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Abstract. We introduce and study wheeled PROPs, an extension of the theory of PROPs
which can treat traces and, in particular, solutions to the master equations which involve diver-
gence operators. We construct a dg free wheeled PROP whose representations are in one-to-one
correspondence with formal germs of SP-manifolds, key geometric objects in the theory of Batalin-
Vilkovisky quantization. We also construct minimal wheeled resolutions of classical operads Com

and Ass as rather non-obvious extensions of Com∞ and Ass∞, involving, e.g., a mysterious mix-
ture of associahedra with cyclohedra. Finally, we apply the above results to a computation of
cohomology of a directed version of Kontsevich’s complex of ribbon graphs.
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1. Introduction

Theory of operads and, more generally, of PROPs undergoes a rapid development in recent years

[15, 19]. Originated in algebraic topology and homotopy theory, it has provided us with new

powerful means to attack problems in many other areas of mathematics including deformation

theory and differential geometry. Rather surprisingly, such classical systems of non-linear differ-

ential equations as Poisson equations, Nijenhuis integrability equations for an almost complex

structure, or even Hochschild equations for star products on germs of smooth functions, — they

all can be understood as representations of certain dg PROPs [22, 23, 24]. The common feature

of all these equations is that they admit an interpretation as Maurer-Cartan equations in certain

dg Lie algebras. However, in theoretical physics one often encounters not the Maurer-Cartan

equations but the master equations which involve a divergence operator. Such equations can not

be understood in terms of ordinary PROPs and operads as the latter have no room to encode

such a basic operation in geometry and physics as trace.

In this paper we introduce and study an extension of the theory of PROPs which can treat

traces and hence can be used to describe solutions to master equations. This new theory turns

out to be in a sense simpler than the original one. We call it the theory of wheeled PROPs
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and operads. The motivation for the terminology is that free objects in this new category are

based on directed graphs with may contain wheels, that is, directed closed paths of oriented

edges. Such graph complexes as well as some methods of computing their cohomology have been

studied in [24].

There is a canonical forgetful functor, PROP� → PROP, from the category of wheeled PROPs

to the category of PROPs which admits a left adjoint, (−)�: PROP → PROP�. This functor is

neither exact nor full, and its study is another main purpose of our work.

This means, in particular, that a resolution, A∞ of, say, an operad A within the category of

ordinary operads may not, in general, produce via the wheeled completion � a resolution, (A�)∞,

of its wheeled completion, A�, in the category of wheeled PROPs, i.e., in general

(A�)∞ 6= (A∞)�.

This phenomenon is studied in detail for classical operads, Ass and Com, for associative and

commutative algebras:

• first, we compute cohomology groups
⊕

n≤0

Hn((Ass∞)�, ∂) and
⊕

n≤0

Hn((Com∞)�, ∂)

of the wheeled completions of their well-known minimal resolutions, (Ass∞, ∂) and (Com∞, ∂),

and show that these groups are non-zero for all n ≤ 0 (with H0((Ass∞)�, ∂) = Ass� and

H0((Com∞)�, ∂) = Com� as expected);

• second, by adding new generators we construct their wheeled minimal resolutions,

Ass�
∞ := (Ass�)∞ and Com�

∞ := (Com�)∞,

as rather non-trivial extensions of (Ass∞)� and, respectively, (Com∞)�, involving, e.g., a myste-

rious mixture of associahedra with cyclohedra.

More precisely, we prove the following two theorems:

Theorem A. The minimal wheeled resolution of the operad of associative algebras, Ass, is the

free wheeled dg PROP, (Ass�
∞, ∂), generated by

(i) planar (1,n)-corollas in degree 2− n,

•
sss

sss
��

��. . . <<
<<

KKK
KKK

1 2 n

n ≥ 2, and

(ii) planar (0, m+ n)-corollas in degree −m− n

H
iiiiiiiiii

llllllll
		
		

...
1 2 m

UUUUUUUUUU
RRRRRRRR

55
55

...
m+nm+1

m,n ≥ 1,
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having the cyclic skew-symmetry

H
iiiiiiiiii

llllllll
		
		

...
1 2 m

UUUUUUUUUU
RRRRRRRR

55
55

...
m+nm+1

= (−1)sgn(ζ)
H

iiiiiiiiii
llllllll

		
		

...
ζ(1) ζ(2) ζ(m)

UUUUUUUUUU
RRRRRRRR

55
55

...
m+nm+1

= (−1)sgn(ξ)
H

iiiiiiiiii
llllllll

		
		

...
1 2 m

UUUUUUUUUU
RRRRRRRR

55
55

...
ξ(m+n)ξ(m+1)

with respect to the cyclic permutations ζ = (12 . . .m) and ξ = ((m+ 1)(m+ 2) . . . (m+ n)). The

differential is given on generators as

∂ •
sss

sss
��

��. . . <<
<<

KKK
KKK

1 2 n

=

n−2∑

k=0

n−k∑

l=2

(−1)k+l(n−k−l)+1 •

1 ... k k+l+1 ... n
jjjjjjjjj

zz
zz

z
WWWWWWWWWWWW

KKK
KKK

•
��

��
��
� ,,
,

??
??

k+1 ... k+l

,(1)

∂ H
iiiiiiiiii

llllllll
		
		

...
1 2 m

UUUUUUUUUU
RRRRRRRR

55
55

...
m+nm+1

=

m−1∑

i=0

(
(−1)m+1ζ

)i n−1∑

j=1

(
(−1)n+1ξ

)j

 •

nnnnnnn
rrrrrr
... ��

��

1 2 m
PPPPPPP

LLLLLL

...//
//

m+nm+1
__

(2)

+
m∑

k=2

(−1)k(m+n)
H

iiiiiiiiii

nnnnnnn
		
		

...
k+1 m

UUUUUUUUUU
RRRRRRRR

55
55

...
m+nm+1

•
��

�� 66
66

��
�� ++
++

1 ... k

+
n−2∑

k=2

(−1)m+k+nk+1
H

iiiiiiiiii
llllllll

		
		

...
1 2 m

VVVVVVVVVVV
HHHHH

55
55

...
m+nm+k+1

•
��

��
��
�� ++
++

66
66

m+1 ... m+k


 .

In Theorem B below, Σ(k, n) denotes the set of all (k, n− k)-unshuffles,

Σ(k, n) := {τ ∈ Σn | τ(1) < · · · < τ(k), τ(k + 1) < · · · < τ(n)}.

Theorem B. The minimal wheeled resolution of the operad of commutative associative algebras,

Com, is the free wheeled dg PROP, (Com�
∞, ∂), generated by

(i) planar (1, n)-corollas in degree 2− n,

•
sss

sss
��

��. . . <<
<<

KKK
KKK

1 2 n

n ≥ 2,

modulo the shuffle relations:

(3)
∑

τ∈Σ(k,n)

(−1)sgn(τ) •
sss

sss
��

��. . . <<
<<

KKK
KKK

τ(1) τ(2) τ(n)

= 0, 1 ≤ k ≤ n− 1, and

(ii) planar (0, n)-corollas in degree −n

•
sss

sss
��

��. . . <<
<<

KKK
KKK

1 2 n

n ≥ 2, σ ∈ Σn,

which are cyclic skew-symmetric

•
sss

sss
��

��. . . <<
<<

KKK
KKK

1 2 n

= (−1)sgn(ξ) •
sss

sss
��

��. . . <<
<<

KKK
KKK

ξ(1) ξ(2) ξ(n)

, for ξ = (1, . . . , n),
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with the differential given as

∂ •
sss

sss
��

��. . . <<
<<

KKK
KKK

1 2 n

=
n−2∑

k=0

n−k∑

l=2

(−1)k+l(n−k−l)+1 •

1 ... k k+l+1 ... n
jjjjjjjjj

zz
zz

z
WWWWWWWWWWWW

KKK
KKK

•
��

��
��
� ,,
,

??
??

k+1 ... k+l

,(4)

∂ •
sss

sss
��

��. . . <<
<<

KKK
KKK

1 2 n

=

n∑

i=1

(−1)(n−1)(i−1) •
��

��
�
��
�� ,,
,,

??
??

?

i ··· i−1

+

n∑

i=1

n−2∑

l=1

(−1)(n−1)(i−1)+l •

i ··· i+l
sss

sss
��

��
�
��
� ,,
,,

KKK
KKK

•
��
� %%
%

??
??

KKKKK

i+l+1 ··· i−1

.(5)

The labels in the right hand side of (5) denote cyclic permutations, so that for example i · · · i−1

in the first term means i, . . . n, 1, . . . , i− 1.

By contrast, the operad Lie is rigid with respect to the wheelification: it was proven in [24]

that (Lie�)∞ = (Lie∞)�.

A conceptual understanding of homological properties of a wide class of wheeled PROPs is

provided by wheeled quadratic duality and wheeled Koszulness which we set up in Sections 4

and 5. This theory generalizes its “unwheeled” precursor developed in [9].

As an application of the above results we compute cohomology of a directed version of Kontse-

vich’s complex of ribbon graphs. Let Gg be the linear span of (not necessary connected) directed

ribbon graphs of genus g such that (i) each vertex has at least three attached internal edges of

which at least one is incoming and at least one is outgoing, (ii) vertices in a closed path all have

either precisely one incoming edge, or precisely one outgoing edge, and (iii) there are no input

and output legs (i.e. every edge of the graph is internal)1. For example,

I
• WWW

N

ggg

WWW

N

J

• ggg

•

•

WWW

ggg

N ∈ G4

Orientation on an element G ∈ Gg is, by definition, an orientation of the vector space, R
v(G),

spanned by the set, v(G), of vertices of G (which is in fact the same as the orientation of

R
e(G) ⊕H•(|G|,R), where e(G) is the set of internal edges of G and H•(|G|,R) is the homology

of G viewed as a 1-dimensional CW complex). The space Gg is naturally a cochain complex,

(Gg, ∂), with respect to the grading,

Gg =
⊕

n≥0

Gn
g ,

by the number, n = |v(G)|, of vertices of its elements G [11, 20].

1The space Gg is obviously zero in the class of directed graphs without wheels. However it is highly non-trivial
with wheels allowed. This simple fact provides us with one more motivation for introducing the category of
wheeled PROPs.
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In the following theorem, ↑k denotes, for k ≥ 0, the suspension of a graded vector space

iterated k-times.

Theorem C. Let Γ〈E〉 = {Γ〈E〉(m,n)}m,n≥0 be the free (ordinary) PROP generated by the

Σ-bimodule E = {E(m,n)}m,n≥0, with

E(m,n) =





⊕
p,q≥0

p+q=m

↑m G(p, q) ⊕
⊕

p,q≥1
p+q=m

↑m−1 G(p, q) for m ≥ 1, n = 0,

⊕
p,q≥0

p+q=n

↑n G(p, q) ⊕
⊕

p,q≥1
p+q=n

↑n−1 G(p, q) for n ≥ 1, m = 0,

0 otherwise.

where G(p, q) := R[Σp+q]
Cp×Cq is the space of coinvariants with respect to the product of cyclic

subgroups Cp × Cq ⊂ Σp+q generated by permutations (12 . . . p) and (p+ 1 . . . p+ q).

Then the graded vector space H•(Gg) is isomorphic to the subspace of the component Γ〈E〉(0, 0)

generated by graphs with g − 1 internal edges. In particular,
⊕

g H
•(Gg) ' Γ〈E〉(0, 0).

Corollary D. The vector space Hn(Gg) is nonzero only for n in the range g − 1
2
(1− (−1)g) ≤

n ≤ 2(g − 1).

It is worth noting another interesting phenomenon of substantial and sometimes highly non-

trivial change of the set of morphisms between ordinary PROPs under their wheeled comple-

tions. For example, it was shown in [24] that deformation quantization can be understood as a

morphism, DefQ −→ PolyV�, between the dg PROP, DefQ, of star products and the wheeled

completion of the dg PROP, PolyV, of polyvector fields. No such morphism (satisfying the quasi-

classical limit condition), DefQ −→ PolyV, exists for the original dg PROPs DefQ and PolyV

within the category of ordinary PROPs.

Here is an itemized and more detailed list of main results of our paper:

In §2 we construct a triple over the category of Σ-bimodules using directed graphs with directed

cycles, and then define wheeled PROPs as algebras over that triple. Modifications of this notion

(such as wheeled properads and modular wheeled properads) are also given.

In §3 we construct a particular example of dg wheeled PROP whose representations are in

1-1 correspondence with the set of solutions of master equations which describe formal germs of

so called SP -manifolds, key geometric objects in the theory of Batalin-Vilkovisky quantization

(cf. [25]).

In §4 we introduce the notion of wheeled coproperads, define wheeled bar and cobar functors

(which, rather surprisingly, turn out to be much simpler than their analogues for (co)properads)

and prove Theorems 4.2.3 and 4.2.5 on bar+cobar resolutions of wheeled properads and coprop-

erads.
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In §5 we study quadratic wheeled operads and introduce the notion of wheeled Koszulness.

Theorems A and B above imply that classical wheeled operads Com�, Ass� are wheeled Koszul

(while the wheeled Koszulness of Lie� was proved in [24]).

In §6 we prove Theorems A, C and D (in fact we prove a stronger Theorem 6.2.3 of which

Theorem C is a corollary), and, as a concrete and natural example of Ass�

∞-structure we compute

explicitly new trace-type Massey operations on the homology of an arbitrary finite-dimensional

dg associative algebra. We also find a new cyclic characteristic class of an arbitrary finite-

dimensional Ass∞-algebra and prove that its vanishing is a necessary and sufficient condition for

extendability of the given Ass∞-structure to Ass�

∞ one.

Finally, in §7 we compute cohomology of the dg properad (Com∞)� and prove Theorem B.

2. Wheeled PROPs

2.1. Basic definitions. Let k denote a ground field which will always be assumed of character-

istic zero. Recall that a dg (differential graded) PROP is a collection P = {P(m,n)}, m,n ≥ 0,

of dg (Σm,Σn)-bimodules (left Σm- right Σn-modules such that the left action commutes with

the right one), together with two types of compositions, horizontal

(6) ⊗ : P(m1, n1)⊗ · · · ⊗ P(ms, ns)→ P(m1 + · · ·+ms, n1 + · · ·+ ns),

defined for all m1, . . . , ms, n1, . . . , ns ≥ 0, and vertical

(7) ◦ : P(m,n)⊗ P(n, k)→ P(m, k),

defined for all m,n, k ≥ 0. These compositions are compatible with the dg structures. One also

assumes the existence of a unit 11 ∈ P(1, 1).

PROPs should satisfy axioms which could be read off from the example of the endomorphism

PROP EndV of a vector space V , with EndV (m,n) the space of linear maps Hom(V ⊗n, V ⊗m)

with n ‘inputs’ and m ‘outputs,’ 11 ∈ EndV (1, 1) the identity map, horizontal composition given

by the tensor product of linear maps, and vertical composition by the ordinary composition of

linear maps. For a precise definition see [14, 16].

Recall also that a P-algebra is a PROP homomorphism ρ : P → End V . It is determined by a

system

α : P(m,n)⊗ V ⊗n → V ⊗m, m, n,≥ 0,

of linear maps satisfying appropriate axioms. P-algebras are sometimes called representations

of P.

PROPs are devices that describe structures consisting of operations with several inputs and

several outputs. Therefore various bialgebras (associative, Lie, infinitesimal) are PROPic alge-

bras. In this section we introduce wheeled PROPs that generalize PROPs in that they describe

structures whose axioms involve also “contraction of indices” or “traces.”
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Before we give a precise definition of wheeled PROPs, we present the following fundamental

example of this kind of structure.

2.1.1. Example. Let V be a finite-dimensional vector space, with a basis {es}1≤s≤d. Consider a

linear map f : V ⊗n → V ⊗m ∈ EndV (m,n), m,n ≥ 1, that acts on products of basic elements by

f(eα1 ⊗ · · · ⊗ eαn
) =

∑
Mβ1,...,βm

α1,...,αn
eβ1 ⊗ · · · ⊗ eβm

, 1 ≤ αs ≤ d, 1 ≤ s ≤ n,

where Mβ1,...,βm
α1,...,αn

∈ k are scalars and the sum is taken over all 1 ≤ βt ≤ d, 1 ≤ t ≤ m. For any pair

of indices i and j, 1 ≤ i ≤ m, 1 ≤ j ≤ n, define a multilinear map ξi
j(f) : V ⊗(n−1) → V ⊗(m−1) by

(8) ξi
j(f)(eµ1 ⊗ · · · ⊗ eµn−1) :=

∑
Mν1,...,νi−1,γ,νi,...,νm−1

µ1,...,µj−1,γ,µj ,...,µn−1
eν1 ⊗ · · · ⊗ eνm−1 ,

where 1 ≤ µu ≤ d, 1 ≤ u ≤ n−1, and the summation runs over all 1 ≤ νv, γ ≤ d, 1 ≤ v ≤ m−1.

Remarkably, the above definition of ξi
j(f) does not depend on the basis. Formula (8) therefore

defines a linear map

(9) ξi
j : EndV (m,n)→ EndV (m− 1, n− 1).

A “coordinate-free” definition can be given as follows. Using the duality in the category of

finite-dimensional vector spaces, one can associate to any map f : V ⊗n → V ⊗m a map

f i
j : Hom(V ⊗(n−1), V ⊗(m−1))→ Hom(V, V ),

by singling out the ith output and the jth input of f . The composition with the ordinary trace

Tr : Hom(V, V ) → k is a map Tr(f i
j) : Hom(V ⊗(n−1), V ⊗(m−1)) → k which in turn corresponds,

via the duality, to the contraction ξj
i (f) : V ⊗(n−1) → V ⊗(m−1) constructed above.

