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Abstract A version of Cauchy’s stress theorem is given in which the stress describing the system
of forces in a continuous body is represented by a tensor valued measure with weak divergence a
vector valued measure. The system of forces is formalized in the notion of an unbounded Cauchy flux
generalizing the bounded Cauchy flux by Gurtin & Martins [12]. The main result of the paper says
that unbounded Cauchy fluxes are in one-to-one correspondence with tensor valued measures with
weak divergence a vector valued measure. Unavoidably, the force transmitted by a surface generally
cannot be defined for all surfaces but only for almost every translation of the surface. Also conditions
are given guaranteeing that the transmitted force is represented by a measure. These results are proved
by using a new homotopy formula for tensor valued measure with weak divergence a vector valued
measure.
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1 Introduction

Cauchy’s stress theorem asserts that the system of contact forces in a continuous body
U ⊂ Rn is described by a tensor function T on U such that the force F�A� transmitted
by an oriented surface A in U with normal n is given by

F�A� ¨ �
A

Tn dHn−1 (1.1)

where Hn−1 is the area measure. The question of the rigorous derivation of Cauchy’s
stress theorem from a set of elementary postulates on the mapping A w F�A� was
raised by Noll [22]. The notion of Cauchy flux by Gurtin & Martins [12] (here called
bounded Cauchy flux; see Definition 2.1, below) is such an axiomatization of F�ċ�
which permits one to prove that F�ċ� is represented by an essentially bounded,
Lebesgue measurable function T in the sense of (1.1); a result by Ziemer [37]
later showed that the weak divergence of T is represented by a bounded Lebesgue
measurable function (see Theorem 2.3, below, for a precise formulation).
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Subsequent efforts were directed towards generalizations of the notion of Cauchy
flux so that unbounded stressfields T can occur with divergence represented by either
an unbounded function [29] or even by a measure [8]. A characteristic feature of
these generalizations is that the force F�A� cannot be defined for all (no matter how
smooth, see Remark 2.17, below) surfaces; suitable notions of almost every surface
have been introduced in the cited papers to deal with this situation. The reader is
referred to [16–18, 25, 19–20, 31, 27] for further developments related to the Cauchy
stress theorem.

In the mentioned references the stress T is represented by a function (possibly
with singularities). Here I attempt to proceed a step further and introduce the notion
of an (unbounded) Cauchy flux so that the stress itself, and not only its divergence,
is represented by a measure.

My motivation comes from the theory of material surfaces [13, 11] with internal
structure, from the statics of masonry bodies [14–15], and from the analysis of
concentrated contact interactions in [23–24]. In the theory of material surfaces the
stress is not described by a tensor valued function T only. The last is true only of the
bulk stress Tb but in addition there is also the stress tensor Ts acting in the material
surface; these two stresses do not play equivalent roles: the former is distributed
(absolutely continuous with respect to the volume measure Ln) while the latter is
concentrated on the surface and thus described by a density with respect to the area
measure. The most natural unifying concept is the stress represented by a measure
with a stress concentration on the material surface. Likewise, to assert the absence
of collapse of a masonry body, one seeks admissible stressfields described by a
negative semidefinite tensor that are equilibrated with the given loads. It turns out
that the admissible equilibrated stressfields are easier to find in the class of measures
rather than in the class of ordinary functions; in addition, the former often have a
direct statical interpretation [14]. Finally, in [23–24] Podio-Guidugli showed that
certain stressfields represented by ordinary functions with singularities give rise to
concentrated contact interactions: the surface tractions on certain surfaces exhibit
Dirac δ type atoms, i.e., are not absolutely continuous with respect to area.

There is no loss in generality in passing from the vector valued quantity F�ċ�
to a scalar valued quantity F�ċ�Û then the analog of the stress tensor T is the vector
valued flux vector qÛ thus I seek to axiomatize F�ċ� in such a way that the flux vector
is represented by a vector valued measure q with the weak divergence represented by
a scalar valued measure divqØ I call such measures divergence measure vectorfields;
they have been introduced in [6–7]. The postulates onF�ċ� are formalized in Definition
2.4 of an unbounded Cauchy flux and the resulting notion is shown to be in one to one
correspondence with divergence measure vectorfields in Theorem 2.6. Unavoidably,
the flux F�A� cannot be postulated to exist for every “good” surface; in Definition
2.4 F�A� is postulated to exist only for Ln almost every translation of an oriented
planar polyhedron A ⊂ Rn; this relatively small class enables one to prove the
existence of the divergence measure vectorfield q representing F�ċ�Û conversely a
given q enables one to define F�A� for almost every translation of an oriented planar
polyhedron. The class of oriented planar polyhedra is thus sufficient to establish
a one to one correspondence between the class of unbounded Cauchy fluxes and
divergence measure vectorfields. Nevertheless, it turns out that every unbounded
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Cauchy flux can be extended naturally into a much larger class of objects. Indeed,
Theorem 2.11 shows that F�ċ� can be extended to some normal n − 1 dimensional
currents [10] which are called generalized surfaces here. These are measure–theoretic
generalizations of oriented n− 1 dimensional (curved) surfaces inasmuch as the latter
are special cases of the former. (With an extra effort the flux can be extended to an
even larger class, viz., to some flat chains [36, 10] thus including fractal surfaces; this
will be the subject of a future paper.) The next question addressed in this paper is that
of whether the flux through a generalized surface can be represented by a measure;
a sufficient condition is given in Theorem 2.14 and it comes as a corollary that for
a given generalized surface the flux is well defined and represented by a measure
for almost every translation of the surface. Finally, Theorem 2.16 shows that if the
surface in question is the boundary of a set of finite perimeter then the measure arising
in Theorem 2.14 satisfies an appropriate form of the divergence theorem.

The main novel feature of the analysis is the homotopy formula

q ¨ HN divq + divHN q (1.2)

for divergence measure vectorfields and the associated Riesz kernels x/|x|nÙ 1/|x|n−1
used extensively in the multiplied notes [30] in the broader context of normal currents,
but so far not published in the periodical literature.

The following section summarizes the main notions and results without proof;
the proofs are given in the subsequent sections.

2 The main results

We denote by Ln the Lebesgue measure in Rn ([10; Subsection 2.6.5]. If r is an
integer, 0 ² r ² nÙ we denote by H r the r-dimensional Hausdorff measure in Rn

[10; Subsections 2.10.2–2.10.6]. Throughout we assume that the dimension n of Rn

satisfies n ³ 2Ø
We initially use (oriented) planar polyhedra as our model of oriented surfaces.

A planar polyhedron is a pair A ¨ �PÙ n� where P is a closed bounded polyhedral
set of positive area contained in some n − 1 dimensional plane H and n is one of
the two unit normals to H Ø We denote by S the set of all planar polyhedra. If
A ¨ �PÙ n� X S we define Hn−1�A� Ú¨ Hn−1�P�Ø We say that two planar polyhedra
A1 ¨ �P1Ù n1�ÙA2 ¨ �P2Ù n2� are compatible if P1Ù P2 are contained in the same n − 1
dimensional plane and n1 ¨ n2Ø We then define the union A1 T A2 to be the pair�P1 T P2Ù n1�Ø We say that A1 and A2 are essentially disjoint if Hn−1�P1 P P2� ¨ 0Ø

A bodyB is a closed bounded polyhedron inRnof dimension n of positive volume.
We denote by B the collection of all bodies. If ãB is the topological boundary of B
and n the map giving the unit outward normal then the face P of B is the maximal
planar polyhedral set contained in ãB such that n is constant on it. An oriented face
of B is any pair A ¨ �PÙ m� X S where P is a face and m the constant value of n on
PØ We denote by AiÙ i ¨ 1ÙÜ Ù qÙ the collection of all oriented faces of BØ

We refer to [12] for the motivation of the following definition.

