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Abstract. Suppose that Ω is an integrable function on S1. We study
the singular integral operator

TΩf = p.v. f ∗ Ω(x/|x|)
|x|2 .

We show that for α > 0 the condition

(0.1)

Z
I

Ω(θ) dθ ≤ C log−1−α |I|

for all intervals I in S1 gives Lp boundedness of TΩ in the range |1/2−
1/p| ≤ α

2(α+1)
. This condition is weaker than the condition

mα(Ω) = |Ω| ∗ log1+α |θ| < ∞
from [9] and [6].

We also construct an example of an integrable Ω which satisfies
mα(Ω) ≤ ∞ such that TΩ is not Lp bounded for |1/2 − 1/p| ≥ 3α+1

6(α+1)
.

This improves the result of [8] when α > 1/3.

1. Introduction

Suppose that Ω is an complex-valued integrable function on the sphere
S1, with mean value zero with respect to the surface measure. We define
the Calderón-Zygmund singular integral operator
(1.1)

TΩ(f)(x) = lim
ε→0

∫
|y|>ε

Ω(y/|y|)
|y|2

f(x− y) dy = p.v.
∫

R2

Ω(y/|y|)
|y|2

f(x− y) dy ,

initially for functions f in the Schwartz class S(R2). These operators have
been studied in great detail by many authors. It was proved by Calderón
and Zygmund in [1] that for Ω odd the operator TΩ is bounded on Lp for
1 < p < ∞. For Ω even the same result holds provided Ω ∈ LlogL, see [2].
This was later extended to Ω ∈ H1 in [10] and [5].

If we restrict the range of p, weaker conditions give the Lp boundedness.
Specially, for Ω even we can represent the operator as Fourier multiplier

(1.2) m(Ω)(ξ) := (p.v.Ω(x/|x|)|x|−2)̂(ξ) =
∫
S1

Ω(θ) log
1

|ξ · θ|
dθ ,
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see for example [7]. If m(Ω) is in L∞, the operator TΩ is bounded on L2.
To extend this result to general p Grafakos and Stefanov in [9] defined

(1.3) mα(Ω)(ξ) :=
∫
S1

|Ω(θ)| log1+α 1
|ξ · θ|

dθ .

Using interpolation techniques they proved that if mα(Ω) is in L∞, then TΩ

is bounded on Lp for ∣∣1
2
− 1

p

∣∣ <
α

2(2 + α)
.

A sharper version of this theorem where α
2(2+α) is replaced by α

2(1+α) was
obtained by Fan, Guo, and Pan [6].

The defintion of mα(Ω) is not optimal, because it uses absolute value
of the function Ω. In a fashion similar to the pass from LlogL to H1, we
are going to extend the result of Fan, Guo, and Pan to functions Ω which
oscilate rapidly.

On the negative side, in [8] there was presented an example of a function
Ω such that mα(Ω) is bounded but the operator TΩ is unbounded on Lp for
p in the range ∣∣1

2
− 1

p

∣∣ >
α

1 + α
.

Clearly, this only has some meaning for α < 1. The example was based on
the properties of one dimensional Fourier transform and cannot be further
improved. In this work we are going to present a different example, which
is based on geometric properties of the plane, and we get a function Ω with
mα bounded such that TΩ is unbounded on Lp for p in∣∣1

2
− 1

p

∣∣ >
3α + 1

6(1 + α)
.

This example is better for α > 1/3. It shows that for any α > 0 there is an
operator TΩ which is unbounded for some p. Moreover, we also construct
an example of a function Ω such that TΩ is Lp bounded for any p > 1 but
it is not of the weak type 1− 1.

2. Statement of results

Let us denote by Ik the set of dyadic arcs of length 2π2−k. We define the
conditional expectation

EkΩ(x) =
1
|Ik|

∫
Ik

Ω(y)dy

where x ∈ Ik ∈ Ik and

DkΩ(x) = EkΩ(x)− Ek−1Ω(x).

As Ω ∈ L1, we have
∑

DkΩ = Ω. Moreover, we define Haar functions

Hk,l =
2k

2π
(χ(2π2−kl,2π2−k−1(2l+1)] − χ(2π2−k−1(2l+1),2π2−k(l+1)])
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and observe that

(2.1) DkΩ =
2k−1∑
l=0

alHk,l

with
‖DkΩ‖1 =

∑
|al|

Theorem 2.1. Let us have Ω even with ‖Ω‖1 ≤ C1 and suppose that for
some α > 0

(2.2)
∫

I
Ω(θ) dθ ≤ C2 log−1−α |I|

holds for any dyadic arc I. Then the operator TΩ is bounded on Lp for any
p such that

∣∣1
p −

1
2

∣∣ < α
2(1+α) .