Wheeled PROPs are PROPs that, besides the horizontal and vertical compositions (6) and (7)

admit also contractions

ξi
j : P(m,n)→ P(m− 1, n− 1), m, n ≥ 1, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

that generalize (9) in Example 2.1.1. A precise definition of wheeled PROPs will be a modification

of the unbiased definition of ordinary PROPs given in [15, Section 8] which we review below. The

difference between biased and unbiased definitions is explained in [13], see also a remark in

Section 3 of [15].

Recall that a Σ-bimodule is a system E = {E(m,n)}m,n≥0 such that each E(m,n) is a left

k[Σm]- right k[Σn]-bimodule. Let Σ-bimod denote the category of Σ-bimodules. For E ∈ Σ-bimod

and finite sets Y,X with m resp. n elements put

E(Y,X) := Bij (Y, [m])×Σm
E(m,n)×Σn

Bij ([n], X), m, n ≥ 0,

where

Bij (T, S) := {ϑ : S
∼=
−→ T}
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is the set of bijections between finite sets S and T , and [m] := {1, . . . , m}, [n] := {1, . . . , n} as

usual. We are going to define an endofunctor Γ on the category Σ-bimod that assigns to each

Σ-bimodule E the Σ-bimodule Γ〈E〉 of E-decorated graphs. Unfortunately, the naive concept of

graph is not refined enough for our purposes and we must recall the following more sophisticated

concept taken from [12].

2.1.2. Definition. A graph G is a finite set Flag(G) (whose elements are called flags or half-

edges) together with an involution σ and a partition λ. The vertices vert(G) of a graph G are

the blocks of the partition λ; we assume that the number of these blocks is finite. The edges

Edg(G) are pairs of flags forming a two-cycle of σ. The legs Leg(G) are the fixed points of σ.

We also denote by edge(v) the flags belonging to the block v or, in common speech, half-edges

adjacent to the vertex v. We say that graphs G1 and G2 are isomorphic if there exists a set

isomorphism ϕ : Flag(G1) → Flag(G2) that preserves the partitions and commutes with the

involutions. We may associate to a graph G a finite one-dimensional cell complex |G|, obtained

by taking one copy of [0, 1
2
] for each flag, a point for each block of the partition, and imposing

the following equivalence relation: The points 0 ∈ [0, 1
2
] are identified for all flags in a block of

the partition λ with the point corresponding to the block, and the points 1
2
∈ [0, 1

2
] are identified

for pairs of flags exchanged by the involution σ.

We call |G| the geometric realization of G. Observe that empty blocks of the partition generate

isolated vertices in the geometric realization. We will usually make no distinction between the

graph and its geometric realization. See [19, Section II.5.3] or [15, Section 7] for more details.

A graph G as in Definition 2.1.2 is a directed (m,n)-graph if

(i) each edge of G is equipped with a direction

(ii) the set of legs of G is divided into the set of inputs labeled by {1, . . . , n} and the set of

outputs labeled by {1, . . . , m}.

The direction of edges together with the division of legs into inputs and outputs determines at

each vertex v ∈ vert(G) of a directed graph G a disjoint decomposition

edge(v) = in(v) t out(v)

of the set of edges adjacent to v into the set in(v) of incoming edges and the set out(v) of

outgoing edges. The pair (#(out(v)),#(in(v))) ∈ N × N is called the biarity of v. By a wheel

in a directed graph we mean a directed cycle of edges, see Figure 1. We usually draw directed

graphs in such a way that output edges of vertices point upwards and input edges enter vertices

from the bottom. We denote by G↑(m,n) the category of directed (m,n)-graphs without wheels

and their isomorphisms.
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Figure 1. A directed (5, 3)-graph with four independent wheels w1, w2, w3 and
w4. The graph is not connected and has a component with no legs.

To incorporate the PROPeradic unit, we assume that G↑(m,n), for m = n, contains also the

exceptional graph

↑ ↑ ↑ · · · ↑ ∈ G↑(n, n), n ≥ 1,

with n inputs, n outputs and no vertices. For a graph G ∈ G↑(m,n) and a Σ-bimodule E, let

(10) E(G) :=
⊗

v∈vert(G)

E(out(v), in(v))

be the linear space of all decorations of vertices of the graph G by elements of E. Since the

assignment E 7→ E(G) clearly defines a functor from the category G↑(m,n) to the category of

vector spaces, it makes sense to define

(11) Γ〈E〉(m,n) := colim
G ∈ G

↑(m,n)

E(G), m, n ≥ 0.

Denote finally Γ〈E〉 the Σ-bimodule {Γ〈E〉(m,n)}m,n≥0. Our aim now is to explain that the

correspondence E 7→ Γ〈E〉 defines a triple on the category of Σ-bimodules such that PROPs are

algebras over this triple.

The concept of triples and their algebras is classical, so we recall it only briefly. Let End(C)

be the strict symmetric monoidal category of endofunctors on a category C where multiplication

is the composition of functors.

2.1.3. Definition. A triple (also called a monad) T on a category C is an associative and unital

monoid (T, µ, υ) in End(C). The multiplication µ : TT → T and unit morphism υ : id → T

satisfy the axioms given by commutativity of the diagrams in Figure 2.

Let us indicate how to construct transformations

µ : ΓΓ→ Γ and υ : 11→ Γ
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TTT TT

TT T

µT µ

µ

Tµ

-

-

? ?

T TT-Tυ

�
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�
�


B
B
B
BN

11 µ

T

T TT-υT

�
�

�
�


B
B
B
BN

11 µ

T

Figure 2. Associativity and unit axioms for a triple.

making Γ a triple on the category of Σ-bimodules. Let us start with the triple multiplication µ.

It follows from definition (11) that, for each Σ-bimodule E,

(12) Γ〈Γ〈E〉〉(m,n) := colim
G ∈ G

↑(m,n)

Γ〈E〉(G), m, n ≥ 0.

The elements in the right hand side are represented by directed graphs with vertices decorated

by elements of Γ〈E〉, while elements of Γ〈E〉 are represented by directed graphs with vertices

decorated by E. We may therefore imagine elements of Γ〈Γ〈E〉〉 as ‘bracketed’ or ‘nested’ E-

decorated directed graphs G, with nests encompassing groups of vertices of G that represent one

vertex decorated by an element of Γ〈E〉. See also [15, Section 5] where this nesting is described

and analyzed in detail. The triple multiplication µE : Γ〈Γ〈E〉〉 → Γ〈E〉 then simply forgets the

nests. The triple unit υE : E → Γ〈E〉 identifies elements of E with decorated corollas:

E(m,n) 3 e ←→ •

. . .︸ ︷︷ ︸
n inputs

. . .
m outputs︷ ︸︸ ︷

e ∈ Γ〈E〉(m,n), m, n ≥ 0.

It is not difficult to verify that the above constructions indeed make Γ a triple, compare [19,

Section II.1.12] or [15, Section 5]. The last thing we need to recall is:

2.1.4. Definition. A T -algebra or algebra over the triple T is an object A of C together with a

structure morphism α : T (A)→ A satisfying

α(T (α)) = α(µA) and αυA = 11A,

see Figure 3.

The following proposition follows from [15, Section 8], see also [27, 28].

2.1.5. Proposition. PROPs are algebras over the triple Γ.
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T (T (A)) T (A)

T (A) A

µ α

α

T (α)

-

-

? ?

A T (A)-
υA

�
�

�
�


B
B
B
BN

11 α

A

Figure 3. T -algebra structure.

As explained in [15], the above proposition means that a PROP is given by coherent com-

positions along directed graphs without wheels. Therefore, a PROP is a Σ-bimodule P =

{P(m,n)}m,n≥0 equipped with a coherent system of linear maps

(13) αG : P(G)→ P(m,n), G ∈ G↑(m,n), m, n ≥ 0,

where P(G) is the space of P-decorations of the graph G introduced in (10).

Another important observations is that the triple multiplication µ : ΓΓ → Γ makes Γ〈E〉 a

PROP, for each Σ-bimodule E – the maps (13) are the compositions

Γ〈E〉(G)
ιG−→ Γ〈Γ〈E〉〉

µE−→ Γ〈E〉,

with ιG the canonical map to the colimit in the right hand side of (12). It can be easily shown

that the vertical composition in Γ〈E〉 is given by the disjoint union of graphs, the horizontal

composition by grafting the legs of graphs, and the unit is the exceptional graph ↑ ∈ Γ〈E〉(1, 1).

The following proposition follows from general properties of algebras over triples [5].

2.1.6. Proposition. The PROP Γ〈E〉 is the free PROP generated by the Σ-bimodule E.

Now we are finally ready to modify the above constructions and introduce wheeled PROPs, by

allowing wheels in directed graphs. We start by denoting G�(m,n), m,n ≥ 0, the category of all

directed (m,n)-graphs and their isomorphisms. The little oriented circle in G�(m,n) indicates

that wheels are allowed now. The category G�(n, n) contains, for each n ≥ 0, the exceptional

graphs

(14) ↑ ↑ ↑ · · · ↑ �� · · ·� ∈ G�(n, n), n ≥ 0,

We denote

Γ�〈E〉(m,n) := colim
G ∈ G

�(m, n)

E(G), m, n ≥ 0,

with E(G) given as in (10). We then argue as before that the above formula defines a triple Γ�

on the category of Σ-bimodules. The central definition of this section is:

2.1.7. Definition. Wheeled PROPs are algebras over the triple Γ� : Σ-bimod→ Σ-bimod.
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I

G/e:

ff

6

6

G :

e •
I�

6

6
•

•

Figure 4. A wheel created by collapsing an edge in an unwheeled graph.

The above definition can be reformulated by saying that a wheeled PROP is a Σ-bimodule

P = {P(m,n)}m,n≥0 with a coherent system of linear maps

(15) αG : P(G)→ P(m,n), G ∈ G�(m,n), m, n ≥ 0,

where ‘coherent’ means that the collection (15) assembles into a map α : Γ�〈P〉 → P with the

properties stated in Definition 2.1.4.

As in the case of ordinary PROPs, Γ�〈E〉 carries the ‘tautological’ wheeled PROP structure

for an arbitrary Σ-bimodule E. Another example of a wheeled PROP is the endomorphism PROP

EndV of a finite-dimensional vector space V discussed in Example 2.1.1.

2.1.8. Definition. Let P be a wheeled PROP and V a finite-dimensional vector space. A P-

algebra (also called a wheeled representation of P) is a PROP homomorphism ρ : P → End V ,

where EndV is the wheeled endomorphism PROP introduced in Example 2.1.1.

Surprisingly, wheeled PROPs are simpler than (ordinary) PROPs, because the category of all

directed graphs is, in contrast with the category of graphs without wheels, closed under edge

contractions. This means that, given a directed graph G ∈ G�(m,n) and an edge e of G, the

quotient G/e is again a directed graph, but G/e may contain wheels although G does not, see

Figure 4. The consequence of this observation is that the compositions (15) in a wheeled PROP

are generated by edge contractions and disjoint unions of graphs.

Therefore a biased definition of wheeled PROPs can be given in terms of the horizontal com-

positions (6) that correspond to disjoint unions of graphs, and the contractions

(16) ξi
j : P(m,n)→ P(m− 1, n− 1)

defined for 1 ≤ i ≤ m, 1 ≤ j ≤ n, that correspond to the graph in Figure 5. The ‘dioperadic’

(see [6] for the terminology) compositions

(17) ◦ij : P(m1, n1)⊗ P(m2, n2)→ P(m1 +m2 − 1, n1 + n2 − 1),

where m1, n2 ≥ 0, 1 ≤ i ≤ n1, 1 ≤ j ≤ m2, corresponding to the contraction of an edge joining

two different vertices, can be expressed in terms of the above two operations as

p ◦ij q = ξm1+j
i (p⊗ q), p ∈ P(m1, n1), q ∈ P(m2, n2),
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Figure 5. The graph generating contractions (16). Its vertex has biarity (m,n).
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Figure 6. A dioperadic composition as a horizontal compositions followed by a
contraction. The upper vertex of the left graph has biarity (m1, n1), the bottom
vertex biarity (m2, n2).

see Figure 6. We are, however, not going to write axioms that these operations should fulfill

here.

The obvious forgetful functor � : PROP� → PROP from the category of wheeled PROPs to the

category of PROPs is induced by the natural inclusions G↑(m,n) ↪→ G�(m,n), m,n ≥ 0. It is

easy to show that � has a left adjoint (−)� : PROP→ PROP�

2.1.9. Definition. Given a PROP P, we call the wheeled PROP P� the wheeled completion of P.

2.1.10. Proposition. For any PROP P there is a one-to-one correspondence between finite di-

mensional representations of P in the category PROP and finite dimensional representations of P�

in the category of PROP�.

2.1.11. Definition. For a graded vector space V , let ↑V be the suspension of V defined by

(↑V )i := Vi−1, and let ↓V be the desuspension of V defined by (↑V )i := Vi+1.

The suspension wheeled properad, S, is the endomorphism wheeled prop(erad) of ↑k and the

desuspension wheeled properad, S−1, is the endomorphism wheeled prop(erad) of ↓k. Thus S is

the one dimensional Σ-bimodule {↑m−nsgnm⊗ sgnn} and S−1 is the one dimensional Σ-bimodule

{↓m−nsgnm ⊗ sgnn}. Tensoring with S (or with S−1) defines an endomorphism functor in the

category of wheeled prop(erad)s.
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2.2. Modifications and generalizations. In [27, 28], B. Vallette introduced properads as a

suitable subcategory of the category of (ordinary) PROPs on which (co)bar constructions and

quadratic duality could be defined. We will need, in Section 4, a wheeled version of this notion.

Recall that Vallette’s properads are algebras over a subtriple F of the free PROP triple Γ given

as the colimit over connected graphs, that is, for a Σ-bimodule E, F〈E〉 is defined by

F〈E〉(m,n) := colim
G ∈ G

↑
c(m, n)

E(G), m, n ≥ 0,

where G↑c(m,n) is the full subcategory of G↑(m,n) consisting of connected graphs. Similarly, there

is a subtriple F� of the triple Γ� defined by

(18) F�〈E〉(m,n) := colim
G ∈ G

�
c (m,n)

E(G), m, n ≥ 0,

where G�
c (m,n) is the full subcategory of G�(m,n) of connected graphs. Observe that there are

precisely two connected exceptional graphs,

↑ ∈ G�
c (1, 1) and � ∈ G�

c (0, 0).

2.2.1. Definition. A wheeled properad is an algebra over the triple F� introduced above.

It is clear that, for each Σ-bimodule, F�〈E〉 is a wheeled properad, with the structure map

given by the triple multiplication µE : F�〈F�〈E〉〉 → F�〈E〉. It is the free wheeled properad

generated by the Σ-bimodule E.

Observe that each wheeled properad generates a wheeled PROP, but not all wheeled PROPs

are generated by wheeled properads. Each properad P has its wheeled properadic completion P�
c

given by an obvious modification of Definition 2.1.9.

2.2.2. Example. Let k be the trivial properad (the initial object of the category properads)

defined by

k(m,n) :=

{
k, for (m,n) = (1, 1), and
0, otherwise.

Its wheeled properadic completion k�
c is the initial object of the category of wheeled properads.

It satisfies

k�
c (m,n) :=

{
k, for (m,n) = (1, 1) or (0, 0), and
0, otherwise.

The component k�
c (0, 0) is spanned by the contraction of the unit 1 ∈ k�

c (1, 1). Of course, k�
c

equals F�〈0〉, the free wheeled properad generated by the trivial Σ-bimodule.

We close this section by mentioning an important modification of wheeled properads whose

nature resembles modular operads introduced in [8]. Let us recall some necessary definitions.



16 M. MARKL, S. MERKULOV AND S. SHADRIN

A labeled graph is a connected graph G together with a map g from vert(G) to the set

{0, 1, 2, . . .}. The genus g(G) of a labeled graph G is defined by

g(G) := dimH1(G) +
∑

v∈vert(G)

g(v).

Let us denote by G�
c (g;m,n) the category of labeled directed (m,n)-graphs and their isomor-

phisms.

By a modular Σ-bimodule we mean a system E = {E(g;m,n)}g,m,n≥0 such that each E(g;m,n)

is a left k[Σm]- right k[Σn]-bimodule. For a modular Σ-bimodule E and G ∈ G�
c (g;m,n), let

E(G) :=
⊗

v∈vert(G)

E(g(v); out(v), in(v)).

Define finally

MF�〈E〉(g;m,n) := colim
G ∈ G

�
c (g;m, n)

E(G), g,m, n ≥ 0.

As before, MF� is a triple in the category of modular Σ-bicollections.

2.2.3. Definition. Modular wheeled properads are algebras over the triple MF�.

Loosely speaking, modular wheeled properads are wheeled properads equipped with a genus

grading such that the dioperadic compositions (17) preserve the genus and the contractions (16)

increase the genus by one. One may also say that modular wheeled properads are directed

(unstable) modular operads.

2.2.4. Example. For each Σ-bimodule E, the free wheeled properad F�〈E〉 is modular, with the

genus grading induced by the genus of underlying graphs. Obviously, each wheeled properad P

of the form P = F�〈E〉/I, with the ideal I generated by elements supported by genus zero

graphs, has the induced modular structure. This means that the wheeled properadic completion

of a dioperad [6] is a modular wheeled properad.

2.2.5. Example. If one allows the genus to be an arbitrary integer, then each wheeled properad

P can be turned into a modular one by assigning P(m,n) the genus 1−m.

3. Master equations

3.1. Differential Z2-graded Lie algebras. In the context of Batalin-Vilkovisky formalism

in quantum field theory it is more suitable to work with the odd version of the usual notion

of differential Lie superalgebra. By definition, this is a Z2-graded vector space, g = g0̃ ⊕ g1̃,

equipped with two odd linear maps

d : g→ g, and [ • ] : g⊗ g→ g,
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such that d2 = 0, [a • b] = −(−1)(ã+1)(b̃+1)[b • a],

d[a • b] = [da • b] + (−1)(ã+1)[a • db],

and

[a • [b • c]] = [[a • b] • c] + (−1)(ã+1)(b̃+1)[b • [a • c],

for all a, b, c ∈ g0̃ ∪ g1̃.

