Cauchy problem for functional differential equations with non-increasing
non-linearities.

1 Problem setting and introduction

The aim of this note is to establish some general conditions sufficient for the
existence of a solution of a singular Cauchy problem for a class of non-linear
functional differential equations. More presicely, we consider the equation

(D u/(t) = (gu)(t), S (a7b]7

where —eo < a < b < e and g : C((a,b],R) — Li.10c((a,b],R) is a certain (gen-
erally speaking, non-linear) mapping which is assumed to be non-increasing with
respect to the natural pointwise ordering (see Definition 4). Solutions of equa-
tion (1) are sought for in the class of locally absolutely continuous functions and,
in particular, may be unbounded in a neigbourhood of the point a (the precise
notion of a solution is given by Definition 2 below).

Definition 1. One says that a function u : (a,b] — R is locally absolutely contin-
uous if its restriction ul,¢ p) to the interval [a +€,b] is absolutely continuous for
any € € (0,b—a).
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We are interested in conditions under which equation (1) has solutions satis-
fying the additional condition

) lim A(t)u(t) =0,

t—a+

where h : (a,b] — R is a given continuous function such that

3) zli%h(t) =0
and
4) h(t) >0 forallz € (a,b).

Definition 2. By a solution of equation (1), we mean a locally absolutely contin-
uous function u : (a,b] — R which possesses the property hu' € Ly ((a,b],R) and
satisfies equality (1) almost everywhere on the interval (a,b].

It is important to point out that the derivative of a locally absolutely contin-
uous function satisfying equality (1) may have a non-integrable singularity in a
neighbourhood of the point a. For example, the function

A
(5) u(t):lﬁ7 IE(O,l],
for any real A satisfies the equality
4
(6) u'(t) = —ﬁu(\/;), t € (0,1],

where the coefficient function (0,1] > 7 — —4¢ > is non-integrable. The presence
of a certain weight function is thus expected when dealing with the problems of
the kind specified. As such a weight function, our definition of a solution of
equation (1) uses the same function /& with properties (3) and (4) that appears in
condition (3). For example, function (5) turns out to be a solution of equation (6)
if h(r) :=1",1 € (0,1], with y> 4.

For the sake of simplicity, we assume throughout the paper that the above
mentioned function % has the following properties:

The function h : (a,b] — (0,4o0) is absolutely continuous and non-
decreasing, and possesses property (3).

(7

These technical assumptions are not very restrictive because only the qualita-
tive behaviour of £ in a neighbourhood of the point a has influence on the formu-
lation of the problems below and, thus, 4 can be redefined in an arbitrary suitable
manner in an neighbourhood of b. The function

h(t) = (t—a)", t € (a,b),

where y € (0,+<9), is a typical example of a function satisifying conditions (7).
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Definition 3. By a solution of problem (1), (2), a solution of equation (1) possess-
ing property (2) is meant.

We emphasize that the definition of a solution of the functional differential
equation (1) is constructed here so that it involves the same function 4 that deter-
mines the additional condition (2), i.e., Definition 2 in each case is adjusted to
condition (2). For example, one can check directly that function (5) for arbitrary
A€ Rand € € (0,4o0) is a solution of the problem

: 4+4¢ _
(8) teh(glﬂt u(t)=0
for equation (6) in the sense of the definition above.

It should be noted that the property of the uniqueness of a solution is not
typical for the problems of the class indicated. For example, the homogeneous
problem (6), (8), as we have already seen above, has infinitely many solutions if €
is positive.

Problem (1), (2) with & satisfying (3) is usually referred to as the singular
Cauchy problem (see, e. g., [1]). It reduces, in a natural way, to the classical reg-
ular Cauchy problem if / is equal identically to a non-zero constant. Regular and
singular Cauchy problems for various classes of functional differential equations
are treated, in particular, in [1-9]. A problem on regular solutions possessing
properties of type (2) is studied in [10].

2 Notation

The following notation is used throughout the paper.
l. R:=(—o0,0), N:={1,2,3,...}.

2. If —o<a<b<ooand A C [a,b] is a measurable set, then L;(A,R) is the
Banach space of all the Lebesgue integrable functions u : A — R with the
standard norm

Li(A,R) 9ur—>/A|u(t)]dt.

3. Li;1oc((a,b],R) is the set of functions u : (a,b] — R such that ulj, s €
Li([a+¢,b],R) for any € € (0,b—a).

4. C((a,b],R) is the linear manifold of all the continuous functions u : (a,b] —
R.

5. ACioc((a,b],R) is the set of all the locally absolutely continuous functions
u:(a,b] —R.



6. ACioc:n((a,b],R) is the set of all the locally absolutely continuous functions
u: (a,b] — R such that hu' € L;([a,b],R) and

) sup h(z) |u(t)| < +oo.
t€(a,b)

3 General theorem
Let us consider the functional differential equation

(10) u'(t) = (gu)(r),  t€la,b],

where g : C((a,b],R) — Li.10c((a,b],R) is a certain mapping. Our main object
here is the problem on finding solutions of equation (10) possessing property (2).