The condition (2.2) implies |EkΩ| . C22kk−1−α and |DkΩ| . C22kk−1−α,
which is all we shall need in the proof.

Quick comparison shows that for a function Ω which does not change sign
too much the conditions (1.3) and (2.2) are nearly identical. While (2.2) is
somewhat weaker, both conditions lead to the same result in terms of p and
α. The situation changes for a function Ω which has a lot of oscilations. This
situation is similar to the relationship between the space H1 and L log L.

We also show some examples of unbounded operators:

Theorem 2.2. Suppose α > 0 then there is an Ω even with ‖Ω‖1 ≤ 1 and
‖mα(Ω)‖∞ ≤ 1 such that the operator TΩ does not map Lp into Lp,∞ for

1
p
− 1

2
>

3α + 1
6(1 + α)

and is not bounded on Lp for

|1
p
− 1

2
| > 3α + 1

6(1 + α)
.

By the same construction, we also get the following:

Theorem 2.3. There is an even function Ω with ‖Ω‖1 ≤ 1 such that the
operator TΩ is not of the weak type 1 − 1 for but is bounded on Lp for all
1 < p < ∞ .

3. Proof of the Theorem 2.1

We are going to write
∑

DkΩ = Ω. For each TDkΩ we use interpolation to
obtain Lp estimate in terms of k and α. We show that the estimates form
convergent series in k.

The easier endpoint is a space near L1, say L1+ε. The H1 norm of DkΩ
is controlled by C1. This implies that the norm of the operators TDkΩ are
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uniformly bounded in L1+ε by CεC1. Alternatively, by the methods of Ste-
fanov [12] we could even get the weak 1 − 1 estimate, which would lead to
the same result.

To get the estimate in L2, we use the formula (1.2). The norm of the
multiplier m(DkΩ) is equal to its L∞ norm. We have both ‖DkΩ‖1 ≤ C1

and |DkΩ| . C22kk−1−α. We see that max |al| . C2k
−1−α, where al are the

indices from (2.1). Let us fix a point θ in S1. We can assume without loss of
generality that θ ∈ [0, 2π2−k−1]. We have that m(DkΩ) is a convolution of
DkΩ with the kernel − log | cos γ|. To simplify the notation, we shall replace
this kernel by log | sin γ| and estimate the integral only over the half circle
[0, π). We will split the integral as∫ 2π2−k

0
log | sin(θ − γ)|DkΩ(γ)dγ +

∫ π

2π2−k

log | sin(θ − γ)|DkΩ(γ)dγ.

A simple calculation shows that the first part is bounded by a constant
multiple of a1, or by constant times C2k

−1−α. To estimate the second part,
we write∫ π

2π2−k

log | sin(θ − γ)|DkΩ(γ)dγ =
2k−1∑
l=1

∫
alHk,l(γ) log | sin(θ − γ)|dγ

We use the mean value theorem to estimate the last sum by constant times∑
l |al|/l and observe that this sum only gets bigger if we rearrange the

sequence al in decreasing order. Thus we may assume that |al| . C2k
−1−α

when l . kα+1 and |al| ≤ C1/l otherwise, as
∑
|al| ≤ C1. Thus we get that

m(DkΩ)(θ) is bounded by Ck−α−1 log k.
We now interpolate between the two endpoints. The Lp norm of the

multiplier m(DkΩ) for 1 < p < 2 will be bounded by Ck(−1−α)γ+ε′ where
γ + (1 − γ)/2 = 1/p. Summing the estimates in k, we see that we get a
convergent series if 1/p− 1/2 < α

2(1+α) .
The singular integral operator TΩ is initially defined for functions from

Schwartz class S. It is clear that for any S ∈ S we have TΩS =
∑

TDkΩS
where the convergence is uniform. (One way to show this is to decompose
each kernel into dyadic annuli and estimate each of these using mean value
theorem and the fast decay of S.) When p ≤ 2 this gives the Lp estimate for
all functions from S ∈ S and it extends to all Lp functions by the definition
of TΩ. For p > 2 we get the result by duality.