In many important examples, the Z2-grading in g comes from an underlying Z-grading, i.e.

g = ⊕i∈Zgi, g0̃ = ⊕i evengi, g1̃ = ⊕i oddg
i, and the basic operations satisfy dgi ⊂ gi+1, [gi • gj] ⊂

gi+j−1.

Clearly, the parity change functor transforms this structure into the ordinary structure of

differential Lie superalgebra on the vector superspace Πg.

3.2. Differential Gerstenhaber-Batalin-Vilkovisky algebras. Such an algebra is a quadru-

ple (g, ◦, d,∆), where (g, ◦) is a unital supercommutative algebra over a field k, and (d,∆) is a

pair of supercommuting odd derivations of (g, ◦) of orders 1 and, respectively, 2 which satisfy

d2 = ∆2 = 0.

More explicitly, a dGBV algebra is a differential supercommutative algebra with unit, (g, ◦, d),

equipped an odd linear map ∆ : g→ g satisfying

(i) ∆2 = 0,

(ii) d∆ + ∆d = 0, and

(iii) for any a, b, c ∈ g,

∆(a ◦ b ◦ c) = ∆(a ◦ b) ◦ c+ (−1)b̃(ã+1)b ◦∆(a ◦ c) + (−1)ãa ◦∆(b ◦ c)

−∆(a) ◦ b ◦ c− (−1)ãa ◦∆(b) ◦ c− (−1)(ã+b̃)a ◦ b ◦∆(c).

Note that ∆(1) = 0.

It is not hard to check using identity (iii) that the linear map

[ • ] : g⊗ g −→ g

a⊗ b −→ [a • b] := (−1)ã∆(a ◦ b)− (−1)ã∆(a) ◦ b− a ◦∆(b)

makes g into an odd Lie superalgebra.

Moreover, both triples (g, [ • ], d) and (g, [ • ],∆) are odd differential Lie superalgebras, and

the following odd Poisson identity,

[a • (b ◦ c)] = [a • b] ◦ c+ (−1)ã(b̃+1)b ◦ [a • b],

holds for any a, b, c ∈ g.
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3.3. Master equation. An even element S in a dGBV algebra g is called a master function if

it satisfies the master equation

dS + ∆S +
1

2
[S • S] = 0.

Assume that g is such that the formal power series,

eS = 1 + S +
1

2!
S ◦ S +

1

3!
S ◦ S ◦ S + . . . ,

makes sense, i.e. gives a well-defined element of g (often this is achieved by introducing a formal

parameter ~ and working in g[[~]]). One of the central observation in the theory of master

equations is the following

3.3.1. Lemma. S is a master function if and only if

(d+ ∆)eS = 0.

Proof. One checks that (d+ ∆)eS = (dS + ∆S + 1
2
[S • S]) ◦ eS. �

3.4. Master equations in geometry. Let M be a smooth n-dimensional manifold with the

tangent sheaf denoted by TM and the sheaf of differential forms denoted by Ω•
M =

⊕n
i=0 Ωi

M . It

is well-known that the sheaf of polyvector fields,

∧•TM =

n⊕

i=0

∧iTM

is a sheaf of supercommutative algebras with respect to the wedge product, ◦ = ∧, and also a

sheaf of odd Lie superalgebras with respect to the Schouten bracket,

[ • ]Schouten : ∧iTM ⊗ ∧
jTM −→ ∧

i+j−1TM .

Moreover, the odd Poisson identity,

[a • (b ∧ c)]Schouten = [a • b]Schouten ∧ c+ (−1)ã(b̃+1)b ∧ [a • b]Schouten,

holds for any a, b, c ∈ ∧•TM .

Assume now that M is equipped with a volume form ν, that is, with a nowhere vanishing

section of Ωn
M . In particular, the associated section ν−1 of ∧nTM is well defined.

Define a differential operator ∆ : ∧•TM → ∧
•TM as the composition

∆ : ∧iTM
yν
−→ Ωn−i

M
d
−→ Ωn−i+1

M
yν−1

−→ ∧i−1TM

where d stands for de Rham differential and y for the natural contraction of dual tensors. It is

well-known (and easy to check, see a local coordinate description below) that the data (∧•TM , d =

0,∆) is dGBV algebra with the associated odd Lie algebra structure being exactly the Schouten

structure. The associated master equation has the form

∆S +
1

2
[S • S]Schouten = 0.
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Sections of the bundle ∧•TM can be understood as functions on the supermanifold ΠΩ1
M , the

total space of the cotangent bundle with the parity of fiber coordinates changed. If {xα}1≤α≤n

are local coordinates on M , then the functions {xα, ψα := Π∂/∂xα}1≤α≤n form a local coordinate

system on ΠΩ1
M . The volume form ν gets the coordinate representation ν = fdx1 ∧ . . .∧ dxn for

some non-vanishing function f , while the divergence operator ∆ gets explicitly represented as

∆ =

n∑

α=1

∂2

∂xα∂ψα
+
∂ ln f

∂xα

∂

∂ψα
.

Hence one has are

[f • g]Schouten =

n∑

α=1

(
∂f

∂xα

∂g

∂ψα
+ (−1)g̃f̃ ∂f

∂xα

∂g

∂ψα

)
.

for arbitrary f, g ∈ ∧•TM .

3.4.1. Calabi-Yau manifolds. There is a variant of the above master equation for CY manifolds

with ν being the holomorphic volume form. If one defines ∆∂ on holomorphic vector fields, ∧•TM ,

precisely as above with the full de Rham differential d = ∂ + ∂̄ replaced by its (1, 0)-part ∂, then

the sheaf ∧•TM⊗Ω0,•
M is a dGBV algebra with differential d := Id⊗ ∂̄ and the 2nd order derivation

∆ := ∆∂ ⊗ Id. The associated master equation

dS + ~∆S +
1

2
[S • S] = 0, S ∈ ∧•TM ⊗ Ω0,•

M [[~]]

plays a key role in the Barannikov-Kontsevich approach [1, 3] to the B-model side of the Mirror

Symmetry. It solutions describe extended deformations of the complex structure on a Calabi-Yau

manifold.

3.4.2. Master equation on supermanifolds and complexes. In theoretical physics, one

is more interested in a version of the construction in §3.4 when the underlying space M is a

supermanifold rather than a manifold. In both cases the supermanifold M := ΠΩ1M has an

odd symplectic structure ω ∈ Ω2M, but the notions of volume forms are different — in the

supermanifold case it should be understood as a section of the Berezinian bundle, rather than a

differential form. Given such a section, ν ∈ Ber(M), one obtains, for an arbitrary vector field

ζ ∈ TM, another section, Lieζν ∈ Ber(M). As ν is a basis section, one can write,

Lieζν = (divζ)ν,

for some well-defined function divζ ∈ OM called the divergence of ζ. As the odd 2-form ω is

non-degenerate, for any function f ∈ OM there exists an associated Hamiltonian vector field,

Hf ∈ TM, uniquely defined by the equation,

df = ωyHf .

Then one can define an odd differential operator ∆ on OM ' ∧
•TM as follows,

∆f := divHf ,
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and check that ∆2 = 0. If there exist Darboux coordinates, {xα, ψα}1≤α≤n, |ψα| = |xα| + 1

mod 2Z, onM such that the Berezinian ν is locally constant, then the derivation ∆ gets a very

simple form,

(19) ∆ =

n∑

α=1

∂2

∂xα∂ψα
.

In this case the data (M, ω, ν) is called an SP -manifold [25], and provides us with the most

general and down-to-earth mathematical description of key structures in the Batalin-Vilkovisky

quantization.

A formal SP -manifold can be canonically associated with an arbitrary finite dimensional

complex (M0, d0) over a field k. Let {eα} be a homogeneous basis of M0 and let {xα} be the dual

basis of M∗
0 . The differential d0 can be understood as a linear odd vector field, d0 ∈ TM , on the

formal manifold M associated with the vector superspace M0. Indeed, if

d0(eα) =
∑

α,β

Dβ
αeβ, Dβ

α ∈ k,

then the associated vector field is given by

~d0 =
∑

αβ

(−1)αxαDβ
α

∂

∂xα
.

Clearly, the equation d2
0 = 0 is equivalent to [~d0, ~d0]Schouten = 0. Hence the OM -module ∧•TM ,

OM := �̂M∗
0 being the ring of formal smooth functions, is naturally a differential OM -module

with the differential given by

df := [d0 • f ]Schouten

for any f ∈ ∧•TM . The sheaf Ber(ΠΩ1
M ) has a distinguished constant section ν such that the

associated odd Laplacian ∆ has the form (19) with ψα = Π∂/∂xα. The Schouten brackets on

OΠΩ1
M

= ∧•TM get the form,

[f • g] =
n∑

α=1

(←−
∂ f

∂xα

−→
∂ g

∂ψα

+ (−1)g̃f̃

←−
∂ f

∂xα

−→
∂ g

∂ψα

)
.

The resulting data (∧•TM ,∆, d) is a dGBV algebra canonically associated with the complex

(M0, d0). Hence it makes sense to associate with the latter the following Master equation,

(20) dS + ∆S +
1

2
[S • S] = 0.

3.4.3. Theorem. There exists a differential wheeled PROP (PolyV�, δ) whose wheeled represen-

tations in a finite dimensional complex (M0, d0) are in one-to-one correspondence with Master

functions S in the dGBV algebra (∧•TM ,∆, d).
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Proof. Let E = {E(m,n) := sgnm ⊗ 11n}m,n≥0 be a collection of Z2-graded (Σm,Σn) bimodules

concentrated in degree m mod 2Z. Here sgnm stands for the sign representation of Σm and 11n

for the trivial representation of Σn. Every E(m,n) is therefore a one-dimensional space whose

basis vector we denote graphically as a planar (m,n)-corolla,

•

KKKKKK
<<<<
. . . ����

ssssss

1 2 m−1m

sss
sss
��

��
. . . <<

<<
KKK

KKK

1 2 n−1 n

with m skew-symmetric outgoing legs and n symmetric ingoing legs.

Let PolyV be the free PROP generated by the bimodule E, and let PolyV� be the free wheeled

PROP generated by the same bimodule E. Any derivation, δ : PolyV� → PolyV�, is completely

determined by its values on the above corollas.

Claim. The derivation, δ, defined by

δ •

KKKKKK
<<<<
. . . ����

ssssss

1 2 m−1m

sss
sss
��

��
. . . <<

<<
KKK

KKK

1 2 n−1 n

=
∑

I1tI2=(1,...,m)
J1tJ2=(1,...,n)

(−1)σ(I1tI2)+|I1||I2| •

KKKKKK
<<<<
. . . ����

kkkkkkkk

︷ ︸︸ ︷I1

sss
sss
��

��
. . . <<

<<
KKK

KKK

︸ ︷︷ ︸
J1

•

KKKKKK
<<<<
. . .				

vvvvv

︷ ︸︸ ︷I2

��
��

�
. . . 55

55
HHHHH

︸ ︷︷ ︸
J2

+ (−1)m •

KKKKKK
<<<<
. . . ����

ssssss

1 2 m

sss
sss
��

��
. . . <<

<<
KKK

KKK

1 2 n
__

where σ(I1 t I2) is the sign of the shuffle I1 t I2 = (1, . . . , m), is a differential, i.e. δ2 = 0.

Proof is a straightforward but tedious calculation.

For example

δ • =
•
• + •

__

, δ •• =
•
• + •

•
��

�5555 − •
���

??? ���
__

,

δ • =
•
• +

•
•

����

6666 − •
���

??? ���
__

, δ • =
•
• +

•
•

����

6666 + •
•

��
�5555 − •???���

���
??? ���

__

.

Let us now show that there is an one-to-one correspondence2 between wheeled representations

of PolyV� and solutions of the Master equations (20). Let

R : (PolyV�, δ) −→ (EndM0 , d0)

be a wheeled representation of PolyV�, in a differential superspace (M0, d0). If we forget about

compatibility with differentials, then, according to Proposition 9, any such a representation is

uniquely determined by a representation,

R : PolyV −→ EndM0 ,

2In fact this correspondence can be used as another proof of the claim that δ is a differential, cf. §2.5 in [24].
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which in turn is completely determined by its values, Rm
n ∈ Hom(�nM0,∧

mM0), on the (m,n)-

corollas. In the chosen basis {eα} of M0 and the associated dual basis {xα} of M∗
0 , every such

Rm
n can be decomposed as,

Rm
n =

∑
Rα1...αm

β1...βn
(xβ1 � . . .� xβn)⊗ (eα1 ∧ . . . ∧ eαm

)

for some constants Rα1...αm

β1...βn
. The main idea of the proof is to assemble these constants for all

m,n ≥ 0 into a single generating function, S, on the formal supermanifold M = ΠΩ1M with

coordinates xα and ψβ := Πeβ, as follows

S := ~d0 +
∑

m,n≥0

1

m!n!
Rα1...αm

β1...βn
xβ1 . . . xβnψα1 . . . ψαm

∈ OM.

It is now straightforward to check that compatibility of the morphism R with differentials, Rδ =

d0R, is equivalent to the master equation (20) for S. �

Thus germs of master functions on SP -manifolds are nothing but representations of the differ-

ential wheeled PROP (PolyV�, δ). The class of master functions arising in this way is in a sense

typical. Theoretical physicists use its infinite dimensional analogue (with badly defined “volume

forms” and divergent contractions of “dual tensors”).

3.4.4. Remark. There is an important class of dGBV algebras with the divergence operator ∆

originating from a particular graded metric or symplectic structure on the underlying superman-

ifold M (i.e., ∆ is a kind of “odd” Laplacian). In this case tangent and cotangent bundles on M

are canonically isomorphic so that the associated master equations are better described with the

help of modular operads [2] rather than wheeled PROPs.

4. Bar-Cobar duality for wheeled properads

4.1. Augmentations. The bar and cobar constructions are basic tools to study homological

properties of algebraic objects. The bar construction considered in this paper will be a functor

from the category of augmented wheeled dg properads to the category of coaugmented wheeled

dg co-properads, and the cobar construction a functor from the category of coaugmented wheeled

dg co-properads to the category of augmented wheeled dg properads. Wheeled properads were

introduced in Section 2. In the definition below, k�
c is the wheeled properad introduced in

Example 2.2.2.

4.1.1. Definition. An augmented wheeled properad is a wheeled properad P together with a

homomorphism ε : P→ k�
c . The kernel P := Ker(ε) ⊂ P is the augmentation ideal of P.
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An example is the free wheeled properad F�〈E〉 with the augmentation ε : F�〈E〉 → k�
c =

F�〈0〉 induced by the map E → 0. Its augmentation ideal equals

(21) F
�
〈E〉 = colim

G ∈ G
�

c (m, n)

E(G), m, n ≥ 0,

where G
�

c (m,n) is the category of wheeled directed connected non-exceptional graphs.

Wheeled co-properads are defined by dualizing axioms of wheeled properads. A more precise

definition can be given as follows. First, by inverting arrows in Figures 2 and 3, one recovers

the classical notions of cotriple and coalgebras over a cotriple. Next, there exists a cotriple C� :

Σ-bimod→ Σ-bimod whose underlying endofunctor is the same as the underlying endofunctor of

the triple F� : Σ-bimod→ Σ-bimod in (18), that is

C�〈E〉(m,n) := colim
G ∈ G

�
c (m, n)

E(G), m, n ≥ 0,

Let us indicate how the cotriple structure ν : C� → C�C� can be defined.

Let E be a Σ-bimodule. As in Section 2, we may imagine elements of C�〈C�〈E〉〉 as nested

E-decorated graphs, with nests encompassing decorated subgraphs that represent elements of

the “internal” C�〈E〉. Then, for an element c ∈ C�〈E〉 represented by a directed graph G ∈ G�
c

with E-labeled vertices, νE(c) ∈ C�〈C�〈E〉〉 is the sum

νE(c) =
∑

n

cn

taken over all nestings of the graph G, with cn being c interpreted as an element of C�〈C�〈E〉〉

in the way determined by the nesting n. Because G is connected, such nestings are in one-to-

one correspondence with markings of edges (in the sense introduced below) and an alternative

formula for νE(c) can be given.

4.1.2. Definition. A marking of G is a map m : Edg(G)→ {◦, •} from the set of internal edges

of G into the two-element set {◦, •}. We call edges from Edg ◦(G) := m−1(◦) white edges and

edges from Edg•(G) := m−1(•) black edges.

Suppose we are given a marking m of G as above. Let G• be the graph obtained from G by

cutting all white edges in the middle and let G•
1, . . . , G

•
s, s ≥ 1, be the connected components

of G•. The E-decoration of vertices of G restricts to decorations of vertices of G•
i , and these

decorated graphs therefore determine elements ci ∈ C�〈E〉, 1 ≤ i ≤ s. Let G◦ be the quotient

G/Edg•(G) given by contracting black edges of G.

Vertices v1, . . . , vs of G◦ are in one-to-one correspondence with the graphs G•
1, . . . , G

•
s and each

ci induces a C�〈E〉-decoration of the vertex vi ∈ Edg(G◦), 1 ≤ i ≤ s. The graph G◦ with this

decoration then determines an element cm ∈ C�〈C�〈E〉〉. One has

νE(c) :=
∑

m

cm,
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where the sum runs over all markings of the graph G.

4.1.3. Definition. Wheeled co-properads are coalgebras over the cotriple C� : Σ-bimod →

Σ-bimod.

Observe that, for each Σ-bimodule E, C�〈E〉 is a wheeled co-properad, with the co-properad

structure given by the cotriple map νE : C�〈E〉 → C�〈C�〈E〉〉.

Important examples of wheeled co-properads can be obtained by taking linear duals of wheeled

properads satisfying a mild finiteness assumption. We say that a graded wheeled (co-)properad

P is of finite type if the graded space P(m,n) is of finite type for each m,n ≥ 0. The (com-

ponentwise) linear duals of wheeled properads of finite type are wheeled co-properads, and the

linear duals of wheeled co-properads of finite type are wheeled properads, compare Remark II.3.4

of [19]. We denote the linear dual of a wheeled (co-)properad P by P#.