Definition 4. An operator g : C((a,b],R) — Li.1oc((a,b],R) is said to be non-
increasing if the condition

(gu1)(t) < (guo)(r), € (a,b],
is satisfied for arbitrary pairs of functions {ug,u; } C C((a,b],R) such that
ur(t) 2 uo(t),  t€(a,bl.

The standard Definition 4 here restricts the class of non-linearities that the
right-hand side of equation (10) may contain under conditions of the theorems
formulated below.

Definition 5. We say that a locally absolutely continuous function u : (a,b] — R
belongs to the set ACioc.;,((a,b],R) if hu' € Li([a,b],R) and relation (9) is satis-
fied.

The theorem given below provides general conditions guaranteeing the exis-
tence of the solutions satisfying the condition

(11) lim A(t)u(t) =0,

t—a+
that is, the singular Cauchy problem (10), (11) is considered.

Theorem 1. Let the mapping g : C((a,b],R) — Lyi.10c((a,b],R) in equation (10)
be non-increasing and, moreover, the conditions

(12) hg (%) € Li((a,b],R)
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and

t—a+

(13) lim A(r) /tbg (%) (s)ds =0

be satisfied for any A € R.
Furthermore, let there exist certain functions o and 1 from ACioc: ((a,b],R)
such that

(14) im A(t)yi(t) =0,  i=0,1,

t—a+

and the inequalities

(15) 1w )~ (@0) =0, 1€ (ab],i=0,1,
and
(16) (1) (wi(t) = (gwi)(1)) =0,  t€(ab],i=0,1,

are satisfied.
Then equation (10) has a solution u : (a,b] — R possessing property (11) and,
moreover, the estimates

(17) Vo(?) <u(t) <wyi(t),  t€(a,b],
and

(18) vo(t) 2u' (1) 2 wi(t), 1€ (ab],
are true.

Note that, due to (7), the function A/h, in particular, is continuous at every
point from (a, b] and, therefore, the left-hand side terms of relations (12) and (13)
are well defined.

Remark 1. For g homogeneous, it is sufficient to suppose that

(19) hg <111) € Li((a,b],R)

because (19) guarantees the fulfilment of (12) for any A in that case. In the general
case, however, condition (19) may not imply the property indicated. Indeed, let

us take a = 0, b = 1, fix a certain € € (0,1), and, for any non-negative u from
C((0,1],R), put

0) (1)) i= =, 1€ (0,1],



where

1—¢ ify, <I,
my 1= .
1 if g, > 1,

and py, := Sup;¢(, ) h(2)[u(t)]. For all other functions u from C((0,1],R), we put
gu := 0. Then, as can be checked, the operator g : C((a,b],R) — Lj.10c((a,b],R)
given by equality (20) is non-increasing in the sense of Definition 4.

Since m L= 1 — ¢, relation (12) is satisfied for A < 1 (and, in particular, (19) is
true). However, relation (12) does not hold if A > 1.
Remark 2. The solution of problem (10), (11), the existence of which is stated

in Theorem 1, can be found approximately by using a convergent monotone two-
sided iteration procedure.

4 Corollaries for linear equations

Let us formulate corollaries for the case where the functional differential equa-
tion (10) has the form

(21) W' (t) = (lu)(r)+q(t),  t€la,b],

where / : C((a,b],R) — Lj.10c((a,b],R) is a certain linear mapping and ¢ is a given
function from Ly, 1oc((a,b],R).

Definition 6. An operator [ : C((a,b],R) — Lj.10c((a,b],R) is said to be negative
if the inequality (Iu)(r) < 0is satisfied for a. e. t € (a,b] whenever u € C((a,b],R)
is such that

inf u(r) > 0.
t€(a,b)

Definition 7. Let u and v be some functions from ACj,c((a,b],R). We say that a
function g : (a,b] — R belongs to the set M;(u,v) if it almost everywhere on (a, D]
satisfies the estimate

V(t)— (v)(t) < q(t) <u'(t) — (lu)(t), t € (a,b).
The following statement on problem (21), (11) is true.

Corollary 1. Let the mapping [ in (21) be negative, the condition

(22) hi (%) € Li((a,b],R)



be satisfied, and, moreover,

b
(23) lim A(1) /, I (%) (s)ds

Furthermore, let the function q € Ly.1oc((a,b],R) be such that

0.

b
(24) hg € Li((a,b], R), Jim 1(e) [ q(s)ds =0,
—a t
and q € M;(Wo, V1), where Wy and | are certain functions from ACioc. ((a,b],R)
satisfying inequalities (14), (15), (16).
Then equation (21) has a solution u : (a,b] — R possessing property (11) and
satisfying estimates (17) and (18).