Definition 2.1. A bounded Cauchy flux is a function F Ú S r R such that
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(i) F is additive, i.e., if A1ÙA2 X S are essentially disjoint and compatible then

F�A1 T A2� ¨ F�A1� + F�A2�Û
(ii) there exists a constant b such that if A X S then

|F�A�| ² bHn−1�A�Û
(iii) there exists a constant c such that if B X B then

|F�ãB�| ² cLn�B�
where we have put

F�ãB� Ú¨ q�
i¨1

F�Ai� (2.1)

where AiÙ i ¨ 1ÙÜ Ù qÙ is the collection of all oriented faces of BØ
We denote by Lð�RnÙRn� and Lð�RnÙR� the usual Lebesgue spaces of (classes

of equivalence) of essentially bounded Ln measurable functions on Rn with values
in Rn and RÙ respectively. Throughout the paper the integrals with unspecified do-
mains of integration denote integrals over RnÙ �Ü ª �RnÜÛ furthermore, if Z is a
finite dimensional vectorspace then C0�RnÙZ� denotes the set of all continuous Z
valued compactly supported functions on Rn and Cð0 �RnÙZ� the set of all infinitely
differentiable functions from C0�RnÙZ�Ø
Definition 2.2. We denote by DLð�Rn� the set of all q X Lð�RnÙRn� for which
there exists a function div q X Lð�RnÙR� such that

� q ċ ∇�dLn ¨ − ��div q dLn

for each � X Cð0 �RnÙR�Ø
Let ω Ú Rn r R be a mollifier, i.e., a nonnegative infinitely differentiable

function supported by the unit ball in Rn such that �ωdLn ¨ 1Ø If ρ ± 0, we define
ωρ Ú Rn r R by ωρ�x� ¨ ρ−nω�x/ρ�Ù x X RnÛ if q is a locally Ln integrable
function with values in a finite dimensional vectorspace we define the ρ mollification
qρ of q as a function defined on Rn by

qρ�x� ¨ � q�x − y�ωρ�y� dLn�y�Ù
x X RnØ

The main results on bounded Cauchy fluxes, already available in the literature,
are summarized in the following

Theorem 2.3.
(i) If F is a bounded Cauchy flux then there exists a unique q X DLð�Rn� such that

F�A� ¨ lim
ρr0

�
P

qρ ċ n dHn−1 (2.2)

for every A ¨ �PÙ n� X SØ We call q the flux vector of F Ø
(ii) For every q X DLð�Rn� there exists a unique bounded Cauchy flux F with the

flux vector qØ
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(iii) If F is a bounded Cauchy flux and q a representative of its flux vector q then there
exists a set N ⊂ Rn of null Ln measure such that

F�A� ¨ �
P

q ċ n dHn−1Ù F�ãB� ¨ �
B
div q dLn (2.3)

for every A ¨ �PÙ n� X S with Hn−1�P P N� ¨ 0 and every B X B with
Hn−1�ãB P N� ¨ 0Ø

The exceptional set N can be chosen to be ó if the representative q is continuous;
however, that degree of regularity is not guaranteed. The proof of this proposition
is obtained by combining results from [12, 37] and [28]; the details are omitted.
Alternatively, one can observe [25] that F gives rise to a flat n − 1 dimensional
cochain [36, 10] and use the representation theorem for flat cochains to obtain the
same relationship between F and qØ The latter approach has the advantage that it is
immediately clear that any bounded Cauchy flux can be extended from the class of
planar polyhedra to generalized n− 1 dimensional surfaces represented by flat chains.
(See also Theorem 2.11, below).

If M ⊂ Rn and a X Rn, we denote by Ta M the translation of M by aØ If
A ¨ �PÙ n� X S we define Ta A ¨ �Ta PÙ n�Ø

If Z is a finite dimensional inner product space, we denote by M�RnÙZ� the set
of all Z valued measures on Rn [1; Chapter 1], i.e., the set of all Z valued countably
additive functions defined on the system of all Borel subsets ofRnØ If q X M�RnÙZ�
and ρ ± 0, we define the ρ mollification qρ of q as a function on Rn given by

qρ�x� ¨ �ωρ�x − y� dq�y�
x X RnØ We denote by |q| the total variation of qÙ i.e., the smallest nonnegative
measure such that |q�A�| ² |q|�A� for every Borel subset A of RnØ We further denote
by M�q� the mass of qÙ defined by M�q� Ú¨ |q|�Rn�Ø If q X M�RnÙZ� and if
! Ú Rn r Z is a q integrable function (i.e., ! is |q| measurable and � |!| d|q| ° ð)
then � ! ċ dq is a well defined number. We denote by q B the restriction of the
measure q to a Borel set B ⊂ RnØ

If M ⊂ Rn is a Borel set, φ is a nonnegative Radon measure and r a nonnegative
integer we define the lower r dimensional content of φ in M by

φ r�M� ¨ lim inf
ρr0

�
M
φρ dH

rØ
We note that in case φ ¨ Ln we have

φ r�M� ¨ H r�M�
for every Borel set and in Definition 2.4 (below) we use the lower n − 1 and n
dimensional content of two measures θÙ η to obtain suitable generalizations of the
boundedness assumptions in Definition 2.1(ii) and (iii). If A ¨ �PÙ n� X S, we define
the lower r dimensional content of φ in A by φ r�A� ¨ φ r�P�Ø

We now introduce the central notion of this paper.

Definition 2.4. A function F Ú D r R, where D ⊂ SÙ is said to be an (unbounded)
Cauchy flux if the following conditions hold:
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(i) if A X S then Ta A X D for Ln a.e. a X Rn and the function a w F�Ta A� is Ln

measurable;
(ii) F is additive, i.e., if A1ÙA2 X D are essentially disjoint and compatible then

A1 T A2 X D and
F�A1 T A2� ¨ F�A1� + F�A2�Û

(iii) there exists a finite nonnegative measure θ such that if A X S then

|F�Ta A�| ² θn−1�Ta A� (2.4)

for Ln a.e. a X RnÛ
(iv) there exists a finite nonnegative measure η such that if B X B then

|F�ãTa B�| ² ηn�Ta B� (2.5)

for Ln a.e. a X Rn where we use the notation (2.1) for every B X BØ
We note that a bounded Cauchy flux is a particular case of an unbounded Cauchy flux:
indeed, given a bounded Cauchy flux F Ù one easily checks that the above definition
holds with the domain D ¨ SÙ with the measures θ ¨ η ¨ LnÙ and with (iii), (iv)
holding for every translation.

Definition 2.5. We denote by DM�Rn� the set of all Rn valued measures q on Rn

for which there exists an R valued measure divq on Rn such that

�∇� ċ dq ¨ − ��d divq (2.6)

for each � X Cð0 �RnÙR�ØWe call the elements of DM�Rn� the divergence measure
vectorfields.

The reader is referred to [6–7, 32, 9, 33] for the divergence theorem for divergence
measure vectorfields and to [34] for some description of their structure.

The following theorem, the main result of the paper, is an analog of Theorem 2.3
for unbounded Cauchy fluxes.

Theorem 2.6.
(i) If F Ú D r R is a Cauchy flux then there exists a unique q X DM�Rn� such that

F�Ta A� ¨ limρr0 �
Ta P

qρ ċ n dHn−1 (2.7)

for every A ¨ �PÙ n� X S and Ln a.e. a X RnØ We call q the flux vector of F Ø
(ii) For every q X DM�Rn� there exists an essentially unique Cauchy flux F with

the flux vector qÛ here essentially unique means that any two Cauchy fluxes F ÙG
with the same flux vector satisfy

F�Ta A� ¨ G�Ta A�
for every A ¨ �PÙ n� X S and Ln a.e. a X RnØ One such a flux F Ú D r R is
defined by

F�A� ¨ lim
ρr0

�
P

qρ ċ n dHn−1 (2.8)

on the set D of all A ¨ �PÙ n� X S for which the limit (2.8) exists and is finite.
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(iii) If F is a Cauchy flux and q X DM�Rn� its flux vector then we have

F�ãTa B� ¨ �
Ta B

d divq

for every B X B and Ln a.e. a X Rn.
Items (i) and (ii) establish a one-to-one correspondence between unbounded Cauchy
fluxes and divergence measure vectorfields. Here (2.7) is the weak analog of (2.2);
however, there is no direct analog of (2.3) (as there cannot be). We emphasize that the
flux vector q is unique in the class DM�Rn� but not unique in the set M�RnÙRn�Ù
as the following example shows.

Example 2.7. Let a © 0 and let q ¨ aδ where δ is the Dirac measure at the origin
0 X RnØ Then

lim
ρr0

�
Ta P

qρ ċ n dHn−1 ¨ 0 (2.9)

for every A ¨ �PÙ n� X S and Ln a.e. a X RnØ Indeed we have qρ r 0 as
ρ r 0 uniformly on all compact sets K ⊂ Rn which do not contain the origin. If
A ¨ �PÙ n� X S then since P is compact and Ln�P� ¨ 0we have Ta PP 0( ¨ ó for
Ln a.e. a X Rn and for all such a we have (2.9). Thus if F Ú S r R is a flux identically
equal to zero, the nonzero measure q satisfies (2.7) for every A ¨ �PÙ n� X S and Ln

a.e. a X RnØ This, however is not in contradiction with the uniqueness statement of
Theorem 2.6(i) since q Z DM�Rn�Ø

Our next goal is the extension of unbounded Cauchy fluxes to a more general class
of surfaces and bodies than polyhedra. Our choice is the set of normal n − 1 currents
[10] for the former, called generalized surfaces here, and n dimensional currents for
the latter, called generalized bodies here. Let Skw be the set of all antisymmetric linear
transformations on RnÙ which can be identified with the set of all antisymmetric n�n
matrices. If ! X Cð0 �RnÙ Skw� we define the divergence of ! as the unique function
div! Ú Rn r Rn such that

a ċ div! ¨ div�! Ta�
for every a X Rn where the divergence on the right hand side is the usual divergence
of a vectorfield.