The linear dual k�
c

#
of the trivial wheeled properad k�

c turns out to be the terminal object of

the category of co-properads. Observe that k�
c

#
= C�〈0〉.

4.1.4. Definition. A coaugmented wheeled co-properad is a wheeled co-properad C equipped

with a homomorphism η : k�
c

#
→ C. Its coaugmentation coideal is the coimage C := Coim(η).

The wheeled co-properad C�〈E〉 is coaugmented, with the coaugmentation η : k�#
c → C�〈E〉

induced by the map 0→ E. Its coaugmentation coideal equals

C
�
〈E〉 = colim

G ∈ G
�

c (m,n)

E(G), m, n ≥ 0,

where G
�

c (m,n) is as in (21).

The wheeled suspension of a Σ-bimodule E = {E(m,n)}m,n≥0 is a Σ-bimodule

wE = {wE(m,n)}m,n≥0

with components

wE(m,n) =↑ 2m−nE(m,n)⊗ sgnn, m, n ≥ 0.

Its wheeled desuspension w−1E is defined by a similar formula:

w−1E(m,n) =↓ 2m−nE(m,n)⊗ sgnn, for m,n ≥ 0.

The origin of the above formulas will be explained in Remark 4.2.2 below.
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4.2. Bar and cobar. We are ready to introduce the bar construction. Let P = (P, ∂P) be an

augmented wheeled dg properad with a degree 1 differential ∂P. Consider the wheeled co-properad

C�〈w−1P〉 cogenerated by the Σ-bicollection w−1P, where P is the augmentation ideal of P. The

differential ∂P of P induces, in the standard way, a degree 1 coderivation ∂1 of C�〈w−1P〉. The

structure operation F�〈P〉 → P of the wheeled properad P induces, precisely as in the operadic

case (see [17]), another degree 1 coderivation ∂2 on C�〈w−1P〉. It is not difficult to show that

both ∂1 and ∂2 are differentials commuting with each other.

4.2.1. Definition. The wheeled dg co-properad (C�〈w−1P〉, ∂B) with ∂B := ∂1 +∂2 will be called

the bar construction of P and denoted B�(P) = (B�(P), ∂B).

4.2.2. Remark. Definition 4.2.1 is a modification of the bar construction (called the Feynman

transform) of a modular (co)operad, see [19, Definition II.5.58] or the original source [8]. Un-

like the bar construction of an ordinary operad, the Feynman transform of a modular operad

is a ‘twisted’ modular operad. The twisting is specified by the dualizing cocycle K [19, Exam-

ple II.5.52]

K(G) :=↓ |Edg(G)|Det(Edg(G)) =↓ |Edg(G)|Λ|Edg(G)| (〈Edg(G)〉) ,

the determinant of the span of the set Edg(G) of internal edges of G, placed in degree −|Edg(G)|.

When G is directed, Edg(G) is clearly canonically isomorphic to the union
⋃

v∈Vert(G) out(v)

of outgoing edges of vertices of G, minus the set of outgoing legs of G. Consequently, on directed

graphs, K is a coboundary (in the sense of [19, Lemma II.5.49]) and hence its action on a

decorated graph G is equivalent to the tensor product of the decoration Σ-bimodule E(m,n)

with the Σ-bimodule u(m,n) := sgnm⊗ ↓
mk⊗ 11n.

The next step is to modify the degrees in such a way that the bar construction of the quadratic

dual of a wheeled Koszul properad will be concentrated in degree zero. This can be achieved by

taking the tensor product with the desuspension wheeled properad S−1 (see §2.1.11),

(sgnm⊗ ↓
mk⊗ 11n)⊗ (sgnm⊗ ↓

m−nk⊗ sgnn) = 11m⊗ ↓
2m−nk⊗ sgnn.

We recognize the formula for the wheeled desuspension w−1 which we use in the bar construction.

Let us look more closely at the structure of B�(P). Elements of B�(P)(m,n) are represented

by linear combinations of graphs G ∈ G�
c (m,n) with vertices decorated by appropriately desus-

pensed elements of P. The degree of an element x ∈ B�(P)(m,n) with the underlying graph G

is
∑

v∈Vert(G)

deg(pv)− 2m+ n− e(G),
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where e(G) is the number of internal edges of G and deg(pv) the degree of the decoration pv ∈ P

of a vertex v of G. The differential ∂1(x) decomposes into the sum

∂1(x) =
∑

v∈Vert(G)

εv∂v(x),

where ∂v replaces the decoration pv of v by ∂P(pv) and εv is an appropriate sign. Likewise, ∂2(v)

decomposes as

(22) ∂2(x) =
∑

e∈Edg(G)

εe∂e(x),

where ∂e acts as follows.

If the edge e connects two different vertices, then ∂e contracts e and decorates the new vertex

obtained by contracting e by the properadic composition of the decorations of the vertices con-

nected by e. If e is a directed loop starting and ending in the same vertex, then ∂e removes e

and decorates the vertex by the corresponding contraction of the original decoration. As before,

εe is an appropriate sign.

The cobar construction is defined in the dual manner. For a wheeled dg coaugmented co-

properad C = (C, ∂C), we consider the free wheeled properad F�〈wC〉 generated by the wheeled

suspension of the coaugmentation coideal of C. The differential ∂C induces a degree 1 derivation

∂1 and the structure operations of the co-properad C a degree 1 derivation ∂2. As before, both

∂1 and ∂2 are differentials that commute with each other.

4.2.3. Definition. The wheeled dg properad (F�〈wC〉, ∂Ω) with ∂Ω := ∂1 + ∂2 will be called the

cobar construction of C and denoted Ω�(C) = (Ω�(C), ∂Ω).

The bar construction of Definition 4.2.1 clearly extends to a functor

B� : dg-Proper�
+ → dg-coProper�

+

from the category of augmented wheeled dg-properads to the category of augmented wheeled

dg-co-properads, while the cobar construction of Definition 4.2.3 extends to a functor

Ω� : dg-coProper�

+ → dg-Proper�

+.

The following proposition shows that B� and Ω�, restricted to suitable subcategories, are exact

functors.

4.2.4. Proposition. Let α : P′ → P′′ be a homology isomorphism of non-positively graded aug-

mented dg properads. Then the induced map B�(α) : B�(P′)→ B�(P′′) of the bar constructions

is a homology isomorphism, too.

Similarly, the map Ω�(β) : Ω�(C′)→ Ω�(C′′) induced by a homology isomorphism β : C′ → C′′

of non-negatively graded dg coaugmented co-properads is also a homology isomorphism.
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Proof. The proposition follows from a simple spectral sequence argument based on the filtration

given by the number of edges of the underlying graphs. The assumption about the non-positivity

(resp. non-negativity) of the grading guarantees that the induced spectral sequences converge. �

The following theorem is a key technical ingredient in showing that B� and Ω� restricted to

suitable subcategories are mutual homology inverses.

4.2.5. Theorem. For each dg wheeled augmented properad P, the natural projection of wheeled

dg properads π : Ω�(B�(P))→ P is a quasi-isomorphism.

Dually, for a wheeled coaugmented dg co-properad C, the natural inclusion ι : C ↪→ B�(Ω�(C))

of wheeled dg co-properads is a quasi-isomorphism.

Proof. Let us first explicitly describe the epimorphism π. As a non-dg properad, Ω�(B�(P))

is free, generated by the Σ-bimodule wC
�
〈w−1P〉. Therefore each wheeled properad homomor-

phism Ω�(B�(P)) → P is determined by a map wC
�
〈w−1P〉 → P of Σ-bimodules. We define π

as the homomorphism corresponding to the composition

wC
�
〈w−1P〉

w(p)
−→ P ↪→ P,

where w(p) is the wheeled suspension of the projection p : C
�
〈w−1P〉 → w−1P to the space of

cogenerators. We will show that the homology of (Ω�(B�(P)), ∂Ω) is isomorphic to the homology

of P. It will be clear from our proof that this isomorphism is induced by the map π constructed

above.

Fix m,n ≥ 0. As before, elements of (Ω�(B�(P))(m,n) = F�〈wC
�
〈w−1P〉〉(m,n) are repre-

sented by nested graphs G ∈ G�
c (m,n) with vertices decorated by appropriate (de)suspensions

of elements of P. Since G is connected, its nestings can be equivalently described by markings

m : Edg(G) → {◦, •}. The connected components of the graph G• obtained from G by cutting

all white edges in the middle, with the induced decoration of vertices, determine elements of

C
�
〈w−1P〉 whose suspensions decorate vertices of the quotient G◦ := G/Edg•(G). The degree of

an element with the underlying marked graph G equals

−e•(G) +
∑

v∈Vert(G)

deg(pv),

where e•(G) is the number of black edges of G and deg(pv) the degree of the decoration pv ∈ P

of a vertex v ∈ Vert(G).

Recall that the differential ∂Ω of Ω�(B�(P)) decomposes as ∂Ω = ∂P + ∂1 + ∂2, where ∂P is

the differential induced by the differential in P, the sum ∂P +∂1 is the differential induced by the

differential ∂B of B�(P), and ∂2 is induced by the co-properad structure of B�(P). Obviously

the part ∂P + ∂1 of the total differential does not change the number of white edges, while ∂2
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increases it by one. In fact, the differential ∂2 applied to an element x ∈ Ω�(B�(P)) with the

underlying marked graph G equals

∂2(x) =
∑

e∈Edg•(G)

εe∂e(x),

where ∂e changes the color of e from black to white, and εe is an appropriate sign.

Let us consider the spectral sequence E = {(Er, dr)}r≥0 induced by an increasing filtration of

the complex Ω�(B�(P))

0 ⊂ F0 ⊂ F1 ⊂ . . . Fk ⊂ Fk+1 ⊂ . . .

with Fk being the subspace of Ω�(B�(P)) spanned by decorated graphs, G, with at most k total

internal edges, i.e.

number of black edges of G + number of white edges of G ≤ k.

As the filtration is bounded below and exhaustive, the spectral sequence E = {(Er, dr)}r≥0

converges to the cohomology of Ω�(B�(P)). To prove the first part of the Theorem we have to

show that this cohomology equals to the cohomology of the wheeled properad P. The 0th term

of this spectral sequence, (E0, d0) has the differential d0 = ∂P + ∂2. To compute E1 we notice

that the complex E0 sptits into a direct sum

(23) E0 =
⊕

[G]∈[G�
c ]

Ω�(B�(P))[G],

where [G�
c ] is the set of isomorphism classes of graphs in G�

c and Ω�(B�(P))[G] is the subspace

of Ω�(B�(P)) spanned by elements with the underlying graph isomorphic to G. The differential

d0 = ∂P + ∂2 clearly preserves this decomposition. Thus to compute E1 it is enough to compute

cohomology of the complex

(E0
G := Ω�(B�(P))[G], dP + ∂2)

for any particular fixed (m,n)-graph G. This complex is actually a bicomplex, E0
G = {Ep,q

G } with

p being the total P-degree of P-decorate vertices, and q is the number of white vertices. Notice

that q ranges from zero to the total number of edges in G.

The filtration of the complex E0
G by the number of white vertices is bounded, hence the

induced spectral sequence (E r
G, δ

r) converges to the cohomology of E0
G. The 0th term, E0

G, of this

sequence has the differential δ0 equal to dP. Hence E1
G is spanned by graphs G decorated with

elements of the cohomology wheeled properad H(P), and δ1 is equal to ∂2, the differential in

Ω�(B�(H(P))) coding the coproperad structure in B�(H(P)).

To compute E2
G = H(E1

G, δ
1) for a non-exceptional graph G ∈ G�

c (m,n), let {e1, . . . , es} =

Edg(G) be the set of edges of G. It is a simple exercise to prove that the exterior algebra

(24) (∧(e1, . . . , es), ∂∧), deg(ei) := −1 for 1 ≤ i ≤ s,
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with the differential ∂∧ :=
∑

1≤i≤s ∂/∂ei, is acyclic whenever s ≥ 1. Observe also that ∂∧

is equivariant under the action of the symmetric group of {e1. . . . , es}. The acyclicity of (24)

implies that also the product

(25) (H(P)(G)⊗∧(e1, . . . , es), ∂)

in which H(P)(G) is as in (10) and ∂(x ⊗ u) := (−1)deg(x)x ⊗ ∂∧u, for x ∈ H(P)(G) and

u ∈ ∧(e1, . . . , es), is acyclic.

The group Aut(G) of automorphisms of G acts on ∧(e1, . . . , es) by permutations of edges,

which implies that ∂∧ is Aut(G)-equivariant. Therefore also the differential ∂ on the product (25)

is Aut(G)-equivariant, hence it induces a differential ∂G on the orbit space
(
H(P)(G)⊗∧(e1, . . . , es)

)
G

:=
(
H(P)(G)⊗∧(e1, . . . , es)

)
/Aut(G).

Since Aut(G) is a finite group and the ground field has characteristic zero, the acyclicity of (25)

implies the acyclicity of ((H(P)(G)⊗∧(e1, . . . , es))G, ∂), for each s ≥ 1.

There is an isomorphism

(26) ΨG :
(
Ω�(B�(H(P)))[G], ∂2

) ∼=
→
((
H(P)(G)⊗∧(e1, . . . , es)

)
G
, ∂G

)

that sends the isomorphism class of an element x ∈ Ω�(B�(H(P)))[G] represented by a H(P)-

decorated graph G with marking m, into the orbit of

x⊗ (ei1 ∧ · · · ∧ eit) ∈ H(P)(G)⊗∧(e1, . . . , es),

where x ∈ H(P)(G) is obtained from x by forgetting the marking of G, and

(27) {ei1 , . . . , eit} = Edg•(G), i1 < · · · < it.

It is easy to see that Ψ is well-defined and that it commutes with the differentials. Its inverse

Ψ−1
G :

((
H(P)(G)⊗∧(e1, . . . , es)

)
G
, ∂G

)
∼=
→
(
Ω�(B�(H(P)))[G], ∂2

)

maps x ⊗ ei1 ∧ · · · ∧ eit, where x ∈ H(P)(G) is represented by a H(P)-decoration of G, into

x ∈ Ω�(B�(H(P)))[G] given by the same H(P)-decorated graph as x but with marking defined

by (27).

We conclude from (26) that Ω�(B�(H(P)))[G] is ∂2-acyclic whenever G has at least one internal

edge. If G has no internal edge, i e. when G is an (m,n)-corolla, then clearly

H(Ω�(B�(H(P)))[G], ∂2) ∼= H(P)(G)(m,n).

The two exceptional graphs ↑ and � contribute to (23) by k�
c (1, 1) if (m,n) = (1, 1) and by

k�
c (0, 0) if (m,n) = (0, 0). As all the higher diffferentials in both of our spectral sequences are

obviously zero, we obtain an isomorphism,

H(Ω�(B�(P))) ∼= H(P)⊕ k�
c
∼= H(P)
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proving the first claim in the Theorem that the surjection π is a quasi-isomorphism.

The second claim on the map ι : C → B�(Ω�(C)) can be proven by dualizing the above

arguments. �

5. Wheeled operads, quadratic duality and Koszulness

5.1. Wheeled operads. As operads form a subcategory of PROPs [15], there is a similar sub-

category of wheeled operads in the category of wheeled PROPs. In this section we introduce

these wheeled operads, define their quadratic duals and study their Koszulness. Methods of this

section will provide a conceptual understanding of minimal models of wheeled completions of

classical quadratic operads as Ass, Lie or Com.

5.1.1. Definition. A wheeled operad is a wheeled properad P = {P(m,n)}m,n≥0, in the sense of

Definition 2.2.1, such that P(m,n) = 0 whenever m ≥ 2.

It is obvious from this definition that a wheeled operad P = {P(m,n)}m,n≥0 consists of

(i) an ordinary operad Po := {P(1, n)}n≥0,

(ii) a right Po-module Pw := {P(0, n)}n≥0 (see [19, Def. II.3.26] for a definition of right

operadic modules), and

(iii) contractions ξi : Po(n) → Pw(n− 1), 1 ≤ i ≤ n, that are compatible, in the appropriate

sense, with the structures in (i) and (ii).

5.1.2. Definition. The operad Po and the right Po-module Pw defined above are called the

operadic and wheeled parts of the wheeled operad P, respectively.

Wheeled properadic completions of ordinary operads provide examples of wheeled operads,

but, as we will see immediately, not all wheeled operads are of this form. Recall [19, Defini-

tion II.3.31] that an ordinary operad P is quadratic if it is of the form

(28) P = Γop〈E〉/I,

where Γop〈E〉 is the free operad on a right Σ2-module considered as a Σ-module with

E(n) :=

{
E, if n = 2 and
0, otherwise,

and I an operadic ideal generated by a subspace R ⊂ Γop〈E〉(3). The quadratic dual P ! of a

quadratic operad P is defined as

(29) P ! := Γop〈E
∨〉/(R⊥),

where E∨ := Lin(E,k)⊗sgn2 is the Czech dual of E and R⊥ the annihilator of R in Γop〈E
∨〉(3) ∼=

Γop〈E〉(3)∨. See [19, Definition II.3.37] for details. Let us introduce wheeled versions of the above

notions.
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5.1.3. Definition. Quadratic wheeled operad is a wheeled operad P of the form

P = F�〈E〉/I

where E is a left Σ1- right Σ2-bimodule considered as a Σ-bimodule with

E(m,n) :=

{
E, if (m,n) = (1, 2) and
0, otherwise,

and I a wheeled operadic ideal generated by a subspace

(30) Ro ⊕Rw ⊂ F�〈E〉(1, 3)⊕ F�〈E〉(0, 1).

We will always assume that E is finite dimensional.

In the rest of this paper, we will often work with the wheeled properadic completion of operads.