4. Counterexample

In this section we construct the example from the theorems 2.2 and 2.3.
Suppose that α and p are as in theorem 2.2. Fix a large natural number
A >> α. Take

S = {r/s : r, s ∈ N , r ≤ A/2 , A/2 < s ≤ A , s is a prime}.
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Denote N = card(S), clearly A2 > N & A2/ log A & A2−ε Denote Iσ an arc
of angular measure 2−N1/(1+α)

centered at slope σ and ωσ its characteristic
function. We define ΩA as follows:

ΩA(ξ) =
1
2π

−
∑
σ∈S

2N1/(1+α)

N
ωσ(ξ)−

∑
σ∈S

2N1/(1+α)

N
ωσ(−ξ).

It is easy to check that ‖Ω‖1 is bounded by a constant independent of A and
α. Moreover, the angular distance of any two slopes from S is bounded from
below by a constant multiple of A2. Than means that mα(ΩA) . log1+α A.

Let us denote

B = [0,
2N1/(1+α)

100A3
]2

and put G = N2 ∩B. Define u to be the characteristic function of a disc of
radius A−3/8. We denote g = A6/pu. We see that ‖g‖p ≈ 1 and ‖g‖1 ≈
A6(1/p−1). Let us put

f(x) =
∑
y∈G

g(x− y).

Thus ‖f‖p ≈ |B|1/p.
Let us define define

D = ∪s∈SG + B(0, A−3/4) + {[r, rs] : r ∈ R}.
We shall observe that

|D ∩B| ≤ 1/2|B|.
To see this, consider L to be a vertical line segment of length one. First we
see that for fixed s ∈ S

card((G + {[r, rs] : r ∈ R}) ∩ L) ≤ A.

So, we have

card(∪s∈S(G + {[r, rs] : r ∈ R}) ∩ L) ≤ A3,

and the estimate follows.
We now estimate TΩf for x ∈ |Dc ∩B|. We need to compute

TΩf(x) =
∫

R2

Ω(x− y/|x− y|)
|x− y|2

f(y) dy.

The integral is well defined as x is clearly outside of the support of f .
Moreover, the choice of x means that the kernel only takes positive values
on the support of f . That means we have

TΩf(x) =
∫

B(0, 2
N1/(1+α)

100A3 )\B(0,1)

1
2π|y|2

f(x− y)dy.

So we see that
TΩf(x) & ‖g‖1N

1/(1+α)/ log N & Aε,

where ε is a positive number dependent on α. As |Dc ∩B| ≥ 1/2|B| we see

|{TΩf ≥ Aε}| ≥ 1/2|B|
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and so its weak type p-p norm is bigger than constant multiple of Aε.
As mα(ΩA) . log1+α A and it is sublinear, we can take Ak = 2k and put

(4.1) Ω =
∑

ΩAk
/A

ε/2
k

this finishes the proof of 2.2 for p < 2, for p > 2 we get the result from
duality.

To prove the Theorem 2.3 we observe that by partially summing and
normalizing the series (4.1) we can produce operator TΩ which is bounded
by 1 on Lq for any q such that |1/q − 1/2| ≤ α

2(1+α) , but has arbitrarily
large norm for |1/q − 1/2| ≥ 3α+1

6(1+α) . So, we take αk = k, and we consider
a sequence of functions Ωk such that ‖Ωk‖1 ≤ 2−k, mαk

Ωk ≤ 2−k, there is
a qk ≥ 3α+1

6(1+α) such the operator TΩk
has Lqk norm larger than k and the

operator is bounded for any 1 < p < ∞, which clearly holds for partial sum
of (4.1). We now put Ω =

∑
Ωk and we are done.

5. Notes

While the condition mα(Ω) < ∞ works also on Rd for d ≥ 3, see [6], it is
not clear how to extend the theorem 2.1 to higher dimensions.

There also remains a gap between the positive and negative result, for p
in the range

α

2(α + 1)
<

∣∣∣∣12 − 1
p

∣∣∣∣ < max
{

3α + 1
6(α + 1)

,
α

α + 1

}
.

It was shown in [3], [4] and [11] that the condition Ω ∈ LlogL gives weak
1 − 1 bound for TΩ. Our examples show that the condition mα(Ω) < ∞ is
not strong enough to give the weak type estimate. It is a question if there
is some similar condition which would be strong enough.
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