Definitions 2.8.
(i) An Rn valued measure � on Rn is said to be a generalized (n − 1 dimensional)

surface if there exists a Skw valued measure ã� on Rn such that

�div! ċ d� ¨ � ! ċ d ã� (2.10)

for each ! X Cð0 �RnÙ Skw�Ø We call ã� the (n − 2 dimensional) boundary of �Ø
We denote by Nn−1 the set of all generalized surfaces.

(ii) An R valued measure β on Rn is said to be a generalized (n dimensional) body
if there exists an Rn valued measure ãβ on Rn such that

�div v dβ ¨ � v ċ d ãβ (2.11)
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for each v X Cð�RnÙRn�Ø We call ãβ the (n− 1 dimensional) boundary of βØ We
denote by Nn the set of all generalized bodies.

One easily checks that if β is a generalized body then ãβ is a generalized surface withããβ ¨ 0ØThe meaning of the above definitions is explained in the following examples
and in Proposition 2.10, below.

Examples 2.9.
(i) If P ⊂ Rn is a compact oriented n − 1 dimensional oriented surface of class

C 2 with Lipschitz boundary ãP and n Ú P r Rn is the orienting normal, then the
measure

� Ú¨ n Hn−1 P (2.12)

is a generalized surface; the Stokes theorem shows that the boundary is given by

ã� ¨ n ` m Hn−2 ãP
where m is the (inplane) normal to ãP and a ` b ¨ 1

2
�a � b − b � a� for any

aÙ b X RnØ In this sense classical surfaces and in particular planar polyhedra from
S are embedded in Nn−1Ø More generally, let P be a countably Hn−1 rectifiable set
[1, 10] and n Ú P r Rn a Hn−1 integrable function with values in the approximate
normal space of P with integer multiplicity (a rectifiable n − 1 dimensional current).
Then (2.12) defines a generalized surface provided the distribution on the left hand
side of (2.10) is representable by a measure. By [10; Theorem 4.2.16(2)] this occurs if
and only if the boundary ã� is an n−2 dimensional rectifiable current in the sense thatã� ¨ �Hn−2 M whereM is a countablyHn−2 rectifiable set and � a function with
values in the approximate normal space to M of integer multiplicity. The generalized
surfaces � of this type are called integral currents [10]; a particular case is the measure
� as in (2.12) representing the measure theoretic boundary P ¨ ãB of a set B of finite
perimeter with n the measure theoretic normal [10, 1]; then � X Nn−1 and ã� ¨ 0Ø
See below for more details on sets of finite perimeter and their boundaries.

(ii) If 
 X C 10�RnÙRn� then

� Ú¨ 
 Ln

is a generalized surface with

ã� ¨ − curl
 LnÛ
this is an example of a “thick” (distributed) n − 1 dimensional surface occupying an
n dimensional set.

(iii) If B ⊂ Rn is a bounded open set with Lipschitz boundary ãB of normal n
then the measure

β Ú¨ Ln B (2.13)

is a generalized body; the divergence theorem shows that the boundary is given by

ãβ ¨ nHn−1 ãBØ (2.14)

More generally if B is a bounded set of finite perimeter then (2.13) provides a
generalized body with the boundary (2.14) where n and ãB are the measure theoretic
normal and boundary of BØ
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(iv) If γ X C 10�RnÙR� then
β ¨ γLn (2.15)

is a generalized body with ãβ ¨ −∇γLn Ø
This is an example of a “fuzzy” body [5, 9]. More generally, if γ X BV �RnÙR� is a
function of bounded variation [1] then (2.15) provides a generalized body with the
boundary given by ãβ ¨ −∇γ (2.16)

where now ∇γ is the measure representing the weak derivative of γØ A particular case
is the characteristic function γ ¨ 1B of a bounded set of finite perimeter in which case
there is no “fuzziness” at all.

The following proposition delineates the classes of generalized surfaces and
bodies. In particular it shows that the dimensions n− 1 and n indicated parenthetically
in Definitions 2.8 emerge as a consequence of (2.10) and (2.11) despite the fact that
these relations contain no explicit information about nØ
Proposition 2.10.
(i) ([34; Section 7]) Each � X Nn−1 is of the form

� ¨ n Hn−1 P + �c + mLn (2.17)

where P is a countably Hn−1 rectifiable subset of RnÙ n Ú P r Rn is an Hn−1

integrable function with values in the approximate normal space to P, �c is an
Ln singular measure which vanishes on sets of finite Hn−1 measure, and m is
an Ln integrable vector valued function.

(ii) We have β X Nn if and only if β ¨ γLn where γ X BV �RnÙR� and if it is the
case then ãβ is given by (2.16) where ∇γ is the measure representing the weak
derivative of γØ

Here the first term on the right hand side of (2.17) corresponds essentially to the
standard notion of a surface (in which case the remaining two terms vanish), the
second term corresponds to the Cantor part, as its dimension is between n − 1 and nÙ
and the third term corresponds to distributed surfaces. In particular, a nonvanishing
� X Nn−1 cannot be supported by a set of Hausdorff’s dimension less than n − 1
and likewise a nonvanishing β X Nn cannot be supported by a set of Hausdorff’s
dimension less than nØ

We note in passing that the space Nn−1 is isomorphic, but not identical to the
n − 1 dimensional currents as defined in [10]. Namely, we have identified the space
of n − 1 vectors with Rn in case of � and the space of n − 2 vectors with Skw in
case of ã� via the Hodge   map. Under the Hodge   map the exterior and interior
derivatives exchange their roles and thus the boundary ã� defined above is mapped
to the boundary defined in [10]. The same applies to NnØ

Let k Ú Rn r �0Ù ð� be the (Riesz) kernel given by

k�x� ¨ n−1κ−1n |x|−n+1Ù
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x X RnÙ where we put |x|−n+1 ¨ ð if x ¨ 0 and n ± 1 and where κn is the volume of
the unit ball in RnØ

The following result gives a natural extension of the Cauchy flux to some gener-
alized surfaces.

Theorem 2.11. If q X DM�Rn� and � X Nn−1 satisfy� � k�x − y� d |�|�x� d |divq|�y� ° ðÙ
� � k�x − y� d |ã�|�x� d |q|�y� ° ð





(2.18)

then the limit
¯��� Ú¨ lim

ρr0
�qρ ċ d� (2.19)

exists and is finite. In particular, if A ¨ �PÙ n� X S and� �
P
k�x − y� dHn−1�x� d |divq|�y� ° ðÙ
� �
ãP
k�x − y� dHn−2�x� d |q|�y� ° ð





(2.20)

then the limit (2.8) exists and is finite.

The sought extension is (2.19). We may call ¯��� the flux through the generalized
surface �Ø
Remarks 2.12.

(i) In Section 4 we shall give an explicit formula for the limits (2.19) and (2.8);
that formula does not involve the mollifier ω and thus the limits (2.19) and (2.8) are
independent of it.

(ii) In view of the singularity of the kernel k�x − y� near x ¨ y the con-
ditions (2.18) say that q and divq are not too singular on the surface �Û in the
particular case of the boundary � ¨ nHn−1 ãB of a set B of finite perimeter
we shall see [in (2.30)] that (2.18)1 implies that no mass of the measure divq is
contained in ãB (but (2.18)1 requires more). Although Conditions (2.18) are new,
the need of some conditions emerged previously in particular cases (see [29] for
q X L 1�RnÙRn�Ùdiv q X L 1�RnÙR� and [8] for q X L 1�RnÙRn�Ùdiv q XM�RnÙR�.
See also [31–33, 9]).

(iii) If q ¨ qLn where q X DLð�Rn� and if additionally q vanishes outside a
bounded set then (4.4) (below) shows that the integrals� k�x − y� d |divq|�y� ª � k�x − y�|div q�y�| dLn�y�Ù� � k�x − y� d |q|�y� ª � k�x − y�|q�y�| dLn�y�
are bounded functions of x on Rn and hence (2.18) is satisfied by all � X Nn−1 and
thus the limit in (2.19) always exists; hence ¯��� exists for every generalized surface.