To simplify the terminology and notation, we will call it simply the wheeled completion and drop

the subscript from the notation, that is, write P� instead of P�
c . We believe that no confusion

is possible.

5.1.4. Example. A wheeled quadratic operad is the wheeled completion of an ordinary quadratic

operad if and only if the space Rw in (30) is trivial. If P is an ordinary quadratic operad as

in (28) with I generated by a subspace R ⊂ Γop〈E〉(3), then P� is wheeled quadratic with the

same space of generators and with Ro = R, Rw = 0.

In particular, wheeled completions Ass�, Com� and Lie� of quadratic operads Ass, Com and

Lie for associative, commutative associative and Lie algebras, respectively, are wheeled quadratic

operads. The initial wheeled properad k� is a wheeled quadratic operad generated by the trivial

Σ-bimodule. Therefore every wheeled quadratic operad P is augmented, with the augmentation

P → k� induced by the map E → 0 of generators.

5.2. Quadratic duality and Koszulness. We need to extend the definition of the Czech dual

to Σ-bimodules. For a graded left k[Σm]- right k[Σn]-bimodule U define U∨ by

(U∨)i := sgnm ⊗ Lin(U−i,k)⊗ sgnn,

where Lin(U−i,k) is the ordinary linear dual of U−i and sgn the signum representation. The

Czech dual of a Σ-bimodule is then the componentwise application of the above operation.

As in the operadic case (see [19, Section II.3.2]) there is, for each Σ-bimodule E, a natural

biequivariant isomorphism F�〈E∨〉 ∼= F�〈E〉∨. Therefore the annihilator of each subspace S ⊂

F�〈E〉(m,n) can be regarded as a subspace S⊥ ⊂ F�〈E∨〉(m,n), m,n ≥ 0.

5.2.1. Definition. Let P be a wheeled quadratic operad as in Definition 5.1.3. Define its wheeled

quadratic dual as the wheeled quadratic operad

P ! := F�〈E∨〉/I⊥
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with I⊥ the ideal generated by

(31) R⊥
o ⊕R

⊥
w ⊂ F�〈E∨〉(1, 3)⊕ F�〈E∨〉(0, 1).

The wheeled quadratic dual is clearly an involution in the category of wheeled quadratic

operads, (P !)! = P. Let us prove the following simple but useful proposition.

5.2.2. Proposition. Let P be a wheeled quadratic operad as in Definition 5.1.3. Then the operadic

part of its wheeled quadratic dual equals the ordinary quadratic dual of its operadic part

(32) (P !)o
∼= (Po)

!;

we denote it simply P !
o. The wheeled part of P ! is the quotient of the wheeled part of the wheeled

completion of P !
o,

(33) (P !)w
∼= ((P !

o)
�)w/I

⊥
w

by the ideal I⊥w generated by R⊥
w .

Proof. The double coset theorem gives isomorphisms

P ! = F�〈E∨〉/(R⊥
o , R

⊥
w) ∼= (F�〈E∨〉/(R⊥

o ))/(R⊥
w) ∼= (P !

o)
�/I⊥w

Since the ideal I⊥w consists of elements of biarities (0, n), n ≥ 1, it does change the operadic part

of the rightmost quotient. Isomorphisms (32) and (33) are then obtained by singling out the

operadic and wheeled parts of the above display. �

Let us see what happens if we apply Proposition 5.2.2 to the wheeled completion of an ordinary

quadratic operad P given by the quotient (28). As we observed in Example 5.1.4, P� is a wheeled

quadratic operad with Ro = R and Rw = 0, therefore, in (31), R⊥
o = R⊥ and R⊥

w = F�〈E∨〉(0, 1).

By (32), (P�)!
o
∼= P !, while (33) gives

(34) ((P�)!)w
∼= ((P !)�)w/I

⊥
w

with I⊥w generated by F�〈E∨〉(0, 1), that is, by relations represented by the decorated graphs:

(35) ��
��

���I
•e
′

��
��

AAK�
•e

′′
= 0, for e′, e′′ ∈ E∨.=

In the following examples we analyze in detail the wheeled quadratic duals of wheeled comple-

tions of some quadratic operads. As we saw above, this analysis necessarily involves the ordinary

quadratic duals of these operads for which we refer to [19, Section II.3.2] or to the original

source [9].
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5.2.3. Example. Let us describe, using (34), the wheeled part of the wheeled quadratic dual

(Ass�)! of the wheeled completion of the operad Ass. Since Ass! = Ass, the first step is to

understand the wheeled part (Ass�)w of the wheeled completion of Ass. It is easy to see that

(Ass�)w(n) is, for n ≥ 1, spanned by graphs

�
�

�
���

�
�
�
���

@
@

@
@@I

B
B

B
BBM

-

•
ξi
σ :=

σ(1)
· · ·

σ(i) σ(i+1)
· · ·

σ(n)

(36)

where σ ∈ Σn and 0 ≤ i ≤ n, such that both the ‘left’ group of inputs (labeled σ(1), . . . , σ(i))

and the ‘right’ group of inputs (labeled σ(i + 1), . . . , σ(n)) is cyclically symmetric.

This cyclic symmetry can be seen as follows. By the associativity of the multiplication in Ass,

one is allowed to single out the input edge labeled σ(1), move it clockwise around the loop, and

join it at the bottom of the left group. This operation generates a left action of the cyclic group

Ci := Z/(i) on the left group of labels. The cyclic symmetry of the right group can be explained

similarly.

We claim that ξi
σ = 0 modulo relations (35) whenever i = n or i = 0. Indeed, for i = n one

has, due to the associativity of the multiplication

-

�
�

��6
•

σ(1)
· · ·

σ(n)

-

�
�

��
•

��� @@I
•

σ(1)
· · ·

σ(n)

=ξn
σ =

with the right element clearly belonging to the ideal generated by (35). By similar reasons, ξ1
σ is

also zero modulo (35). We conclude that, for n ≥ 1,

(Ass�)!
w(n) ∼=

⊕

0<i<n

(Ci × Cn−i)\k[Σn],

where (Ci × Cn−i)\k[Σn] is the left quotient of k[Σn] by the product of cyclic groups Ci × Cn−i.

5.2.4. Example. Our next task is to describe the wheeled part of the wheeled quadratic dual

(Com�)! of the wheeled completion of the operad Com. Since Com! = Lie, we need to analyze first

the wheeled part (Lie�)w of the wheeled completion of Lie. The crucial fact is that the Jacoby

identity

++

333 222 111

• • •
•••
@@��@@��@@��

= 0
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for the Lie bracket symbolized by • implies that, in (Lie�)w(2),

�
���

���@@I I
•
•

1 2

=

I
���

6
•
•

1
2

−

I
���

6
•
•

2
1

(37)

where the dotted oriented circle is the unique wheel of the underlying graph (which may or may

not contain other vertices). It is not difficult to conclude from this that (Lie�)w(n) is, for n ≥ 1,

spanned by elements

I

•
���•


�

•
@@I

σ(1)

σ(2)

σ(n)

. . .

ησ :=

with σ ∈ Σn. It is also obvious that ησ ∈ I
⊥
w for n = 1. So

(Com�)!
w(n) ∼=

{
Cn\k[Σn], for n ≥ 2, and
0, for n = 1,

with the trivial action of Σn.

5.2.5. Example. In this example we describe the wheeled quadratic dual of the wheeled com-

pletion of Lie. Since Lie! = Com, we need to start by investigating (Com�)w. The graphs that

represent elements of (Com�)w(n) are the same as in (36), but commutativity enables one to move

all inputs of ξi
σ to one side (say to the left) and arrange them into increasing order. Therefore

(Com�)w(n) is, for n ≥ 1, one dimensional, spanned by the directed graph

�
�

�
��3

�
�
��

�
�

��
I

•

1 2
···

n

We argue as in Example 5.2.3 that, by associativity, the element represented by the above graph

belongs to I⊥w therefore, rather surprisingly,

(Lie�)!
w(n) = 0 for n ≥ 1.

In other words, the wheeled part of (Lie�)! is trivial .

Since each wheeled quadratic operad P is a particular case of an augmented properad, it

makes sense to consider its bar construction introduced in Definition 4.2.1. Let us investigate

how the 0-th homology H0(B
�(P), ∂B) is related to the wheeled quadratic dual of P. It follows

from simple combinatorics that the cooperad B�(P) = C�〈w−1P〉 is non-negatively graded and



WHEELED PROPS, GRAPH COMPLEXES AND THE MASTER EQUATION 35

that an element x ∈ B�(P) with the underlying graph G has degree 0 if and only if all vertices

of G are decorated by P(1, 2) = E. Therefore

B�(P)0
∼= C�〈w−1E〉 = C�〈E ⊗ sgn2〉.

It is equally obvious that the degree 1 part B�(P)1 is spanned by elements whose underlying

graphs have precisely one vertex decorated by P(1, 3) and all remaining vertices decorated by

P(1, 2) = E. The differential

∂B : C�〈E ⊗ sgn2〉 → B�(P)1

act as in (22), by contracting edges of the underlying graph. Let

P ¡ := H0(B
�(P), ∂B) = Ker

(
∂B : C�〈E〉 → B�(P)1

)
.

It is an exercise in linear algebra to prove that the cooperad P ¡ is precisely the linear dual the

quadratic dual of P, that is

P ¡# = P !.

5.2.6. Definition. A quadratic wheeled operad P is wheeled Koszul if the canonical inclusion of

wheeled cooperads

(38) ι : (P ¡, ∂ = 0) ↪→ (B�(P), ∂B)

is a homology isomorphism.

It follows from the above analysis that P is wheeled quadratic Koszul if and only if

H>0(B
�(P), ∂B) = 0.

Another equivalent formulation is given in the following proposition.

5.2.7. Proposition. A quadratic wheeled operad P is wheeled Koszul if and only if the natural

projection

(39) p : (Ω�(P ¡), ∂Ω)→ (P, ∂ = 0)

of wheeled dg operads is a homology isomorphism.

Proof. Observe that the projection (39) coincides with the composition

(Ω�(P ¡), ∂Ω)
Ω�(ι)
−→ (Ω�(B�(P), ∂Ω)

π
−→ P

in which Ω�(ι) is induced by the inclusion (38) and π is the canonical map of Theorem 4.2.5 which

is a homology. If P is wheeled Koszul then, by definition, ι is a homology isomorphism of non-

negatively graded co-properads, hence Ω�(ι) is, by Proposition 4.2.4, a homology isomorphism,

too. The projection p in (39) is then a composition of homology isomorphisms so it is also a

homology isomorphism.
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The opposite implication follows from a similar analysis of the composition

(P ¡, ∂ = 0)
c
→ (B�(Ω�(P)), ∂B)

B�(p)
−→ (B�(P), ∂B). �

The importance of Proposition 5.2.7 is that (39) provides a functorial minimal resolution of

wheeled quadratic Koszul operads in the category of wheeled operads. It is easy to verify that

the left adjoint

̂: Proper� → PROP�

to the forgetful functor PROP� → Proper�, given by disjoint unions of the underlying graphs, it

is an exact functor. Therefore ̂ applied to (39) gives a functorial minimal resolution

p̂ : (Ω̂�(P ¡), ∂bΩ)→ (P̂ , ∂ = 0)

of the wheeled PROP generated by P in the category of wheeled PROPs. It is clear that

(Ω̂�(P ¡), ∂bΩ) = (Γ�〈wP ¡〉, ∂bΩ)

with ∂bΩ given on generators by the same formula as the cobar differential ∂Ω. Notice, however,

that (Ω̂�(P ¡), ∂bΩ) is not a cobar construction of P ¡ in the category of wheeled PROPs.

5.2.8. Proposition. A wheeled quadratic operad P is wheeled Koszul if and only if P ! is wheeled

Koszul. The operadic part Po of a wheeled Koszul operad P is Koszul in the ordinary sense.

Proof. The first statement is based on the isomorphism of the linear duals

(B�(P), ∂B)# ∼= (Ω�(P#), ∂Ω)

and on the fact that, under the above isomorphism, the linear dual of the inclusion

ι : (P ¡, ∂ = 0) ↪→ (B�(P), ∂B)

is the projection

p : (Ω�(P), ∂Ω)→ (P !, ∂ = 0).

Since the linear dual is an exact functor, the Koszulity of P implies, by Proposition 5.2.7, the

Koszulity of P !. The opposite implication follows from the above statement applied to P ! and

the involution property (P !)! ∼= P.

To prove the second part of the proposition, one needs to observe that the operadic part of

the map (38) is the canonical inclusion

ιo : (P ¡
o, ∂ = 0) ↪→ (B(Po), ∂B),

of the co-operad P ¡
o into its ordinary bar construction (B(Po), ∂B), and then invoke the definition

of Koszulness in the form given in [7, Definition 2.23]. �
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5.2.9. Example. Wheeled operads Com�, Ass� and Lie� are wheeled quadratic Koszul. Indeed,

wheeled Koszulness of Com� is Theorem 7.1.2 of Section 7. The Koszulity of Ass� follows from

comparing the minimal model of Ass�
∞ described in Theorem A to the bar construction of (Ass�)!

given in Example 5.2.3. Finally, wheeled Koszulness of Lie was proved in [24].

We do not know whether there are (ordinary) quadratic Koszul operads whose wheeled com-

pletion is not wheeled Koszul.

5.2.10. Definition. Let P be an ordinary quadratic Koszul operad. We say that P is stably

Koszul if the completion (Ω(P !), ∂Ω)� → (P�, ∂ = 0) of the canonical homology isomorphism

(Ω(P !), ∂Ω)→ (P, ∂ = 0) is a homology isomorphism, too.

Equivalently, a quadratic Koszul operad P is stably Koszul if the wheeled completion P�
∞

of its minimal model P∞ is a minimal model of the wheeled completion P�. The proof of the

following proposition is a simple exercise.

5.2.11. Proposition. Let P be a quadratic operad such that P� is wheeled Koszul. Then P is

stably Koszul if and only if (P�)!
w = 0.

Proposition 5.2.11 together with Example 5.2.9 and Examples 5.2.3–5.2.5 imply that the

operad Lie is stably Koszul while the operads Ass and Com are not.

6. Wheeled resolution of Ass and its applications

6.1. Wheeled completions of Ass and Ass∞. As the natural functor Proper� → PROP� is

exact, it is enough to understand homotopy type of wheeled completions of Ass and Ass∞ in the

category of wheeled properads. The generalization of all our results in this section to wheeled

PROPs is immediate. Thus we work from now in the categories Proper and Proper�.

The operad, Ass, of associative algebras is defined as the quotient,

Ass = Γop〈A〉/(R).

of the free operad, Γop〈A〉, generated by an Σ-module A = {A(n)},

A(n) :=





k[Σ2] = span


 •

��
�� 22

22

σ(1) σ(2)




σ∈Σ2

for n = 2

0 otherwise,

modulo the ideal generated by relations,

(40) R : •
��
�� 22

22

•
��
� 22

2

σ(1)σ(2)

σ(3)

− •
��
�� 22

22

•
22

2
��
�

σ(3)σ(2)

σ(1)

= 0, ∀σ ∈ Σ3.
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It is well-known [26] that the minimal resolution of Ass in the category of ordinary properads

is the dg free properad, Ass∞ := Γop〈E〉, generated by the Σ-bimodule E = {E(m,n)},

E(m,n) =





111⊗ ↓
n−2 k[Σn] = span


 •

sss
sss
��

��. . . <<
<<

KKK
KKK

σ(1) σ(2) σ(n)




σ∈Σn

for m = 1, n ≥ 2

0 otherwise,

and equipped with the differential given on the generators as

(41) ∂ •
��

��
�
��
�� ,,
,,

??
??

?

σ(1) ... σ(n)

=
n−2∑

k=0

n−k∑

l=2

(−1)k+l(n−k−l)+1 •

σ(1)...σ(k) σ(k+l+1)...σ(n)
jjjjjjjjj

zz
zz

z
WWWWWWWWWWWW

KKK
KKK

•
��

��
��
� ,,
,

??
??

σ(k+1)...σ(k+l)

.

A natural morphism of dg properads,

p : (Ass∞, ∂) −→ (Ass, 0)

given on generators by

p


 •

sss
sss
��

��. . . <<
<<

KKK
KKK

σ(1) σ(2) σ(n)


 :=





Id for n = 2

0 otherwise

is a quasi-isomorphism. The morphism p induces an associated morphism of dg wheeled proper-

ads,

p� :
(
(Ass∞)�, ∂

)
−→

(
Ass�, 0

)
,

which, however, can not be a quasi-isomorphism. Indeed [24], while

p


 ==

==
��

��•

21 __


 = 0,

the definition of ∂ implies

∂ ==
==

��
��•

21 __

= −
• 77
7

��
�
•

��
� 77
7

2

1
__

+
• 77
7

��
�
•

��
� 77
7

2

1
??

= −
• 77
7

��
�
•

��
� 77
7

2

1
__

+
• 77
7

��
�
•

��
� 77
7

2

1
__

= 0.

We therefore have non-trivial cohomology classes,

•
��
�� 22

22

σ(1) σ(2)

:=




���
==

==
��

��•

σ(2)σ(1)
__


 σ ∈ Σ2,
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in H−1 ((Ass∞)�, ∂) belonging to the kernel of H∗(p�).

6.1.1. Theorem. The cohomology group H• ((Ass∞)�, ∂) is concentrated in degrees 0 and −1.

Moreover,

H0
(
(Ass∞)�, ∂

)
= Ass�,

and, as Σ-bimodules,

H−1
(
(Ass∞)�, ∂

)
(m,n) =

{ ⊕n−1
p=1 k[Σn]Cp×Cn−p for m = 0, n ≥ 2

0 otherwise

where Cp×Cn−p is the subgroup of Σn generated by two commuting cyclic permutations (12 . . . p)

and (p+ 1 . . . n), and k[Σn]Cp×Cn−p stands for coinvariants.