Corollary 2. Let the mapping [ in (21) be negative and possess properties (22)
and (23). Furthermore, assume that the function q € Ly.10c((a,b],R) satisfies
conditions (24) and, for some i € {0,1}, the inequality

(25) (=D'(¥' (1) = (p)(1)) < (=1)'q(1) <0, 1€ (a,b],

holds with a certain function y € ACioc: p((a,b],R) such that

and
(—=1)'y(r) >0, t € (a,b].

Then equation (21) has a solution u : (a,b] — R possessing property (11).
Moreover, this solution and its derivative admit the estimates

26)  0< (=) () < (=)W (1), te(ab], ik=0,1.

Note that the lack of extra assumptions on the functions Yy and y is explained
by the unpleasant fact that the set M; (o, ;) may turn out to be empty. This never
happens, for example, if the mapping —/ is negative, because, as can be verified,
then

M (Yo, 1) # @
for arbitrary functions Yy and y; satisfying estimates (15). In our case, how-

ever, the operator / is negative and, therefore, the property mentioned essentially
depends on the choice of Yy and ;.



S Auxiliary statements and proofs

In the sequel we need an abstract theorem on operators in partially ordered normed
spaces [11, Theorem 4.1]. In order to state it, we first formulate definitions.We
use [11] as the main reference (see also [12, 13]).

5.1 General notions

Let X be a normed space over R and P be a cone [11] in X, i.e., a non-empty
closed subset of X possessing the properties PN (—P) = {0} and oy P+ 0P C P
for all {a, 0} C [0,+00). A cone P generates a natural partial ordering of X. As
usual, we shall write u <pvand v 2p uif and only if v—u € P.

Definition 8 ([11]). One says that an operator T : X — X is non-decreasing (with
respect to P) if Tu =p Tv for any u and v from X such that u =p v.

Theorem 2 ([11]). Let T : X — X be a non-decreasing and continuous operator.
Let there exist some elements {Wo, 1} C X such that Yo <p Y| and, moreover,

(27) Tyo Zp Yo,
(28) Ty <pvi.

Moreover, assume that the cone P is regular. Then the operator T has at least one
fixed point u € X such that

(29) Yo Spu<py.

We assume that the function 4 involved in the non-local condition (11) pos-
sesses properties (7).

Lemma 1. The set ACioc: ((a,b],R) is a Banach space with respect to the norm
b /
(30)  ACioc:n((a,b],R) 3 u — ||ull ::/ h(s) ‘u (s)’ds—{— sup h(&) u(&)|.
a Ee(ab]
Recall that the set ACioc. 5 ((a, b],R) is introduced by Definition 5.

Lemma 2. The set

G1) K= {u € ACen((a,b],R) : inf u(t) >0 and esssupu' () < 0}
t€(a,b] t€(a,b]

is a regular cone in the space ACo. ((a,b],R).



Lemmata 1 and 2 are proved in [14].

Lemma 3. [f the mapping g : C((a,b],R) — Li.10c((a,b],R) is non-increasing,
then, for any u from ACic.p((a,b],R), there exists a certain y, € [0,+o0) such
that

62) (50 < @0 <e(7) 0

fora.e. t € (a,b]

Proof. Let u € ACoc.((a,b],R) be an arbitrary function. Then

p = sup h(t)|u(t)| < o,

t€(a,b]
and, hence, the estimate
Hy
1 <

()] < 125
holds for any ¢ € (a,b]. Therefore,
(33) M )] < ule) < |u(r)] < E- t € (a,b).

h(t) — - - = h(r)’ ’

By assumption, the mapping g is non-decreasing in the sense of Definition 4.
Therefore, relation (33) yields

G4 g5 0= (—luh () = () = gl (1) =5 (5) )
for a. e. t € (a,b], whence estimate (32) follows immediately. O

Lemma 4. The set

(35) Ty(h) = {u € ACioe:n((a,b],R) | lim A(1)u(t) = 0}

t—a+
is a closed linear subspace in ACyoc.((a,b],R).

Proof. Let {uy, | m > 1} C Ilp(h) be an arbitrary sequence convergent, in terms
of norm (30), to a certain element u € ACjoc. 4 ((a,b],R). This means, in particular,
that

(36) lim  sup A(t) |um(r) — u(r)] = 0.