(iv) In the general case of q X DM�Rn�Ù it is a matter of the relative position of
the measures � and q whether the conditions (2.18) are satisfied or not. However, the
next proposition shows that (2.18) is surely satisfied by Ln almost every translation
of �Ø

If φ is a measure on Rn with values in a finite dimensional vectorspace and
a X RnÙ we define the translation Ta φ of φ by a by Ta φ�M� ¨ φ�T−a M� for every
Borel set M ⊂ RnØ
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Remark 2.13. If φÙψ are nonnegative finite measures on Rn then

� � k�x − y� d Ta φ�x� dψ�y� ° ð (2.21)

and
lim inf
ρr0

�φρ dTaψ ° ð (2.22)

for Ln a.e. a X RnØ
As a corollary we obtain that if � X Nn−1 and q X DM�Rn� then the flux ¯�Ta ��
is well defined for Ln a.e. a X RnØ

Next, we consider the situation when the flux through the generalized surface �
is represented by a measure:

Theorem 2.14. If q X DM�Rn� and � X Nn−1 satisfies (2.18) and

� � k�x − y� d |�|�x� d |q|�y� ° ðÙ lim inf
ρr0

� |q|ρ d |�| ° ð (2.23)

then the limit
¯�f �� Ú¨ lim

ρr0
� fqρ ċ d� (2.24)

exists and is finite for every f X Cð0 �RnÙR� and there exists a signed measure µ�
supported by spt � such that

¯�f �� ¨ � f dµ� (2.25)

for every f X Cð0 �RnÙR�. In particular, if A ¨ �PÙ n� X S satisfies (2.20) and

� �
P
k�x − y� dHn−1�x� d |q|�y� ° ðÙ |q|n−1�P� ° ð

then for � ¨ n Hn−1 P the limit (2.24) exists and is finite for every f X Cð0 �RnÙR�
and there exists a measure µ� supported by P such that (2.25) holds.

In this situation we have a well defined flux not only for the whole surface �Ù but also
for any Borel set M ⊂ Rn by setting

¯��ÙM� Ú¨ µ��M�Ø (2.26)

The interpretation of the value ¯��ÙM� is that it is the flux through the set M where
the latter is interpreted as a “subset” of �Ø In particular, if A ¨ �PÙ n� X S satisfies
the hypothesis of Theorem 2.14 and � Ú¨ n Hn−1 then for any Borel set M the value
¯��ÙM� is the flux through the subset P PM of PØ
Remarks 2.15.

(i) Conditions (2.18) and (2.23)1 have been discussed above; Condition (2.23)2
is the main boundedness condition guaranteeing the existence of the measure µ�Û
similar conditions are found in [31–33] in more restricted or more general contexts
(see also [9]).

(ii) In the particular case q ¨ qLn with q X DLð�Rn� vanishing outside a
bounded set, (2.18) and (2.23) are satisfied by every � X Nn−1 and the flux ¯ through
� is represented by a measure for every generalized surface.

(iii) In the general case, Remark 2.13 implies that given � X Nn−1 and q X
DM�Rn�Ù the flux ¯�Ta �� is represented by a measure for Ln a.e. a X RnØ
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(iv) We note that the localization procedure (2.26) employs the measure µ�Û no
such a localization is possible in the more general context of Theorem 2.11 (see
Remark 2.17, below).

If B ⊂ Rn is an Ln measurable set and x X RnÙ we define the n dimensional
density ¢�xÙB� of B at x by

¢�xÙB� ¨ lim
ρr0

κ−1n ρ
−nLn�B P B�xÙ ρ��

whenever the limit exists, where B�xÙ ρ� is the open ball of center x and radius ρØ We
define the measure theoretic interior B  of B by

B  ¨ !x X Rn Ú ¢�xÙB� ¨ 1)
and recall that B  is a Borel set that differs from B by a set of Ln measure 0Ø We say
that B is a normalized set if B ¨ B Ù and recall that the measure theoretic boundaryãB of B is defined by ãB ¨ Rn ∼ �B  T �Rn ∼ B� Ø

We finally show that if the generalized surface � represents the measure theoretic
boundary of a set of finite perimeter then the measure associated with � satisfies the
divergence theorem.

Theorem 2.16. If a normalized set of finite perimeter B ⊂ Rn with the measure
theoretic normal n and a divergence measure vectorfield q X DM�Rn� satisfy

� �
ãB
k�x − y� dHn−1�x� d |q|�y� ° ðÙ

� �
ãB
k�x − y� dHn−1�x� d |divq|�y� ° ðÙ
lim inf
ρr0

�
ãB

|q|ρ dHn−1 ° ð





(2.27)

then the generalized surface � ¨ nHn−1 ãB satisfies the hypotheses of Theorem
2.14 and hence the flux through ãB is represented by a measure µãB (supported by
cl ãB) in the sense that

¯�f �� Ú¨ lim
ρr0

�
ãB
fqρ ċ n dHn−1 ¨ � f dµãB (2.28)

for every f X Cð0 �RnÙR�Ø The measure µãB satisfies the divergence theorem

� f dµãB ¨ �
B
f d divq + �

B
∇f ċ dq (2.29)

for any f X Cð0 �RnÙR�.

Lemma 5.1 (below) shows that the hypotheses (2.27)1Ù2 imply that the measures q
and divq vanish on ãBÙ i.e.,

|q|�ãB� ¨ 0Ù |divq|�ãB� ¨ 0Ø (2.30)

We have chosen to formulate the divergence theorem only for the special case of
generalized bodies represented by sets (of finite perimeter), as in the classical case.
There is also a divergence theorem for generalized bodies of Definition 2.8(ii); this
will be the subject of a future paper.
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Remark 2.17. There seems to be no natural definition of the flux represented by a
divergence measure vectorfield q for all surfaces from some large class independent of
the particular qÛ by shifting a surface a little as explained above to avoid singularities
of one particular q one encounters singularities of another qØ This is in the nature
of things and not in the employed mathematical tools, as will be now explained. In
defining the flux F through an oriented surface A with normal n (the last two objects
interpreted intuitively for the moment) corresponding to q X DM�Rn�, one seeks to
give a meaning to the right hand side of the equation

¯�A� ¨ �
A

q ċ n dHn−1Ø (2.31)

If q ¨ qLn where q X DLð�Rn� is a continuous function, then the right hand side
of (2.31) is identified with �

A
q ċ n dHn−1Û (2.32)

however, starting from the case q X DLð�Rn�, the expression in (2.32) is devoid
of an immediate meaning and additional interpretations are needed, such as those in
(2.2) and (2.19). The existence of the limits in these formulas is far from obvious
and both these rest on the fact that the weak divergence of q or of q is well behaved
in the sense that div q is a bounded function and divq a measure. Moreover, the
case q X DLð�Rn� is essentially the most general case in which the limit in (2.2)
is guaranteed universally for a class of surfaces that is independent of the particular
flux vector. One may take for that class either S as the minimal choice or Nn−1 as the
maximal choice. This universality property comes from the fact that in addition to the
boundedness of div q, the function q itself is bounded and thus, roughly speaking, the
integral in (2.32) converges. In the case of q X DM�Rn� the surface must be good
for the particular q in the sense of the hypotheses Theorems 2.11, 2.14, and 2.16.

Let us now see that some additional conditions are needed in case of a general
q X DM�Rn�ØLet us restrict ourselves to surfaces modeled as subsets of the boundaryãB of a subset B of RnØ The flux through the whole of ãB can be defined using the
divergence theorem by putting

¯�ãB� ¨ �
B
d divq ª q�ãB�Ø

However, the interpretation requires that the flux be defined also for subsets of ãBÙ
i.e., for parts of the boundary from some reasonably rich class of parts. We have
seen in (2.26) that such a localization is possible if the flux through ãB is represented
by a measure, and Theorem 2.16 gives a sufficient condition for the latter to occur.
We note that the right hand side of (2.29) is meaningful generally and thus the
existence of a measure µãB as in (2.29) is a well posed question. The general answer
is negative, though, and has nothing to do with the smoothness of ãBØ The problem
of the representation of the right hand side of (2.29) in terms of an object associated
with the boundary of B has been considered in the literature. The most general result
is that of [33, 32] which shows that if B is an open set (with a boundary that need not
be smooth) the value of the right hand side of (2.29) depends only on the values of
f on ãB and in fact there exists a continuous linear functional g w T�g�Ù defined on
the space of Lipschitz functions g on ãBÙ such that
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T�f |ãB� ¨ �
B
f d divq + �

B
∇f ċ dq (2.33)

for any f X Cð0 �RnÙR� where f |ãB is the restriction of f to ãB (and more generally
for any Lipschitz continuous function f provided the second term on the right hand
side of (2.33) is given an appropriate interpretation). Let us call the functional T the
normal trace of q on ãB. Example 2.5 in [33] exhibits a vectorfield q in Lp�R2ÙR2�
for all p X �1Ù 2� and a B ⊂ R2 with Cð boundary such that T is not represented
by a measure, in fact T is isomorphic to the one dimensional distribution giving the
principal value of 1/x on R (which is not a distribution represented by a measure).
The vectorfield is a Cð function outside the origin and its weak divergence van-
ishes; the last shows that also the smoothness of div q is irrelevant. The mentioned
example also exhibits a vectorfield in Lp�R2ÙR2� such that the normal trace is a
distribution of fractional order q ° 1 arbitrarily close to 1 provided the vectorfield is
in Lp�R2ÙR2� with p ± 1 sufficiently close to 1Ø Thus, roughly, T�g� depends on
“fractional derivatives” of g in the tangential directions of ãB of order q close to 1Û
the occurrence of derivatives prevents a localization. In the context of normal traces,
Theorem 2.16 provides a sufficient condition for the normal trace to be represented
by a measure. Related to the non–representability of T by a measure is the result
[35; Theorem 1.2, Chapter I] which shows that if B is a region with C 2 boundary,
q ¨ qLn where q X L2�BÙRn� and div q X L2�BÙR� then T is merely a continuous
linear functional on W 1/2Ù 2�ãBÙR� and hence again, fractional derivatives of order
up to 1/2 intervene and a localization is impossible. Only in case of a bounded q
Anzellotti [2; Section 1] shows that the trace of q ¨ qLn on ãB is given by a Hn−1

integration of a bounded function, in accordance with Theorems 2.3 and Theorem
2.11 in this particular case. The reader is also referred to [31–32, 6–7, 9] for additional
information on the problem of traces.

We now turn to proofs. In Section 3 we prove that each Cauchy flux is represented
by q X DM�Rn� in the sense of (2.7). The rest of Theorems 2.6, 2.14, and 2.16
conversely assumes a given q X DM�Rn� and proves various assertions about
objects stemming from it. To prove these, we first establish a homotopy formula
(1.2) in Section 4. With (1.2) at our disposal we complete the proofs in Section 5.
Specifically, we prove the existence of the limit (2.19) at the asserted generality, the
uniqueness of the flux vector of the given Cauchy flux, and after the proof of Remark
2.13, we prove that each q gives rise to a unique Cauchy flux that satisfies (2.7). The
proofs are then completed by proving the representation of the flux by a measure
under the hypotheses of Theorem 2.14 which satisfies the divergence theorem 2.16.

3 The existence of the flux vector

We prove the existence part of Assertion (i) of Theorem 2.6. Some preliminary results
are needed.

Remark 3.1. If φ is a finite nonnegative measure, r is an integer, 0 ² r ² nÙ and
M ⊂ Rn a Borel set then�φ r�Ta M�ωρ�a� dLn�a� ² �

M
φρ dH

r
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for any ρ ± 0Ø
Proof We have

φ r�Ta M� ¨ lim inf
τr0

�
TaM

φτ dH
r ¨ lim inf

τr0
�
M
T−a φτ dH

r

for any a X Rn where Ta φτ denotes the translation of the function φτ by aØ Hence by
Fatou’s lemma and by the properties of mollification�φ r�Ta M�ωρ�a� dLn�a� ¨ �ωρ�a� lim inf

τr0
�
M
T−a φτ dH

rdLn�a�
² lim inf
τr0

�ωρ�a� �
M
T−a φτ dH

rdLn�a�
¨ lim inf
τr0

�
M
�φτ�ρ dH r

¨ lim inf
τr0

�
M
�φρ�τ dH r

¨ �
M
φρ dH

rØ è
To prove the existence of the flux vector q corresponding to a given (unbounded)

Cauchy flux F Ù we first mollify F to gain more regularity and to profit from Theorem
2.3.

Lemma 3.2. Let F be a Cauchy flux and for each τ ± 0 define E τ Ú S r R by

E τ�A� ¨ � F�Ta A�ωτ�a� dLn�a�Ù (3.1)

A X SØ Then E τ is a bounded Cauchy flux and hence there exists a unique p τ X
DLð�Rn� and Nτ ⊂ Rn with Ln�Nτ� ¨ 0 such that

E τ�A� ¨ � p τ ċ n dHn−1 (3.2)

for each A ¨ �PÙ n� X S with Hn−1�P P Nτ� ¨ 0.
It is a part of the assertion of the lemma that the function a w F�Ta A� is locally Ln

integrable for each A X S and so the definition (3.1) is meaningful. We shall see later
that the flux vector p τ has an infinitely differentiable representative and thus the set
Nτ can be chosen an empty set. However, this is not obvious at the present stage.

Proof Letting A ¨ �PÙ n� X S and combining Definition 2.4(iii) with Remark 3.1
we obtain� |F�Ta A�|ωτ�a� dLn�a� ² � θn−1�Ta A�ωτ�a� dLn�a� ² �

P
θτ dH

n−1Ø
This shows that the function a w F�Ta A� is locally Ln integrable and

|E τ�A�| ² �
P
θτ dH

n−1 (3.3)

for each A ¨ �PÙ n� X SØ We prove that E τ is a bounded Cauchy flux by verifying
Definition 2.1. Definition 2.1(i) follows immediately from Definition 2.4(ii). Further,
using θτ�x� ² τ −n|ω|LðM�θ�, we have Definition 2.1(ii) with b ¨ τ −n|ω|LðM�θ�
by (3.3). Finally, if B X B then

|E τ�ãB�| ² �
B
ητ dL

n (3.4)

by Definition 2.4(iv) and Remark 3.1 so that we have Definition 2.1(iii) with c ¨
τ −n|ω|LðM�η�Ø Thus E τ is a bounded Cauchy flux; the existence of p τ follows from
Theorem 2.3. è
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Lemma 3.3. If F is a Cauchy flux then there exists a q X DM�Rn� such that for
any τ ± 0 the vector p τ from Lemma 3.2 is the τ mollification of q and hence

E τ�A� ¨ �
P

qτ ċ n dH r (3.5)

for each A ¨ �PÙ n� X S.

Proof Let θÙ η be the measures as in Definition 2.4. From (3.3) and (3.2) we have

E τ�A� ¨ �
P

p τ ċ n dHn−1 ² �
P
θτ dH

n−1

for any A ¨ �PÙ n� X S with Hn−1�P P Nτ� ¨ 0. It follows that

|p τ�x�| ² θτ�x�Ù (3.6)

for Ln a.e. x X RnØ Similarly, by (3.4) and (2.3)2 we have

E τ�ãB� ¨ �
B
divp τ dLn ² �

B
ητ dL

n

for any B X B such that Hn−1�ãB P Nτ� ¨ 0 and hence

|divp τ�x�| ² ητ�x� (3.7)

forLn a.e. x X RnØ Integrating (3.6) and (3.7) with respect to Ln overRn we obtain

M�p τLn� ²M�θ�Ù M�divp τLn� ²M�η�
for all τ ± 0Ø Hence there exists a sequence τk r 0, denoted by τ for brevity, and
q XM�RnÙRn�Ùφ X M�RnÙR� such that

p τLn r qÙ divp τLn r φ

weak  in M�RnÙRn� and M�RnÙR�, respectively. Since divp τLn is the weak
divergence of p τLnÙ one easily finds that q X DM�Rn� and φ ¨ divqÛ hence

p τLn r qÙ divp τLn r divqØ
Let A ¨ �PÙ n� X SØ By (3.2) we have

E τ�Ta A� ¨ �
P
Ta p τ ċ n dHn−1

for Ln a.e. a X RnØ Letting ρ ± 0Ù multiplying by ωρ�a� and integrating we obtain

�E τ�Ta A�ωρ�a� dLn�a� ¨ �
P
�p τ�ρ ċ n dHn−1Ø (3.8)

Observing that for a fixed k the function a w E τ�Ta A� is the τ mollification of the
locally Ln integrable function a w F�Ta A� we deduce that E τ�Ta A� r F�Ta A�
as k r ð for Ln a.e. a X Rn and locally in L 1Ø Further, since p τLn r qÙ weak  in
M�RnÙRn�, we have �p τ�ρ�x� r qρ�x� for every x X Rn and locally in L 1Ø Thus
the limit in (3.8) gives

� F�Ta A�ωρ�a� dLn�a� ¨ �
P

qρ ċ n dHn−1Ø
Observing that the left hand side is E ρ�A� and comparing with (3.2) we thus conclude
that pρ ¨ qρØ Hence p τ is representable by a continuous function; consequently the
exceptional set Nτ vanishes and (3.5) holds. è
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Proof of Theorem 2.6, Part (i), existence By Lemma 3.3 there exists an
q X DM�Rn� such that (3.5) holds for each τ ± 0 and A X SØ Recalling from the
proof of Lemma 3.3 that the function a w E τ�Ta A� is the τ mollification of the
locally Ln integrable function a w F�Ta A� we deduce that E τ�Ta A� r F�Ta A�
as τ r 0 for Ln a.e. a X Rn. Then the limit in (3.5) gives (2.7). Thus q is the flux
vector of F Ø è

4 Homotopy formula

We now introduce the main tool for our treatment of the divergence measure vector-
fields.