Proof. The space (Ass∞)� is spanned by graphs of genus 0 and 1, and the differential ∂ preserves

the associated genus decomposition,

(Ass∞)� = A↑ ⊕ A�.

The subcomplex (A↑, ∂) is spanned, by definition, by graphs of genus zero and hence is isomorphic

to (Ass∞, ∂) so that H(A↑, ∂) = Ass. Thus the main job is to compute the cohomology, H(A�, ∂),

of the subcomplex A� spanned by graphs of genus one, i.e. by graphs of the form

•
��

��
�
��
�� ,,
,,

•
??

??
��

��

•
%%
%

��
��

•
��
�

ttt
tt DD

D

•
��

� 77
7

__

with internal edges lying in the wheel dotted.

The following terminology will be useful: the vertices of an element G ∈ A� which lie on the

wheel are called cyclic. For example, the graph shown above has three cyclic vertices and two

noncyclic vertices.

It is clear that

FpA
� := span

{
f ∈ A� : total number of cyclic vertices ≥ p

}
,

defines a filtration in the complex (A�, ∂). Let {A�
p , ∂p}p≥0 be the associated spectral sequence.

Step 1. Our first target is to compute the cohomology, A�
1 , of the zeroth term, {A�

0 , ∂0}, of

this spectral sequence. Consider the filtration,

FpA
�
0 := span

{
G ∈ A�

0 :
total number of internal edges and legs
attached to cyclic vertices of G

≤ p

}
,

and let {ErA
�
0 , δr}r≥0 be the associated spectral sequence. We shall show below that the latter

degenerates at the second term so that E2A
�
0 = H(A�

0 , ∂0) = A�
1 .

The differential δ0 in E0A
�
0 is given by its values on the vertices as follows:
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(i) on every noncyclic vertex one has δ0 = ∂, the differential in Ass∞;

(ii) on every cyclic vertex δ0 = 0.

Hence, modulo the action of finite groups, the complex (E0A
�
0 , δ0) is isomorphic to the direct sum

of tensor products of copies of the complex (Ass∞, ∂). By Künneth’s and Mashke’s theorems, we

get,

E1A
�
0 = V1/h(V2),

where

- V1 is the subspace of A� consisting of all those graphs whose every noncyclic vertex is ??��• ;

- V2 is the subspace of A� whose every noncyclic vertex is either ??��• or ??��• with the number

of vertices of the latter type ≥ 1 ;

- the map h : V2 → V1 is Σ-equivariant and is given on noncyclic vertices by

h
(

??��•
)

= ??��• , h

(
??��•

2 31

)
= − •??��•==�� 3

21

+ •??�� •�� <<

3
1

2

and on all cyclic vertices h is set to be the identity.

A representative of a typical element in E1A
� looks as

•
��

��
�
��
�� ,,
,,

•
??

??

��
��

��
�
•

??
??

•
%%
%

��
��

•
��
�

ttt
tt DD

D

•
��

� 77
7

__

The differential δ1 in E1A
� is given by its values on vertices as

(i) on every noncyclic vertex one has δ1 = 0;

(ii) on every cyclic vertex one has

δ1 •
gggggggggg

jjjjjjjj
��

��

1 2 .. p
WWWWWWWWWW

TTTTTTTT
??

??

n...p+1

=

p−2∑

i=0

(−1)i+1 •
eeeeeeeeeeee

hhhhhhhhh
kkkkkkk

��
��

1 i.. .. p
WWWWWWWWWW

TTTTTTTT
??

??

n...p+1• 77
7

��
�

i+2i+1

(42)

+
n−2∑

i=p+1

(−1)i+1 •
gggggggggg

jjjjjjjj
��

��

1 2 .. p
YYYYYYYYYYYYY

RRRRRRR
VVVVVVVVVV

??
??

i n..p+1 • ..
��

� 77
7

i+1 i+2

To compute E2A
� = H(E1A

�, δ1) let us return back to the well-known complex Ass∞: the data

FpAss∞ := span {G ∈ Ass∞ : number of edges attached to the root vertex of G ≤ p}



WHEELED PROPS, GRAPH COMPLEXES AND THE MASTER EQUATION 41

is clearly a filtration of the complex (Ass∞, δ) whose spectral sequence, {ErAss∞, dr}r≥0, must

converge to Ass. Its first term, E1Ass∞ = H(E0Ass∞, d0) is spanned by trees whose root ver-

tex may have any number of attached half-edges while all other vertices are binary, ??��• . The

differential d1 is non-trivial only on the root vertex on which it is given by,

d1 •
sss

sss
��

��. . . <<
<<

KKK
KKK

1 2 n

=

n−2∑

i=0

(−1)i+1 •
sss

sss
��

��
.. ..<

<<
<

��
�

KKK
KKK

1 i n
•

��
� @@
@

i+1 i+2

It is clear that this spectral sequence must degenerate at E2Ass∞ = H(E1Ass∞, d1) implying the

isomorphism H(E1Ass∞, d1) = Ass. Now let us modify the complex (E1Ass∞, d1) by adding to

the space E1Ass∞ the trees whose root vertex is a degree −1 corolla • while all other vertices are

binary ??��• .

Denote this extension of E1Ass∞ by E+
1 Ass∞, and define a differential d+

1 on E+
1 Ass∞ be

setting its values on the non-root vertices to be zero while on the root (1, n)-vertex as follows

(43) d+
1 •

sss
sss
��

��. . . <<
<<

KKK
KKK

1 2 n

=





∑n−2
i=0 (−1)i+1 •

sss
sss
��

��
.. ..<

<<
<

��
�

KKK
KKK

1 i n•
��

� @@
@

i+1 i+2

for n ≥ 3

•

•
��

� ::
:

1 2

for n = 2

0 for n = 1.

Claim. The cohomology of the complex (E+
1 Ass∞, d

+
1 ) is a one dimensional vector space spanned

by • .

Proof of the claim. Consider a 2-step filtration, F0 ⊂ F1 of the complex (E+
1 Ass∞, d

+
1 ) by the

number of • . The zero-th term of the associated spectral sequence is isomorphic to the direct

sum of the complexes,

(E1Ass∞, d1)⊕ (↓E1Ass∞, d1)⊕ (span〈•〉, 0)

so that the next term of the spectral sequence is

Ass ⊕ ↓Ass⊕ 〈•〉

with the differential being zero on ↓Ass⊕ 〈•〉 and the natural isomorphism,

↓ : Ass −→↓Ass

on the remaining summand. Hence the claim follows.

Comparing differentials (42) and (43), we see that, modulo actions of finite groups, the complex

(E1A
�
0 , δ1) is isomorphic to the tensor product of a trivial complex (i.e. one with zero differential)

with the tensor powers of the complex, (E+
1 Ass∞, d

+
1 ). Then the above Claim implies that
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E2A
�
0 = H(E1A

�
0 , δ1) is spanned by the wheeled graphs whose every vertex is cyclic and is either

binary or ternary, i.e. by graphs of the form,

(44) E2A
�
0 = span •

���

•
•

DDD
•[[[
��
�

•444

•




QQQ

• OOO
•JJJ

with legs numbered by integers (not shown). The induced differential, δ2, on such graphs is

obviously zero, so that the spectral sequence (EpA
�
0 , δp) degenerates giving us an isomorphism

A�
1 = limp→∞(EpA

�
0 , δp) ' E2A

�
0 .

Step 2. We have shown above that the first term, A�
1 , of the spectral sequence {A�

p , ∂p}p≥0

can be identified with the vector space spanned by wheeled graphs of the form (44). The induced

differential ∂1 on A�
1 can then be described on generators as follows:

∂1 •
��

� = 0, ∂1• 77
7 = 0, ∂1 • 77

7
��

� =
•

��
�

• 77
7
−
• 77
7

•
��

�

Now the theorem follows immediately from the following

Claim. The spectral sequence {A�
p , ∂p}p≥0 degenerates at p = 2 with an isomorphism of Σ-

bimodules,

A�
2 (0, n) = H(A�

1 , ∂1)(0, n) =

{
Ass�(0, 1) for n = 1

Ass�(0, n) ⊕
⊕n−1

p=1 ↓k[Σn]Cp×Cn−p for n ≥ 2.

Proof of the Claim. Let (
r
A�

s , ∂1) be, for r + s = n, the subcomplex of (A�
1 , ∂1)(0, n) spanned

by graphs whose legs entering the cycle from the left have labels 1, . . . , r and legs merging from

the right labels r+ 1, . . . , n. Clearly each
r
A�

s is a (Σr ×Σs)-module and the Σn-space A�
1 is the

sum of induced representations

(45) A�
1
∼=
⊕

r+s=n

IndΣn

Σr×Σs r
A�

s .

Our proof of the claim will be based on showing that the cohomology of (
r
A�

s , ∂1) is isomorphic

to the (regraded) cohomology of the moduli space of configurations rUs defined in the following

paragraph.

First, let rM̃s be the space of configurations of two types of labeled, not necessarily dis-

tinct, points on the unit cycle S1 – “left” points labeled by 1, . . . , r and “right” points labeled

r + 1, . . . , n. Let rŨs be the open subspace of configurations such that points of the same type

do not collide, that is, only “left-right” collisions are allowed in rŨs. We denote by rMs and rUs

the corresponding moduli spaces, rMs := rM̃s/S
1 and rUs := rŨs/S

1. Let us prove that

(46) H•(
r
A�

s , ∂1) ∼= H−•(rUs).
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To this end, consider the complement rNs := rMs \ rUs. It is clear that rMs is a compact

orientable (r + s − 1)-dimensional manifold and rNs its closed subspace. By definition, rNs

consists of equivalence classes of configurations such that two (or more) points of the same

type coincide. It therefore looks locally as an intersection of hyperplanes, thus it is a strong

deformation retract of some open neighborhood rOs ⊃ rNs. Denote finally rKs := rMs \ rOs.

By [10, Proposition 3.46],

H−•(rKs) ∼= Hr+s−1+•(rMs, rOs),

where, since rNs is a deformation retract of rOs, H•(rMs, rOs) ∼= H•(rMs, rNs) and, similarly,

H•(rKs) ∼= H•(rUs). We see that

(47) H−•(rUs) ∼= Hr+s−1+•(rMs, rNs).

To describe the right hand side of (47), notice that rMs has a cell structure, with codimension

d cells corresponding to types of configurations with exactly d collisions. The closed subspace

rNs ⊂ rMs is a cell subcomplex and codimension d cells of the relative cellular chain complex

C(rMs, rNs) correspond to types of configurations with exactly d left-right collisions. Obvi-

ously, these types are parametrized by graphs (44) with d triple points. One easily sees that

(C(rMs, rNs), ∂) is isomorphic to (
r
A�

s , ∂1) with the opposite grading shifted by r+ s− 1, giving

rise to the isomorphism

Hr+s−1+•(rMs, rNs) ∼= Hr+s−1+•(C(rMs, rNs), ∂) ∼= H•(
r
A�

s , ∂1)

which, combined with (47), gives (46).

On the other hand, the homotopy type of rŨs is easy to describe: there exists an equivariant

deformation retraction that distributes left points evenly around the cycle so that two adjacent

points are precisely 2π/r apart, leaving the point labeled by 1 unchanged, and similarly distributes

right points leaving the one labeled r + 1 fixed. The configurations obtained in this way are

parametrized by the position of points labeled 1 and p+1, plus the cyclic orders of left and right

points, that is

rŨs ∼ (Cr × Cs)\(Σr × Σs)× S
1
r × S

1
s ,

where S1
i := S1 if i ≥ 1 while S1

0 := the point. By the definition of rUs,

rUs ∼ (Cr × Cs)\(Σr × Σs)× r
S1

s ,

where
r
S1

s := S1 if r, s ≥ 1 and
r
S1

s := the point if (r, s) ∈ {(1, 0), (0, 1)}.

Equation (46) implies

H•(
r
A�

s , ∂1) ∼= H−•(rUs) ∼= k[Σr × Σs]
Cr×Cs ⊗H−•(

r
S1

s ),
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which, combined with (45), leads to

H•(A�
1 , ∂1)(0, n) ∼=

⊕

r+s=n

k[Σn]Cr×Cs ⊗H−•(
r
S1

s )

=

{
Ass�(0, 1) for n = 1

Ass�(0, n) ⊕
⊕n−1

p=1 ↓k[Σn]Cp×Cn−p for n ≥ 2.
.

proving the claim. �

6.1.2. Proposition. There is an isomorphism of graded wheeled properads,

H•
(
(Ass∞)�, ∂

)
= S�,

where S� is the wheeled completion of the quotient properad,

S := Γ〈Â〉/(R),

with the Σ-bimodule Â = {Â(m,n)}m,n≥0 given by

Â(m,n) :=





111 ⊗ k[Σ2] = span


 •

��
�� 22

22

σ(1) σ(2)




σ∈Σ2

for m = 1, n = 2

↓k[Σ2] = span


 •

��
�� 22

22

σ(1) σ(2)




σ∈Σ2

for m = 0, n = 2

0 otherwise,

and relations given by (40) and,

•
��
�� 22

22

•
��
� 22

2

σ(1)σ(2)

σ(3)

− •
��
�� 22

22

•
��
� 22

2

σ(2)σ(1)

σ(3)

= 0, •
��
�� 22

22

•
22

2
��
�

σ(3)σ(2)

σ(1)

− •
��
�� 22

22

•
22

2
��
�

σ(2)σ(2)

σ(1)

= 0, ∀σ ∈ Σ3.

Proof. It was shown in the proof of Theorem 6.1.1 that every generator e ∈ k[Σn]Cp×Cn−p ⊂

H−1((Ass∞)�) can be canonically identified with the Cp × Cn−p-orbit,

e =

p−1⊕

i=0

ζ i

n−p−1⊕

j=1

ξj

• 77
7

ζ(1) ξ(p+1)��
�

•
��

�
ζ(2) ... •

��
�

ζ(p) • 77
7

ζ(p+2)• 77
7

ζ(p+3)...• 77
7

ζ(n)
__
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of a planar wheeled graph which has precisely one ternary vertex and n − 2 binary vertices

of which p − 1 vertices have the non-cyclic input leg pointing “outside” the planar wheel. To

prove the Proposition it is enough to show that every such a linear combination of graphs is

homologically equivalent in the complex ((Ass∞)�, ∂) to a uniquely defined element in S�. The

latter can be easily established by induction on the number of vertices starting with the following

initial step,

• 77
7

1 3��
�

•
��

�
2 __

+ • 77
7

2 3��
�

•
��

�
1 __

− • 77
7

2

3��
�
•

��
� 77
7

1

__

= ∂ • 77
7

2
3��

�
ttt

tt

1
__

�

6.1.3. Remark. It is worth emphasizing a correspondence,

•
��
�� 22

22

σ(1) σ(2)

!
���
==

==

��
��•

σ(2)σ(1)
__

between the (0, 2) generators of the operad S and the wheeled elements in (Ass∞)�.

6.2. Directed oriented ribbon graphs. The authors of [20] were able to compute cohomology

of the directed, (G↑
g(m,n), δ), version (without wheels though) of Kontsevich’s ribbon graph

complex [11] consisting of oriented ribbon graphs of genus g with n input and m output legs,

and show that it is acyclic almost everywhere. Wheeled directed ribbon graphs, (G�
g (m,n), δ),

provide us with a finer approximation to the original Kontsevich’s complex than (G↑
g(m,n), δ),

and in this case the cohomology groups H•(G�
g (m,n), δ) turn out to be non-trivial in many

degrees.

Let us now give a precise description of all key actors. Consider first the vector space Ĝ�
g (m,n)

spanned by directed oriented ribbon (m,n)-graphs3 which are triples, (G, or(G), ribbon structure),

where

• G is a graph from G�(m,n) satisfying the conditions: (i) every vertex of G has valence at

least 3 (with at least one ingoing and at least one outgoing edges), (ii) vertices of any particular

closed path in G are purely “operadic”, i.e. they all have either precisely one incoming edge or

they all have precisely one outgoing edge, and (iii) the associated geometric realization |G| has

genus g;

• an orientation on a directed (m,n)-graph G is, by definition, an orientation on the vector

space, R
vert(G)⊕R

m⊕R
n which is in fact the same as an orientation on R

e(G)⊕H•(|G|,R), where

e(G) is the cardinality of the set, edge(G), of internal edges of G, and H•(|G|,R) is the homology

of |G| (see, e.g. [4]). Thus we can understand an orientation of G as an element

or(G) := or1(G)⊗ or2(G) ∈ det R
e(G) ⊗ detH•(|G|,R).

3The set, G�(m, n), of directed (m, n)-graphs are defined in §2.



46 M. MARKL, S. MERKULOV AND S. SHADRIN

• a ribbon structure on a directed (m,n)-graph G is, by definition, an ordering of the set,

in(v), of incoming edges and the set, out(v), of outgoing edges for each vertex v ∈ vert(G); it

can be equivalently understood as a cyclic ordering of the set in(v) ∪ out(v).

We often abbreviate a triple from Ĝ�
g by (G, or(G)) or even by G.

6.2.1. Definition. The quotient of the vector space Ĝ�(m,n) by the equivalence relation

(G,−or(G)) = −(G, or(G))

is denoted by Gg(m,n). It is naturally an N-graded vector space,

G�
g (m,n) =

⊕

n≥1

Gn
g (m,n),

with respect to the number of vertices of its elements, i.e. Gn
g (m,n) := {G ∈ G�

g (m,n) :

|vert(G)| = n}.

In fact, it is only the part Gg := G�
g (0, 0) which can be regarded as a directed version of

Kontsevich’s ribbon graph complex; by contrast to G↑
g(0, 0) = 0, the part G�

g (0, 0) is highly

non-trivial.