M=+ (a,b]



Let us fix an arbitrary positive €. In view of (36), there exists a certain mg € N
such that

(37) h(t) |un (1) —u(r)] <

N m

for any ¢ € (a,b] and m > me. By assumption, u,,, € Ily(h) and, therefore, there
exists some &g > 0 such that

(38) i, (1) |12(1) < ;

whenever 7 € (a, b] is such that |t — a| < 8¢. Combining (37) and (38), we find that

(39) u(0)[1(2) < [utme () [1(2) + R(2) [ (£) —u(r)] <&
for |t —a| < &. The arbitrariness of € now implies that u € ITy(%), which, in view
of the arbitrariness of the sequence {u,, | m > 1}, proves our lemma. O
Let us put
b
(40) (Tu)(t) := u(b) — / (gu)(s)ds, 1€ (ab],
t

for any u from ACoc.((a,b],R).

Lemma 5. Assume that g : C((a,b],R) — Lj.10c((a,b],R) is non-increasing, the
function h possesses properties (7), and condition (12) holds. Then

1. T is a well-defined mapping from ACioc. ((a,b],R) to ACioc:n((a,b],R);

2. The mapping T : ACoc:p((a,b],R) — ACioc:n((a,b],R) is continuous with
respect to norm (30);

3. T :ACioc:n((a,b],R) — ACioc: 1((a,b],R) is a mapping non-decreasing with
respect to cone (31);

4. If condition (13) holds, then the inclusion
(41) T(Tlo(h)) € Mo(h)
is satisfied.

Proof. Assertions 1-3 are established similarly to the argument of [14], and we
thus prove Assertion 4 only.
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Let u € IIp(h) be arbitrary. Then, according to (35), u posesses property (11)
and, by virtue of Lemma 3, one can specify a certain constant g, € (0,+o0) such
that estimate (32) is true. Then

@) ) /t bg(%) (s)ds < h(1) /t ’ (eu)(s)ds < h(r) / bg<_:”) (s)ds

t

for a. e. t from (a, b]. Estimate (42) and assumption (13) yield

t—a+

b
(43) lim h(t)/ (gu)(s)ds =0.
t
Taking relation (43) and definition (40) of the operator T into account, we obtain

lim A(t)(Tu)(t) =0,

t—a+

whence it follows that the function Tu belongs to the set ITp (/). The arbitrariness
of u from Iy (k) thus leads us to inclusion (41). O

Lemma 6. A function u : (a,b] — R from ACiy.((a,b],R) is a solution of prob-
lem (10), (11) if and only if it is a fixed point of mapping (40) lying in the set
Iy (h).

These last lemma is an immediate consequence of relations (35), (40) and

Definition 5 of the set ACoc. 4 ((a,b],R).

5.2 Proof of Theorem 1
We are going to use Theorem 2. By Lemma 4,
(44) X :=Ty(h)

is a subspace of ACjoc.5((a,b],R) and, hence, can be regarded as an independent
Banach space with the same norm (30). Lemmata 1 and 2 guarantee that the set

Ko := KNTIly(h),

where K is given by (31), is a regular cone in the Banach space IIy(h). By
Lemma 5, the operator T : ACioc: 1((a,b],R) — ACioc:n((a,b],R) defined by for-
mula (40) has property (41) and, thus, we can pass to its restriction to ITy(%).
The same Lemma 5 then ensures that 7 : I1o(h) — Ip(h) is continuous and non-
decreasing with respect to the cone Kj.
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The functions Yy and Y appearing in the formulation of the theorem satisfy
relations (27) and (28) with respect to cone (31), i.e.,

(45) (~1)/(Tyo) (1) =i (1)) >0, 1€ (a,bl, i=0,1,
and
(46) (D)D) =i (1) <0, 1€ (ab], i=0,1,

and, hence, Theorem 2 can be applied. Indeed, assumption (14) ensures that
{wo, w1} C Iy(h). It follows immediately from (40) that relations (45) and (46)
with i = 1 are satisfied in view of (16). Relations (45) and (46) with i = O are
obtained from the corresponding estimates with i = 1 by integrating them from
t € (a,b] to b.

Applying Theorem 2 with X given by equality (44) and P := Ky and using
Lemma 6, we obtain the existence of at least one solution u of problem (10), (11).
Finally, noticing that estimates (17) and (18) follow from (29), we complete the
proof of Theorem 1.

5.3 Proofs of Corollaries 1 and 2

In order to obtain Corollary 1, it is sufficient to notice that, under assumptions (22)
and (23), the mapping g : C((a,b],R) — L;.10c((a,b],R) given by the formula

(gu) (1) := (lu)(t) +q(t), 1€ (a,b],

satisfies conditions (12) and (13) for any A, by virtue of the linearity of /. There-
fore, Theorem 1 can be applied. The assertion of Corollary 2 is an immediate
consequence of Corollary 1 in the case where

Y= ((1—k)i+k(1—i)y
fork=0,1.
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