Let k Ú Rn ∼  0( r Rn given by

k�x� ¨ n−1κ−1n x/|x|nÙ
x X Rn ∼  0(. For any x X Rn we denote by kxÙ kx the maps defined by kx�y� ¨
k�x − y�Ù kx�y� ¨ k�x − y� for every y for which the right hand sides are defined.

If µ is a nonnegative finite measure in RnÙ we define G�µ� Ú Rn r �0Ù ð� by

G�µ��x� ¨ � kx dµÙ
x X RnØAn application of Fatou’s lemma shows thatG�µ� is a lower semicontinuous
function. If φÙq are measures with values in R and RnÙ respectively, we define the
Newton homotopies HN φ of φ and HN q of q as functions with values in Rn and
Skw by

HN φ�x� ¨ � kx dφÙ (4.1)

HN q�x� ¨ −2 � kx ` dqÙ (4.2)

for every x X Rn for which the integrals in (4.1) and (4.2) are well defined. The
integrands in (4.1) and (4.2) are bounded pointwise by kx and hence HN φ andHN q
are bounded pointwise by G�|φ|� and 2G�|q|�Û we shall later prove the following
assertion to see that G�|φ|� and G�|q|� and hence HN φ and HN q are Ln locally
integrable functions.

Remark 4.1. If µ is a nonnegative finite measure then G�µ� is a Ln locally inte-
grable function on RnÛ in fact if A ⊂ Rn is Ln measurable then

�
A
G�µ� dLn ² κ−1/nn �Ln�A�	 1/nM�µ�Û (4.3)

moreover, if M ⊂ Rn is a Lebesgue measurable set with Ln�M� ° ð then

G�Ln M��x� ² κ−1/nn �Ln�A�	 1/n (4.4)

for every x X RnØ
The main result of this section is the following
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Proposition 4.2. If q X DM�Rn� then

q ¨ HN divq + divHN q (4.5)

in the sense of distributions, i.e., if m X Cð0 �RnÙRn� then

� m ċ dq ¨ � m ċHN divq dLn − � curlm ċHN q dLnØ (4.6)

The two Newton homotopies (4.1) and (4.2) and the homotopy formula (4.5) are
special cases of Newton homotopies of measures with values in the space of r vectors
[30]. The formula (4.5) allows us to reconstruct the measure q X DM�Rn� from the
locally integrable functions HN q and HN divqØ

Proof of Remark 4.1 We have �AG�µ� dLn ¨ n−1κ−1n � �A ky dLndµ�y� and�A ky dL
n ² nκ�n−1�/nn �Ln�A�	 1/n for any y X Rn by [21; Lemma 3.4.3]. This

proves (4.3). To prove (4.4), we denote by B�xÙ r� the open ball of center x and
radius rÙ put D�r� ¨ Ln�M P B�xÙ r��Ù note that D�r� ² κnr

nÙ and let a ± 0Ø We
have

nκnG�Ln M��x� ¨ ð�
0

r−n+1 dD�r�
¨ �n − 1�ð�

0

r−nD�r� dr
¨ �n − 1� a�

0

r−nD�r� dr + �n − 1�ð�
a
r−nD�r� dr

² κn�n − 1�a + a−n+1Ln�M�Ø
The right hand side of the last inequality has a minimum with respect to a at a ¨�Ln�M�/κn	 1/n and the corresponding minimum value gives the right hand side of
(4.4). è

Proof of Proposition 4.2 If we interpret kx as a vector valued distribution,
i.e., as a linear functional on Cð0 �RnÙRn� given by 〈kxÙ m〉 ¨ � m ċ kx dL

n for any
m X Cð0 �RnÙRn�, then a standard result says that the divergence in the sense of
distributions of kx on Rn satisfies

divkx ¨ −δx (4.7)

where δx is the Dirac measure concentrated at xÙ i.e., 〈kxÙ ∇�〉 ¨ ��x� for any
� X Cð0 �RnÙR�Ø If m X Cð0 �RnÙRn� and S X Cð0 �RnÙ Skw�Ù we define the Newton
cohomotopies H Nm of m and H NS of S as functions with values in R and RnÙ
respectively, by

H Nm�x� ¨ � m ċ kx dL
nÙ H NS�x� ¨ 2 � Skx dL

n

for every x X RnØ Standard results on the differentiation of convolutions of distribu-
tions with Cð0 functions [26; Theorem 6.30] imply thatH Nm andH NS are infinitely
differentiable functions, moreover, the compactness of the supports of m and S and
immediate estimates give that H Nm and H NS decay to 0 at ð at the rate |x|−n+1Ø
We note that

H Nm�x� ¨ 〈kxÙ m〉Ù a ċH NS�x� ¨ −2〈kxÙ Sa〉 (4.8)
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for any aÙ x X RnØ We next show that

m ¨ ∇H Nm + H N curlm (4.9)

for any m X Cð0 �RnÙRn�Ø Indeed, if aÙ x X Rn then (4.8)2 gives a ċH N curlm�x� ¨−2〈kxÙ �curlm�a〉Ø If we denote by ∇a the derivative in the direction aÙ then the
formula �curlm�a ¨ 1

2
�∇a m − ∇m Ta�Ù the integration by parts involved in the

definition of the derivative of a distribution and (4.7) give

a ċH N curlm�x� ¨ 〈∇a kxÙ m〉 + a ċ m�x�
which in combination with

∇aH
 
Nm�x� ¨ −〈∇a kxÙ m〉

provides a ċ �∇H Nm�x� +H N curlm�x�� ¨ a ċ m�x�Ù which is (4.9).
We further note that the cohomotopies and homotopies are dual to each other: we

have � m ċHN φ dLn + �H Nm ċ dφ ¨ 0Ù (4.10)

� S ċHN q dLn + �H NS ċ dq ¨ 0Ø (4.11)

This is verified by writing down the definitions of HN and H N, noting that the
resulting double integrals are absolutely convergent, and exchanging the orders of
integration by Fubini’s theorem.

We prove (4.5) by dualizing (4.9). We first note that a simple approximation
argument shows that (2.6) holds for every bounded � X Cð�RnÙR� with a bounded∇�Ø Letting m X Cð0 �RnÙRn�, we observe that � Ú¨ H Nm is a bounded function in
Cð�RnÙR� with a bounded ∇�Ù integrate (4.9) with respect to q and employ (4.10),
(4.11), (2.6) to obtain (4.6). è

5 Fluxes defined by the flux vector

We now use (4.5) to complete the proofs.

Proof of Theorem 2.11 By (4.5) we have qρ ¨ �HN div q�ρ + div�HN q�ρ and
hence �qρ ċ d� ¨ ��HN divq�ρ ċ d� + � div�HN q�ρ ċ d�¨ ��HN divq�ρ ċ d� + ��HN q�ρ ċ dã�

(5.1)

where the second equality follows by applying (2.10) to the function ! ¨ �HN q�ρØ
We have �HN divq�ρ�x� ¨ ��kx�ρ d divqÙ�HN q�ρ�x� ¨ −2 ��kx�ρ ` dq

and �kx�ρ r kx pointwise on Rn∼ x( by the continuity of kxÛ moreover, elemen-
tary scaling arguments show that there exists a constant c ¨ c�n� depending only on
the dimension n such that |�kx�ρ| ² ckx on Rn for all x X Rn and ρ ± 0Ø Hence,
if x is such that G�|divq|��x� ° ð (which implies |div q|� x(� ¨ 0), we have�kx�ρ r kx pointwise for |divq| a.e. x X Rn and the convergence is majorized by
the |divq| integrable function ckxÛ thus the Lebesgue theorem yields that
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�HN divq�ρ�x� r HN divq�x�Ø (5.2)

Similarly, if x is such that G�|q|��x� ° ð then

�HN q�ρ�x� r HN q�x�Ø (5.3)

Inequalities (2.18) imply thatG�|divq|��x� ° ð for |�| a.e. x X Rn andG�|q|��x� °ð for |ã�| a.e. x X Rn; moreover,

|�HN divq�ρ�x�| ² � |�kx�ρ| d|divq| ² c � kx d|divq|Ù
|�HN q�ρ�x�| ² 2 � |�kx�ρ| d|q| ² 2c � kx d|q|

and the right hand sides of the last two inequalities are integrable functions of x with
respect to |�| and |ã�|Ù respectively, by (2.18). Thus we have (5.2) for |�| a.e. x X Rn
and (5.3) for |ã�| a.e. x X Rn with the existence of integrable majorants; hence the
Lebesgue theorem yields

lim
ρr0

� qρ ċ d� ¨ �HN divq ċ d� + �HN q ċ dã�

by (5.1). This completes the proof of the existence of the limit (2.19). The particular
case (2.20) is obtained by applying the above main case to the normaln−1 dimensional
current � ¨ n Hn−1 PØ è