6.2.2. Fact ([11, 20]). The graded vector space G�
g (m,n) can be made into a cochain complex

by setting

∂(G, or(G)) :=
∑

G′|G′/e=G

(G′, or(G′))

where the summation goes over all connected directed oriented ribbon (m,n)-graphs G′ such that

• G can be obtained from G′ by contracting an internal edge e ∈ e(G′) which is not a loop;

• the cyclic ordering of edges at the vertex v ∈ vert(G) into which e contracts agrees in the

obvious sense with the one induced from the contraction (see, e.g., §2.2.2 in [4] for full details

and pictures);

• or(G′) = (or1(G) ∧ e)⊗ or2(G).

Set G�
g := {G�

g (m,n)}m,n≥0. It is naturally an Σ-bimodule.

6.2.3. Theorem. H•(G�
g ) is isomorphic as an Σ-bimodule to the ordinary PROP,4

S� ∗ (S�)†

I0

where S� is defined in §6.1.2, ∗ stands for the free product of ordinary PROPs, and the ideal I0

is generated by the elements

•
��

� 77
7

σ(1) σ(2)

•
777
777 ���

τ(1) τ(2)

, ∀σ, τ ∈ Σ2.

4For a PROP P = {P (m, n)} we denote by P † = {P †(m, n)} the associated PROP with “reversed flow”, i.e.
P †(m, n) := P (n, m).
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Proof. Exactly the same argument as in the final section in [20] establishes an isomorphism

of the complex (G�
g , ∂) with the operadic wheeled completion5, (IB#

∞, δ), of the minimal dg

PROP resolution, (IB∞, δ), of the PROP, IB, of infinitesimal associative bialgebras, which is, by

definition, the quotient,

IB :=
Ass ∗ Ass†

I
,

by the ideal I generated by the elements

•
��

� 77
7

σ(1) σ(2)

•
777
777 ���

τ(1) τ(2)

− •
•���

777 77
7τ(1)

τ(2)

σ(1)

σ(2)
− •

• ���
777��

�

σ(1)

τ(1)

σ(2)

τ(2)

, ∀σ, τ ∈ Σ2.

As the ideal I is related to the ideal I0 via distributive law (see [6, 20]), one can apply Theo-

rem 3.11.1(ii) from [24] to compute the cohomology of the complex (IB#
∞, δ) as an Σ-bimodule,

H•(IB#

∞, δ) '
H•((Ass∞)�) ∗H•((Ass∞)�)†

I0
,

Finally, Proposition 6.1.2 completes the proof. �

6.3. Proof of Theorem C (see §1). Since H•(Gg) is, by definition of Gg, equal to the

H•(G�
g )(0, 0) part of the Σ-bimodule H•(G�

g ) = {H•(G�
g )(m,n)}m,n≥0, we have an isomorphism

H•(Gg) '
H•((Ass∞)�) ∗H•((Ass∞)�)†

I0
(0, 0).

As to the r.h.s. contribute only elements of type (0, m) from H•((Ass∞)�) and elements of type

(n, 0) from H•((Ass∞)�)†, the required result follows from Theorem 6.1.1. �

6.4. Proof of Corollary D (see §1). By Theorems C and 6.1.1, H•(Gg), is isomorphic to the

vector space spanned by all possible directed (0, 0)-graphs which can be obtained by gluing input

legs of a disjoint union of (0, n)-graphs of the types,

type A:

p−1⊕

i=0

ζ i

n−p−1⊕

j=1

ξj

• 77
7

ζ(1) ξ(p+1)��
�

•
��

�
ζ(2) ... •

��
�

ζ(p) • 77
7

ζ(p+2)• 77
7

ζ(p+3)...• 77
7

ζ(n)
__

and type B:

•
ζ(1) ��

�

•
��

�
ζ(2) ... •

��
�

ζ(p) • 77
7

ζ(p+1)• 77
7

ζ(p+2)...• 77
7

ζ(n)
__

with output legs of a disjoint union of similar (m, 0)-graphs of the corresponding types Ā and B̄.

Thus with every nonzero element e of H•(Gg) we can associate

5see §3.11 in [24] for the definition of the operadic wheelification functor.
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• a collection of p graphs of type A each having ai vertices (and hence ai + 1 input legs),

1 ≤ i ≤ p;

• a collection of q graphs of type B each having bj vertices (and hence bj input legs),

1 ≤ j ≤ q;

• a collection of p̄ graphs of type Ā each having āi vertices (and hence āī + 1 output legs),

1 ≤ ī ≤ p̄;

• a collection of q̄ graphs of type B̄ each having b̄j̄ vertices (and hence b̄ī output legs),

1 ≤ j̄ ≤ q̄;

such that total number, say N , of input legs of graphs of types A and B is equal to the total

number of output legs of graphs of types Ā and B̄, i.e.

(48) N =

p∑

i=1

ai +

q∑

j=1

bj + p =

p̄∑

ī=1

āī +

q̄∑

j̄=1

b̄j̄ + p̄.

The total number of internal edges of a graph G obtained from the above data by gluing N output

legs with N input legs is equal to 3N − p− p̄ while the total number of vertices is 2N − p− p̄.

By the Euler formula, the genus of G is

g = 1 + (3N − p− p̄)− (2N − p− p̄) = N + 1.

Thus our non-zero element e belongs to H2g−2−p−p̄(Gg) and we immediately conclude that

Hn(Gg) = 0 for all n > 2g − 2.

It is clear from (48) that, for fixed N = g−1, the maximal possible values of parameters p and

p̄ are equal to [N/2]. Hence Hn(Gg) is indeed non-zero only for n in the range g− 1
2
(1− (−1)g) ≤

n ≤ 2(g − 1). �

6.4.1. Example. H2(G3) is two dimensional and is spanned by the following graphs,

I
• WWW

N

ggg

WWW

N

J

• ggg

I
• WWW

N

ggg

WWW

N

J

• ggg

6.5. Proof of Theorem A (see §1). We have to show that the natural morphism of dg wheeled

properads,

p :
(
Ass�

∞, ∂
)
−→

(
Ass�, 0

)
,
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given on generators by

p


 •

sss
sss
��

��. . . <<
<<

KKK
KKK

1 2 n


 :=





Id for n = 2

0 otherwise

p


 H

iiiiiiiiii
llllllll

		
		

...
1 2 m

UUUUUUUUUU
RRRRRRRR

55
55

...
m+nm+1


 := 0 ∀m,n ≥ 1,

is a quasi-isomorphism.

Consider an increasing filtration, F0 ⊂ F1 ⊂ . . . ⊂ Fp ⊂ . . . of the complex (Ass�

∞, ∂) by the

number p of •-vertices, and let {Er, δr}r≥0 be the associated spectral sequence. The differential

δ0 is non-zero only on H-vertices, and is given by

δ0 H
iiiiiiiiii

llllllll
		
		

...
1 2 m

UUUUUUUUUU
RRRRRRRR

55
55

...
m+nm+1

=

m−1∑

i=0

(
(−1)m+1ζ

)i n−1∑

j=1

(
(−1)n+1ξ

)j




m∑

k=2

(−1)k+m
H

iiiiiiiiii
nnnnnnn

		
		

...
k+1 m

UUUUUUUUUU
RRRRRRRR

55
55

...
m+nm+1

•
��

�� 66
66

��
�� ++
++

1 ... k

+
n−2∑

k=2

(−1)k+m+n
H

iiiiiiiiii
llllllll

		
		

...
1 2 m

VVVVVVVVVVV
HHHHH

55
55

...
m+nm+k+1

•
��

��
��
�� ++
++

66
66

m+1 ... m+k




Let (CC−∗(W ), ∂W ) be the (negatively graded) cellular chain complex of the cyclohedron

introduced and studied in [18]. A comparison of the differential δ0 with the boundary operator

∂W (given explicitly in Proposition 2.14 of [18]) immediately implies that, modulo action of finite

groups, the complex (E0, δ0) is isomorphic to the tensor product of a trivial complex (i.e. one with

vanishing differential) with the complex R[Σ∗+•+2]⊗ ↓CC−∗(W )⊗ ↓CC−•(W ). As cyclohedron

consists of contractible polytopes, its homology is concentrated in degree 0 and is equal to R.

Thus (E1, δ1) is the free wheeled properad generated by •-corollas and extra binary corollas in

degree −2,

H
		
		

σ(1)

55
55

σ(2)

σ ∈ Σ2.

standing for the natural basis of R[Σ2]⊗H
0(↓CC−∗(W )⊗ ↓CC−∗(W )) =↓2 R[Σ2].

The induced differential δ1 is given on •-corollas by the usual A∞ formula, while on the

remaining binary H-corollas as
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δ1 H
		
		

σ(1)

55
55

σ(2)

=
���
==

==
��

��•

σ(2)σ(1)
__

.

By Theorem 6.1.1 and Proposition 6.1.2, E2 is precisely Ass�. Hence the induced differential δ2

vanishes so that converging to H(Ass�
∞, ∂) spectral sequence {Er, dr} degenerates at this second

term. This completes the proof. �

6.6. Wheeled Massey operations. Let (V, ·, d) be a differential graded associative algebra

over a field k, and let (W, d) be a complex together with morphisms of complexes, i : W → V

and p : V →W such that

p ◦ i = Id +Qd+ dQ

for some degree −1 linear operator Q : V → V . Homotopy theory general nonsense says that

W must have an induced Ass∞-structure, {µn : W⊗n → ↑ n−2W}n≥1, and the following explicit

formulae for this structure have been found in [21]:

µ1 = d,

µn = p ◦ λn ◦ i
⊗n for n ≥ 2,

where λn : V ⊗n → ↑n−2V are defined inductively as follows,

λn(v1, . . . , vn) :=
∑

k+l=n+1
k,l≥1

(−1)k+(l−1)(|v1|+...+|vn|)Qλk(v1, . . . , vk) · Qλn−k(vk+1, . . . , vn),

starting with formal equality λ1 := −Q−1.

If V is finite dimensional, then the datum (V, ·, d) is canonically an Ass�-algebra so that

again we may expect that W (which may not be finite-dimensional!) has a naturally induced

Ass�

∞-structure,
{
µn : W⊗n → ↑n−2W

}
n≥1

,
{
µp,q : W⊗p+q → ↑ p+qk

}
p,q≥1

,

which satisfy quadratic equations mimicking formulae (1) and (2) respectively. Straightforward

but very tedious calculations show that this is indeed so with µn given by the formulae above

and the new set of operations µp,q given as follows: if Tr i(Q ◦ λn) : V ⊗n−1 → ↑ n−1k stands for

the trace of the linear map Q ◦ λn : V ⊗n → ↑n−1V with respect to the i-th input, 2 ≤ i ≤ n− 1,

n ≥ 3, then one has

µi−1,n−i (w1, . . . , wi−1, wi+1, . . . wn) =

=
1

2

i−2∑

l=0

n−i−1∑

j=1

(−1)li+1+(n−i+1)jTri(Q ◦ λn)
(
i(wζl(1)), . . . , i(wζl(i−1)), i(wξj(i+1)), . . . , i(wξj(n))

)
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where

ζ := (12 . . . i− 1) ∈ Σi−1, ξ := ((i + 1)(i+ 2) . . . n) ∈ Σn−i

and w• are arbitrary elements of W .

In particular, the cohomology of any finite dimensional dg associative algebra is naturally an

Ass�

∞-algebra and hence admits, in general, lots of new Massey type cyclically (skew)symmetric

operations corresponding to compositions µp,q.

6.7. Cyclic characteristic class of an Ass∞-algebra. Any finite dimensional representation

of the operad Ass extends naturally to a representation of the wheeled properad Ass�. It is not

true, however, that any finite dimensional representation of the dg operad Ass∞ can be extended

to a representation of the dg wheeled properad Ass�

∞ — there exist a cohomological obstruction,

and the main purpose of this subsection is to describe it, that is, to associate with an arbitrary

finite dimensional Ass∞-algebra a cohomology class whose vanishing provides a necessary and

sufficient condition for existence of its wheeled extension.

It is well known that with any graded vector space V one can associate a graded Lie algebra

C•(V, V ) =
⊕

n

Cn(V, V ), Cn(V, V ) :=
⊕

j≥1

Homn+1((↑V )⊗j, V )

equipped with the Gerstenhaber Lie bracket, [ , ]G. Here Hom i(V
⊗j, V ) stands for the space of

homogeneous maps V ⊗j → V of degree i.

Maurer-Cartan elements in this Lie algebra, that is, elements Γ ∈ C1(V, V ) such that [Γ,Γ]G =

0, are in 1-1 correspondence with Ass∞-structures in V . Such elements make also (C•(V, V ), [ , ]G)

into a differential graded Lie algebra, (C•(V, V ), [ , ]G, DΓ), with DΓ := [Γ, ]G.

Define next a graded vector space,

Cyc•(V,k) :=
⊕

n

Cycn(V,k), Cycn(V,k) :=
⊕

p,q≥1

Homn

(
((↓ V )⊗p)Cp

⊗ ((↓ V )⊗q)Cq
,k
)
.

It is naturally a module over the graded Lie algebra (C•(V, V ), [ , ]G) so that the direct sum,

g := C•(V, V )
⊕

Cyc•(V,k),

has structure of a graded Lie algebra with the Lie bracket defined by

[a, b] := [a, b]G, [a, x] := a ◦ x, [x, y] = 0

for arbitrary a, b ∈ C•(V, V ), x, y ∈ Cyc•(V,k). Here ◦ stands for the action of C•(V, V ) on

Cyc•(V,k).

Any Maurer-Cartan element Γ ∈ C1(V, V ) defines a Maurer-Cartan element, Γ ⊕ 0, in g

and hence makes the latter and, in particular, the subspace Cyc•(V ) into a complex with the

differential

δΓ := [Γ⊕ 0, ].



52 M. MARKL, S. MERKULOV AND S. SHADRIN

6.7.1. Remark. In fact, general Maurer-Cartan elements in g describe strongly homotopy Assω-

algebras, where Assω-structures consist of an associative multiplication µ : V ⊗ V → V and an

operation ω : V ⊗ V → k such that, besides the associativity of µ, ω(µ(a, b), c) is symmetric in

a, b and ω(a, µ(b, c)) is symmetric in b, c.

If V is a finite dimensional vector space, then we can associate with the Maurer-Cartan

element, Γ := {µn : V ⊗n → ↑n−2V }n≥1 ∈ C
1(V, V ), an element

Γ� :=
{
Γ�

p,q ∈ Hom1

(
((↓ V )⊗p)Cp

⊗ ((↓ V )⊗q)Cq
,k
)}

p,q≥1
∈ Cyc1(V,k),

as follows,

Γp,q (v1, . . . , vp, vp+1, . . . vp+q) :=(49)

=

p−1∑

i=0

q−1∑

j=1

(−1)i(p+1)+j(q+1)Trp+1(µp+q+1)
(
vζl(1), . . . , vζl(p), vξj(p+1), . . . , vξj(p+q)

)

where ζ := (12 . . . p) ∈ Σp, ξ := ((p+1)(p+2) . . . (p+ q)) ∈ Σq, Trp+1(µp+q+1) : V ⊗p+q → ↑n−2 k

is the trace of the linear map µp+q+1 : V p+q+1 → ↑ p+q−2 V with respect to the (p + 1)-st input,

and v1, . . . , vp+q are arbitrary elements of V .

6.7.2. Proposition-definition. For any finite-dimensional Ass∞-algebra (V,Γ) we have

δΓΓ� = 0.

The associated cohomology class [Γ�] ∈ H1(Cyc•(V,k)) is called the cyclic characteristic class of

the Ass∞-algebra (V,Γ).

Sketch of a proof. It follows from definition (1) of the differential in the operad Ass∞ that

δ •
nnnnnnn

rrrrrr
... ��

��

1 2 p
PPPPPPP

LLLLLL

...//
//

p+qp+1
__
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(−1)k+l(p−k−l)+1 •
jjjjjjjjjj

...ooooooo
vvvvv
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��

1 k p•
��
�� 00
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��
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k+1 ... k+l

PPPPPPP
LLLLLL

...//
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p+qp+1
__

+
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(−1)k+l(p+q−k)+1 •
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��
��
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,

??
??

k+1... p p+1...k+l
__

+
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k=0

n−k∑

l=2

(−1)k+l(n−k−l)+1 •
nnnnnnn

rrrrrr
... ��

��

1 2 p

OOOOOOO
UUUUUUUUUU
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.. ..//
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k p+qp+1
•

��
�� 22

22

��
�

k+1 ... k+l

__

.

Straightforward calculations show that upon “(skew)cyclization” of both sides of the above equal-

ity as in (49) the middle sum (consisting of graphs with two cyclic vertices) vanishes. Then the

remaining terms, when represented in a vector space V , assemble precisely into the required

equation δΓΓ� = 0. �
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6.7.3. Theorem. An Ass∞-structure, Γ := {µn : V ⊗n → ↑ n−2V }n≥1, in a finite-dimensional

vector space V can be extended to an Ass�

∞-structure if and only if the cyclic characteristic class

[Γ�] vanishes.

Proof. If the cyclic characteristic class vanishes, then Γ� = δΓΘ for some Θ = {µp,q : V ⊗p+q → ↑
p+qV }p,q≥1 ∈ Cyc0(V,k). Hence the datum {µ•, µ•,•} makes V into an Ass�

∞-algebra.

On the other hand, if {µ•, µ•,•} is an Ass�

∞-structure on V , then Θ := {µp,q : V ⊗p+q →

↑ p+qV }p,q≥1 ∈ Cyc0(V,k) satisfies the equation δΓΘ = Γ�. �

A unusual feature of the situation described in Theorem 6.7.2. is that there exists precisely

one obstruction to extension of Ass∞-algebras into Ass�
∞-algebras while in obstruction theory one

usually has to deal with an infinite series of obstructions. The explanation is, however, simple –

the wheeled operad Ass�

∞ has only elements of genus 0 or 1.

6.7.4. Example. There is an interesting class of Ass∞-algebras which always extend into Ass�

∞-

algebras, consisting of structures Γ := {µn : V ⊗n → ↑n−2V }n≥1 such that the antisymmetrization

of the trace Trp+1(µp+q+1) : V ⊗p+q → ↑ n−2 k in the first p and the last q variables vanishes for

each p, q ≥ 1, n = p+ q. We suggest to call these algebras traceless Ass∞-algebras.