Proof of Theorem 2.6, Part (i), uniqueness It suffices to show that if q X
DM�Rn� is a flux vector representing the null flux, then q ¨ 0Ø Thus by (2.7) we
have

lim
ρr0

�
Ta P

qρ ċ n dHn−1 ¨ 0 (5.4)

for everyA ¨ �PÙ n� X S andLn a.e. a X RnØLet A be fixed and put � ¨ n Hn−1 PØ
By the proof of Theorem 2.11 equation (5.4) reads

�HN divq ċ d Ta � + �HN q ċ d Ta ã� ¨ 0
and hence �T−aHN div q ċ d� + �T−aHN q ċ dã� ¨ 0
for Ln a.e. a X RnØ We now let ρ ± 0, multiply the last equation by ωρ�a�, integrate
with respect to Ln, exchange the orders of integration, and use the definition of
mollification to obtain

��HN divq�ρ ċ d� + ��HN q�ρ ċ dã� ¨ 0Ø
Since �HN q�ρ is an infinitely differentiable function decaying at infinity, we can use
(2.10) to obtain ���HN divq�ρ + div�HN q�ρ	 ċ d� ¨ 0Û
this holds for every � ¨ n Hn−1 P where A ¨ �PÙ n� X S is arbitrary. Since the
integrand is a continuous function, we conclude that �HN divq�ρ + div�HN q�ρ ¨ 0
which by the homotopy formula means that qρ ¨ 0Ø Thus all mollifications of q
vanish and since qρ r q as ρr 0 weak  in M�RnÙRn�Ù we obtain q ¨ 0Ø è

Proof of Remark 2.13 Inequality (2.21): We note that

� � k�x − y� d Ta φ�x� dψ�y� ¨ � � k�x − y + a� dφ�x� dψ�y� (5.5)
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for any a X RnØ Let M ⊂ Rn be a Ln measurable set with Ln�M� ° ðØ If we show
that �

M
� � k�x − y + a� dφ�x� dψ�y� dLn�a� ° ð (5.6)

then we have the finiteness of the integrals in (5.5) for Ln a.e. a X M and the
arbitrariness of M gives (2.21). To prove (5.6), we use Fubini’s theorem to exchange
the orders of integration to obtain the integral

� � �
M
k�x − y + a� dLn�a� dφ�x� dψ�y�

By the second part of Remark 4.1 we have

�
M
k�x − y + a� dLn�a� ° c

for some c X R and all xÙ y X RnØ Since φÙψ are finite measures, the finiteness of the
integral in (5.6) follows. Inequality (2.22): If ρ ± 0 then

�φρ dTaψ ¨ �φρ�x + a� dψ�x�
and

� �φρ dTaψdL
n�a� ¨ � �φρ�x + a� dLn�a� dψ�x� ¨ M�φ�M�ψ�

Hence

ð ±M�φ�M�ψ� ¨ lim inf
ρr0

� �φρ dTaψdL
n�a� ³ � lim inf

ρr0
�φρ dTaψdL

n�a�
by Fatou’s lemma and the assertion follows. è

Proof of Theorem 2.6, Part (ii) Given q X DM�Rn�Ù we define F Ú D r R
by (2.8) on the set D of all A ¨ �PÙ n� X S for which the limit (2.8) exists and
is finite. Prove that F is a Cauchy flux. To verify Definition 2.4(i), we note that if
A ¨ �PÙ n� X S then

� �
Ta P

k�x − y� dHn−1�x� d|div q|�y� ° ðÙ
� �
ãTa P

k�x − y� dHn−2�x� d|q|�y� ° ð




(5.7)

for Ln a.e. a X Rn by Remark 2.13. The particular case of Theorem 2.11 says that
the limit (2.7) exists for Ln a.e. a X Rn and thus Ta A X D for Ln a.e. a X RnØ The
function a w F�Ta A� is Ln measurable because it is a pointwise limit, Ln a.e., of
the family of continuous functions a w fρ�a� Ú¨ �Ta P

qρ ċn dHn−1Ù ρ ± 0ØDefinition
2.4(ii) is immediate. To verify Definition 2.4(iii), we put θ Ú¨ |q|Ù let A ¨ �PÙ n� X S
and note that

| �
Ta P

qρ ċ n dHn−1| ² �
Ta P

|qρ| dHn−1 ² �
Ta P

|q|ρ dHn−1Ø
The lim infρr0 using the existence of the limit (2.7) yields (2.4) for Ln a.e. a X RnØ
To verify Definition 2.4(iv), we put η ¨ |divq| and let B X BØ If Ai ¨ �PiÙ ni�Ù i ¨
1ÙÜ Ù qÙ is the collection of all oriented faces of BÙ we infer from Definition 2.4(i) that
Ta Ai X D for Ln a.e. a X Rn and all i ¨ 1ÙÜ Ù qÙ and
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F�ãTa B� ¨ lim
ρr0

q�
i¨1

�
Ta Pi

qρ ċ ni dH
n−1 ¨ lim

ρr0
�
Ta B
div qρ dL

n (5.8)

by the divergence theorem for the smooth vectorfield qρØ One has

| �
Ta B
divqρ dL

n| ² �
Ta B

|divqρ| dLn ² �
Ta B

|div q|ρ dLn

and hence (5.8) gives (2.5). The rest of theorem 2.6, Part (ii) is obvious. è
Proof of Theorem 2.6, Part (iii) The proof of Theorem 2.6, Part (ii) shows that

F�ãTa B� ¨ limρr0 �
Ta B
divqρ dL

n

for every B X B and Ln a.e. a X RnØ Furthermore, we have divqρL
n r divq

weak  in M�RnÙR� and the well known properties of the weak convergence (Port-
manteau theorem on weak convergence of measures (e.g., [3; p. 196], [4; p. 7]) imply
that

lim
ρr0

�
Ta B
divqρ dL

n r �
Ta B

d divq

provided |divq|�ãTa B� ¨ 0Ø The proof is now completed by noting that the last
relation holds for Ln a.e. a X Rn by Fubini’s theorem since Ln�ãTa B� ¨ 0Ø è

Proof of Theorem 2.14 If � X Nn−1 and f X Cð0 �RnÙR� then f � X Nn−1 and

ã�f �� ¨ f ã� + ∇f ` �Ø
Since ∇f is bounded, we see that (2.23)1 and (2.18) imply that ó Ú¨ f � satisfies the
hypothesis of Theorem 2.11 and thus the limit (2.24) exists and is finite. Further, we
have

¯�f �� ¨ lim
ρr0

� fqρċ d� ² |f |Lð lim infρr0
� |qρ|ċ d|�| ² |f |Lð lim infρr0

� |q|ρċ d|�| ¨ c|f |Lð
for every f X Cð0 �RnÙR� where c is a finite constant equal to the left hand side of
(2.23)2Ø Thus the functional f w ¯�f �� is represented by a measure as in (2.25). è
Lemma 5.1. If B ⊂ Rn is a normalized set of finite perimeter then

�
ãB
k�x − y� dHn−1�x� ¨ ð (5.9)

for every y X ãBØ If B and q satisfy the hypotheses of Theorem 2.16 then we have
(2.30) as a consequence.

Proof Let y X ãBØ Shifting B we assume that y ¨ 0 X ãB to simplify the notation.
We have

k�x� ¨ n−1κ−1n �n − 1�ð�
0

1U�ρ��x�ρ−n dρ
for every x X Rn where 1U�ρ� is the characteristic function of U�ρ� Ú¨ B�0Ù ρ�Ø
Hence the proof of (5.9) amounts to proving that

ð�
0

Hn−1�U�ρ� P ãB�ρ−n dρ ¨ ðØ
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By the relative isoperimetric inequality (e.g., [10; Corollary 4.5.3]) there exists a
constant c ± 0 such that

Hn−1�U�ρ� P ãB� ³ cmin!�Ln�U�ρ� P B��pÙ �Ln�U�ρ� ∼ B��p)
for all ρ ± 0 where p ¨ �n − 1�/nÙ and thus to within an inessential positive multi-
plicative constant the integral in (5.9) is bounded from below by

I Ú¨ ð�
0

�p�ρ�ρ−1 dρ
where

��ρ� ¨ min !D�ρ�Ù 1 − D�ρ�)Ù D�ρ� ¨ κ−1n ρ−nLn�U�ρ� P B�Ø
We note that 0 ² D�ρ� ² 1 and

��ρ� ¨ 



D�ρ� if D�ρ� ² 1/2Ù
1 − D�ρ� if D�ρ� ³ 1/2Ø

If 0 ° σ ° ρ then Ln�U�ρ� P B� − Ln�U�σ� P B� ² Ln�U�ρ� ∼ U�σ�� ¨
κn�ρn − σ n� from which we obtain

D�σ� ³ 1 + �ρ/σ�n�D�ρ� − 1�
and hence

D�σ� ³ D�ρ�/2 whenever q�D�ρ�� ² σ/ρ ² 1 (5.10)

where
q�α� ¨ ��1 − α�/�1 − α/2�	 1/n ² 1

for any α X �0Ù 1�Ø Replacing B by its complement we obtain analogously that

1 − D�ρ� ³ �1 − D�ρ��/2 whenever q�1 − D�ρ�� ² σ/ρ ² 1Ø (5.11)

We now consider the following three exhaustive possibilities to prove I ¨ ð:
(i) there exists a sequence ρk r 0 such that D�ρk� ¨ 1/2Û
(ii) we have D�ρ� ° 1/2 for all sufficiently small ρÛ
(iii)we have D�ρ� ± 1/2 for all sufficiently small ρØ
Let q0 Ú¨ q�1/2� ¨ �3/4� 1/n and note that q is a decreasing function of α X �0Ù 1�Ø
Assume that (i) occurs. Passing to a subsequence of the sequence ρk we assume that

ρk+1 ² q0ρkÙ k ¨ 1ÙÜ (5.12)

Noting that ��ρk� ¨ 1/2 we use (5.10) and (5.11) to deduce that ��σ� ³ 1/4 for all
σ X Jk where

Jk Ú¨ �q0ρkÙ ρk�Ù k ¨ 1ÙÜ (5.13)

Noting that the system of intervals Jk is disjoint we deduce that

I ³ ð�
k¨1

�
Jk

�p�ρ�ρ−1 dρ ³ �1/4�p ð�
k¨1

�
Jk

ρ−1 dρ ¨ −�1/4�p ð�
k¨1
ln q0 ¨ ðØ (5.14)

Assume that (ii) occurs. Since y ª 0 X ãBÙ there exists an a ± 0 and a sequence
ρk r 0 such that D�ρk� ³ aÛ indeed the opposite would mean that ¢�0ÙB� ¨ 0 and
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consequently y ¨ 0 X Rn ∼ �B T ãB�Ø We can assume (5.12). Noting that under
(ii) we have ��ρ� ¨ D�ρ� for all sufficiently small ρÙ we deduce from (5.10) and
from q�D�ρk�� ³ q0 that ��σ� ³ a/2 for all σ X Jk where Jk is given by (5.13). An
argument similar to that in (5.14) then gives I ¨ ðØ Assume that (iii) occurs. Since
y ª 0 X ãBÙ there exists a b ° 1 and a sequence ρk r 0 such that D�ρk� ² b since
otherwise we would have ¢�0ÙB� ¨ 1 and hence y ¨ 0 X BØ We can assume (5.12).
Noting that under (iii) we have ��ρ� ¨ 1−D�ρ� for all sufficiently small ρ we deduce
from (5.11) and from q�1 − D�ρk�� ³ q0 that ��σ� ³ �1 − b�/2 for all σ X Jk where
Jk is given by (5.13). An argument similar to that in (5.14) then gives I ¨ ð, which
completes the proof of (5.9).

Equations (2.30) are direct consequences of (5.9) and (2.27)1Ù2: Indeed, the
positivity of |q|�ãB� and (5.9) would cause the integral in (2.30)1 diverge and similarly
for (2.30)2Ø è

Proof of Theorem 2.16 Letting qρ X Cð�RnÙRn� be the ρ mollification of q
and f X Cð0 �RnÙR� we use the divergence theorem for sets of finite perimeter [10;
Theorem 4.5.6] and the commutativity of mollifications to assert that

�
ãB
fqρ ċ n dHn−1 ¨ �

B
f divqρ + ∇f ċ qρ dLn ¨ �

Rn
�f 1B�ρ d divq + �

Rn
�∇f 1B�ρ d q

(5.15)
where 1B is the characteristic function of B and �f 1B�ρÙ �∇f 1B�ρ are the mollifications
of the indicated functions. The continuity of f and ∇f imply that for ρr 0 we have

�f 1B�ρ�x� r f �x� lim
ρr0

�1B�ρ�x�Ù �∇f 1B�ρ r ∇f �x� lim
ρr0

�1B�ρ�x�
for every x X Rn for which the limit limρr0�1B�ρ�x� exists. Since B is a normalized
set, we have

lim
ρr0

�1B�ρ�x� ¨ 1B�x� (5.16)

for every x X Rn ∼ ãBØ This by (2.30) means that we have (5.16) for |q| a.e. x X Rn
and for |divq| a.e. x X RnØ The left hand side of (5.15) converges to � f dµãB by
(2.28) and the right hand side of (5.15) to

�
B
f d divq + �

B
∇f ċ d q

by Lebesgue’s theorem. è
Acknowledgment The author thanks M. Lucchesi, P. Podio-Guidugli, and the referee
for useful remarks on the previous version of the manuscript.

References

1 Ambrosio, L.; Fusco, N.; Pallara, D.: Functions of bounded variation and free
discontinuity problems Oxford, Clarendon Press (2000)

2 Anzellotti, G.: Pairings between measures and bounded functions and compen-
sated compactness Ann. Mat. Pura Appl. 135 (1983) 293–318

3 Ash, R. B: Measure, Integration and Functional Analysis New-York, Academic
Press (1972)



25

4 Billingsley, P.: Convergence of Probability Measures New-York, Wiley (1999)
5 Capriz, G.; Mazzini, G.: A σ-algebra and a concept of limit for bodies Math.

Models Methods Appl. Sci. 10 (2000) 801–813
6 Chen, G.-Q.; Frid, H.: On the theory of divergence-measure fields and its appli-

cations Bol. Soc. Bras. Math. 32 (2001) 1–33
7 Chen, G.-Q.; Frid, H.: Extended divergence-measure fields and the Euler equa-

tions for gas dynamics Commun. Math. Phys. 236 (2003) 251–280
8 Degiovanni, M.; Marzocchi, A.; Musesti, A.: Cauchy fluxes associated with

tensor fields having divergence measure Arch. Rational Mech. Anal. 147 (1999)
197–223

9 Degiovanni, M.; Marzocchi, A.; Musesti, A.: Virtual powers on diffused subbod-
ies and normal traces of tensor-valued measures (2008) (In press.)

10 Federer, H.: Geometric measure theory New York, Springer (1969)
11 Gurtin, M. E.: Configurational forces as basic concepts of continuum physics

New York, Springer (2000)
12 Gurtin, M. E.; Martins, L. C.: Cauchy’s theorem in classical physics Arch. Ra-

tional Mech. Anal. 60 (1976) 305–324
13 Gurtin, M. E.; Murdoch, I. : A continuum theory of elastic material surfaces

Arch. Rational Mech. Anal. 57 (1975) 291–323
14 Lucchesi, M.; Šilhavý, M.; Zani, N.: A new class of equilibrated stress fields for

no–tension bodies Journal of Mechanics of Materials and Structures 1 (2006)
503–539

15 Lucchesi, M.; Šilhavý, M.; Zani, N.: Integration of measures and admissible stress
fields for masonry bodies Journal of Mechanics of Materials and Structures (2007)
(To appear.)

16 A. Marzocchi, A. Musesti: Decomposition and integral representation of Cauchy
interactions associated with measures Continuum Mech. Thermodyn. 13 (2001)
149–169

17 A. Marzocchi, A. Musesti: On the measure theoretic foundation of the second
law of thermodynamics Math. Mod. Meth. Appl. S. 12 (2002) 721–736

18 A. Marzocchi, A. Musesti: Balanced powers in continuum mechanics Mecca-
nica 38 (2003) 369–389

19 Marzocchi, A.; Musesti, A.: The Cauchy stress theorem for bodies with finite
perimeter Rend. Sem. Mat. Univ. Padova 109 (2003) 1–11

20 Marzocchi, A.; Musesti, A.: Balance laws and weak boundary conditions in con-
tinuum mechanics J. Elasticity 38 (2004) 239–248

21 Morrey, Jr, Ch. B.: Multiple integrals in the calculus of variations Berlin,
Springer (1966)

22 Noll, W.: The foundations of classical mechanics in the light of recent advances
in continuum mechanics In The Axiomatic Method, with Special Reference to
Geometry and Physics P. Suppes (ed.), pp. 266–281, North-Holland, Amsterdam
1959

23 Podio-Guidugli, P.: Examples of concentrated contact interactions in simple bod-
ies J. Elasticity 75 (2004) 167–186



26

24 Podio-Guidugli, P.: On concentrated contact interactions In Progress in Non-
linear Differential Equations and their Applications, Volume 68 pp. 137–147,
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