7. Wheeled Com

In this section we prove Theorem B of the introduction and show thereby that the operad

Com for commutative associative algebras is wheeled Koszul. We also demonstrate directly that

Com is not stably Koszul in the sense of Definition 5.2.10 by calculating, in Theorem 7.1.1, the

homology of the wheeled completion (Com∞)�.

7.1. Resolution of wheeled Com. The operad Com is the quotient

Com = Γop〈E〉/(R),

of the free operad Γop〈E〉 on the Σ-module E with

E(2) := 112 spanned by •
��
�� 22

22

1 2

= •
��
�� 22

22

2 1

E(n) := 0, n 6= 1

modulo the ideal generated by the relations

R : •
��
�� 22

22

•
��
� 22

2

σ(1)σ(2)

σ(3)

− •
��
�� 22

22

•
��
� 22

2

σ(1)σ(3)

σ(2)

= 0, ∀σ ∈ Σ3.

Recall that the minimal model Com∞ of the operad Com is generated by standard associative

(1, n)-corollas in degree 2− n, n ≥ 2, modulo the shuffle relations as in Theorem B(i), with the

differential given by (4).
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7.1.1. Theorem. The dimension of the homology of (Com∞)� (0, n) in degree −k ≤ 0 equals
(

n−1
k

)
.

In the above theorem which we prove in Subsection 7.4 we used the convention that
(

n
k

)
= 0

for k > n. Theorem 7.1.1 shows that, in order to obtain a minimal model of Com�, one must add

new generators to (Com∞)� that kill homology classes in H<0((Com∞)�, ∂), then add generators

that kill relations among these new generators, etc. The result is described in Theorem B which

we prove later in this section. We also prove:

7.1.2. Theorem. The operad Com is wheeled Koszul.

Theorem 7.1.2 together with the uniqueness, up to isomorphism, of minimal models imply

that the minimal model of Com� described in Theorem B coincides with the wheeled cobar of

the wheeled quadratic dual (Com�)! constructed in Example 5.2.4.

Theorem B and Theorem 7.1.2 are proved in Subsection 7.5. Their proofs are based on an

analysis of (Ω(B(Com)))� (the wheeled completion of the double bar complex for the ordinary

Com) and Ω�(B�(Com�)) (the double bar complex of Com� in the category of wheeled operads).

7.2. Double bar complex of Com. Let us show how the description of Com∞ presented above

can be read off from the ordinary double bar complex Ω(B(Com)). Recall that Ω(B(Com))(n) is

generated by trees with one output leg and n input legs, with vertices the standard commutative

corollas with one outgoing edge and ≥ 2 symmetric incoming edges. The set of edges Edg(G)

of each tree G is two-colored (in pictures, black edges are ordinary ones, and white edges are

doubled ones).

In the construction below, we use the same conventions as in the proof of Theorem 4.2.5,

in particular, the bigrading (50) is the one used in the proof of Theorem 4.2.5. The space

Ω(B(Com))(n) is bigraded, with the bidegree given by

(50) bideg(G) = (deg1(G), deg2(G)) := (−e(G), e0(G)),

where e(G) is the number of internal edges of the underlying graph G and e◦(G) the number

of white edges of G. There are two differentials, (1, 0)-and (0, 1)-ones, denoted by ∂1 and ∂2,

respectively. The first one contracts black edges, and the second one changes the color of edges

from black to white. For example,
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22

•
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2
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3
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��
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� 22

2

1 3

2

, •
��
�� 22

22

•
��
� 22

2

2 3

1

•
��
��

��
�� 22

22

•
��
� 22

2

1 2

3

, •
��
��

��
�� 22

22

•
��
� 22

2

1 3

2

, •
��
��

��
�� 22

22

•
��
� 22

2

2 3

1

6
∂2

-∂1

Ω(B(Com))(3) :

Since Com is Koszul, its ∂1-cohomology of Ω(B(Com)) is concentrated in bidegrees (2− n, ∗)

and is isomorphic to Com∞ (the differential of Com∞ is induced by ∂2). The description of

Com∞ given above uses associative corollas satisfying shuffle relations. They are represented in

Ω(B(Com)) in the following way. Consider the sum of all planar binary trees with only black

edges with 1 output leg and n input legs marked by σ(1), . . . , σ(n) from the left to the right.

There is, modulo an overall sign, a unique choice of signs of the graphs such that this sum is a

∂1-closed element in Ω(B(Com)(n). It represents the associative corolla with n inputs marked

by σ(1), . . . , σ(n) from the left to the right. One can check that these corollas satisfy the shuffle

relations, and that ∂ is induced by ∂2.

Here are few examples (we omit the signs; associative corollas are on the left, commutative

corollas are on the right):

•
��
�� 22

22

σ(1)σ(2)

= •
��
�� 22

22

σ(1)σ(2)

∀σ ∈ Σ2;

•
��
�� 22

22

σ(1)σ(2)σ(3)

= •
��
�� 22

22

•
��
� 22

2

σ(1)σ(2)

σ(3)

+ •
��
�� 22

22

•
22

2
��
�

σ(3)σ(2)

σ(1)

∀σ ∈ Σ3;

•
��

��
�
��
�� ,,
,,

??
??

?

σ(1)σ(2)σ(3)σ(4)

= •
��
�� 22

22

•
��
� 22

2

•
��
� 22

2

σ(1)σ(2)

σ(3)

σ(4)

+ •
��
�� 22

22

•
��
� 22

2

•
��
� 22

2
σ(1)

σ(2)σ(3)

σ(4)

+ •
��
�� 22

22

•
��
� %%
% •

22
2

��
�

σ(1)σ(2)σ(3)σ(4)

+ •
��
�� 22

22

•
22

2
��
�
•

��
� 22

2
σ(4)

σ(3)σ(2)

σ(1)

+ •
��
�� 22

22

•
22

2
��
�
•

22
2

��
�

σ(4)σ(3)

σ(2)

σ(1)

∀σ ∈ Σ4.

7.3. Wheeled double bar complexes. We consider three wheeled dg-operads whose operadic

parts coincide with Ω(B(Com)). The first one is its wheeled completion (Ω(B(Com))�. The space

(Ω(B(Com))�(0, n) is spanned by all graphs with one oriented wheel and n input legs. There

are black and white edges, as before, but we require that there is at least one white edge in the

wheel. Bigrading and differentials are extended from Ω(B(Com)).
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Figure 7. The bicomplex Ω�(B�(Com�))(0, 2).

The second one is the extended wheeled completion denoted by (Ω(B(Com))�
x defined as

the extension of (Ω(B(Com))� by graphs that have all edges in the wheel black. Notice that

(Ω(B(Com))�
x contains also graphs with black loops (one-edge wheels). Applying ∂1 to such

graphs would require to contract such loops. But this is impossible in (Ω(B(Com))�
x and we

extend the differential by postulating that contracting such a loop gives zero.

We can consider one more wheeled dg-operad where this contraction is defined. We add graphs

with one-edge wheel considered as a “virtual” one (indicated by dots in pictures). Obviously, what

we get (with naturally extended gradings and differentials) is the wheeled double bar complex

Ω�(B�(Com�)).

The example of Ω�(B�(Com�))(0, 2) is given in Figure 7. The bicomplex (Ω(B(Com))�
x (0, 2)

is a quotient of the above one consisting of graphs with no virtual loops; (Ω(B(Com))�(0, 2) is a

sub-bicomplex without virtual loops and fully black wheels.

7.3.1. Proposition. The complex (Ω(B(Com))�
x (0, n) is, for each n ≥ 1, acyclic.

Proof. We use the same reasoning as in the proof of Theorem 4.2.5. As before, (Ω(B(Com))�
x (0, n)

with differential ∂2 splits into the direct sum over isomorphism classes of graphs of complexes of

exterior algebras (25) on edges of each type of graph. It is acyclic if there is at least one edge in

the underlying graph. But here each graph has at least one edge. Therefore, (Ω(B(Com))�
x (0, n)

is acyclic. �
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7.4. Proof of Theorem 7.1.1. Notice that the homology of (Com∞)� coincides with the ho-

mology of (Ω(B(Com)))�. This follows from the fact that the free wheeled operad functor is

a polynomial functor on the category of Σ-modules and that the wheeled completion of a free

operad is a free wheeled operad, so the wheeled completions of free operads generated by quasi-

isomorphic dg-Σ-modules are quasi-isomorphic.

Since (Ω(B(Com)))� is a subcomplex of the acyclic complex (Ω(B(Com)))�
x , it is enough to

study their quotient,

Fx/c :=
(Ω(B(Com)))�

x

(Ω(B(Com)))�
.

Note that Fx/c is generated by graphs with fully black wheels. The first differential, ∂1, is the

same as before and contracts black edges. The second differential, ∂2, changes the color of edges

outside the wheel from black to white.

The ∂2-cohomology of Fx/c splits into the direct sum of complexes of exterior algebras on

edges, as in the proofs of Theorem 4.2.5 and Proposition 7.3.1. But here we consider only the

edges outside the wheel, therefore generators of the ∂2-cohomology are graphs with no edges

outside the wheel.

It follows from a short exact sequence argument and the identification above that the cohomol-

ogy of (Com∞)�(0, n) shifted by 1 equals to the cohomology of the graph complex Wn spanned

by wheels with n numbered legs, with no edge outside the wheel, and with the differential ∂1

contracting edges. For example, W2:

0 −→ •
��
�� 22

22

•
��
�

2

1

∂1−→ •
��
�� 22

22

1 2

−→ 0.

The grading, given by the number of edges, comes from the double bar complex. Observe thatWn

is concentrated in degrees −1, . . . ,−n. To describe the differential ∂1, it is convenient to consider

graphs G in Wn twisted by the determinant space Det(Edg(G)) := Λ|Edg(G)| (〈Edg(G)〉). Then

∂1 : Det(Edg(G))⊗G 7→
∑

e∈Edg(G)

∂

∂e
Det(Edg(G))⊗ ∂e(G),

where ∂e(G) is, as before, the graph G/e obtained by contraction of the edge e. If e is a loop

(i. e., G is one-edge graph in degree −1), then ∂e(G) = 0. In particular, ∂1 ≡ 0 in W1.

Theorem 7.1.1 now follows from the following proposition whose proof is an exercise on cyclic

cohomology:

7.4.1. Proposition. The dimension of H−k(Wn) equals
(

n−1
k−1

)
, −k ≤ −1.

The relation to cyclic cohomology is the following. The complex defining cyclic cohomology

of the polynomial algebra in variables x1, . . . , xn contains a subcomplex generated by cyclic

expressions where each xi appears exactly once. This subcomplex is isomorphic to Wn.
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7.5. Proofs of Theorem B and Theorem 7.1.2. We prove Theorem 7.1.2 first. Let us

consider B�(Com�)(0, n). It is the complex of graphs with n input legs and no output legs whose

vertices are decorated by elements in Com�, graded by the number of edges. The differential ∂

contracts the edges, introducing appropriate signs. For example,

B�(Com�)(0, 2) :
•

��
��
•

��
� 22

2

1 2

, •
��
�� 22

22

•
��
�

2

1

∂
−→ •

��
�� 22

22

1 2

, •
��
��
•

��
� 22

2

1 2

∂
−→ •

��
�� 22

22

1 2

By definition of wheeled Koszulness, Theorem 7.1.2 is equivalent to the statement that the

cohomology of B�(Com�)(0, n) is zero for n = 1 and concentrated in degree −n for n ≥ 2, i.e.,

that it is generated by trivalent graphs of genus 1.

For n = 1 it follows from a direct inspection that B�(Com�)(0, 1) is acyclic. If n ≥ 2, we

introduce a filtration on B�(Com�)(0, n):

0 = F−1 ⊂ F0 ⊂ · · · ⊂ Fn = B�(Com�)(0, n),

in which Fi is the space of graphs with ≤ i edges in the wheel. For example, F0 is the space

of graphs with no wheel (i.e., there is one vertex with no output leg). Let us show that

H∗(Fi/Fi−1, ∂) = 0 for all i < n. Since Fn/Fn−1 is spanned by graphs in degree −n, this

will, by an elementary spectral sequence argument, imply the statement.

Indeed, Fi/Fi−1 is spanned by graphs with exactly i edges in the wheel. The differential

induced by ∂ acts by contractions of edges outside the wheel. So, given a partition of the set

{1, . . . , n} into i subsets, I1 t · · · t Ii = {1, . . . , n}, we can consider a subcomplex in Fi/Fi−1

spanned by graphs such that, if we cut all edges in the wheel, we obtain i graphs whose legs are

marked by I1, . . . , Ii. Obviously, Fi/Fi−1 splits into the direct sum of such subcomplexes.

The graphs with legs marked by Ij form a complex C(Ij). The subcomplex of Fi/Fi−1 cor-

responding to the partition I1 t · · · t Ii = {1, . . . , n} is the direct sum of (i − 1)! copies of⊗i
j=1 C(Ij).

So, if we prove that at least one complex C(Ij) for j = 1, . . . , i is acyclic, we immediately

conclude that Fi/Fi−1 is acyclic. We will see that C(Ij) is acyclic if |Ij| ≥ 2. This explains why

Fi/Fi−1 is acyclic for i < n (there must be at least one set Ij with at least 2 elements; we assume

n ≥ 2) but it is not acyclic for i = n.

Consider C(Ij) assuming |Ij| ≥ 2. It consists of trees with 1 output leg and |Ij|+1 input legs.

We use the convention that the last input leg is the wheel input, attached to the same vertex

(the special vertex) as the output leg (to handle F0 in the same way, we would need to add a

virtual loop at the vertex with no output leg). We introduce a two-term filtration C ′(Ij) ⊂ C(Ij)

such that C ′(Ij) consists of graphs whose the special vertex has biarity (1, k), k > 2. It is easy to

see that C ′(Ij) and C(Ij)/C
′(Ij) are canonically isomorphic. Indeed, slightly abusing notations,
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we can say that C(Ij)/C
′(Ij) is generated by graphs with the special vertex of biarity (1,2). The

isomorphism is then given by the contraction of the unique edge attached to the special vertex

of a graph in C(Ij)/C
′(Ij). The first level of the associated spectral sequence has two identical

rows and the differential is an isomorphism of these rows. So, the cohomology vanishes at the

next level of this spectral sequence. Therefore Fi/Fi−1 is acyclic for i < n and Theorem 7.1.2 is

proved. �

Now we can proceed with the proof of Theorem B. Wheeled Koszulness implies that the

minimal resolution of Com� is generated by the standard (1, n)-generators of Com∞ and by some

new (0, n)-generators which form a basis of H−n
(
B�(Com�)(0, n)

)
, n ≥ 2.

Our goal is to identify a basis of H−n
(
B�(Com�)(0, n)

)
, n ≥ 2, with the generators introduced

in Theorem B(ii), and to show that the differential of the wheeled cobar construction on (Com�)!

coincides with (5). To do so, we study the wheeled double bar complex of Com� in the same way

as we analyzed the ordinary double bar complex of Com in Subsection 7.2.

We define the bigrading of Ω�(B�(Com�))(0, n) by deg1(G) = −e(G) and deg2(G) = e◦(G),

where e(G) denotes the number of all edges of the underlying graph G and e◦(G) the number of

white edges of G (it is the same bigrading as in the proof of Theorem 4.2.5). The nontrivial part

of this bicomplex lies in the triangle bounded by deg1 = −n, deg1 = − deg2, and deg2 = 0 (see

example for n = 2 in Subsection 7.3).

Consider the deg2 = 0 part of Ω�(B�(Com�))(0, n) spanned by graphs with no white edges.

Denote this subcomplex by Dn. It follows from our constructions that (Dn, ∂1) is isomorphic to(
B�(Com�)(0, n), ∂

)
.

To identify the generators of H−n(Dn), we return to the argument with filtration F∗ from

the proof of Theorem 7.1.2 (slightly abusing notations, we consider it on (Dn, ∂1)). Note that

∂1 restricted to Fn/Fn−1 is equal to zero. So, there is a basis of H−n(Dn), n ≥ 2, consisting of

(n − 1)! elements (we need to fix the cyclic order of legs markings), which are represented by

wheels with no edges outside it, plus some correction terms arising from the spectral sequence

associated to F∗. As in the case of the ordinary double bar complex, it is possible to give an

explicit description of these correction terms.

Let us fix a cyclic order of the set {1, . . . , n}. Consider the sum of all planar graphs of genus 1

with trivalent vertices such that: (i) all edges are black, (ii) the wheel contains at least two edges,

(iii) the wheel is oriented in the clockwise direction and (iv) when we go around the graph in

the counterclockwise direction, we meet the input legs in the prescribed cyclic order. There is,

modulo an overall sign, a unique choice of signs of these graphs such that their sum is a ∂1-closed

element.



60 M. MARKL, S. MERKULOV AND S. SHADRIN

This ∂1-closed element is exactly what we denoted in Theorem B(ii) by

•
��

��
�
��
�� ,,
,,

??
??

?

σ(1)σ(2)···σ(n)

where σ ∈ Σn determines the cyclic order (we identify elements that differ by a cyclic permuta-

tion). The first few examples are (we omit the signs):

•
��
�� 22

22

σ(1)σ(2)

= •
��
�� 22

22

•
��
�

σ(2)

σ(1)

∀σ ∈ Σ2;

•
��
�� 22

22

σ(1)σ(2)σ(3)

= •
��
�� 22

22

•
22

2
��
�
•

��
�

σ(3)

σ(2)

σ(1)

+ •
��
�� 22

22

•
��
�
•

��
� 22

2

σ(3)σ(2)

σ(1)

+ •
��
�� 22

22

•
��
�
•

��
� 22

2

σ(1)σ(3)

σ(2)

+ •
��
�� 22

22

•
��
�
•

��
� 22

2

σ(2)σ(1)

σ(3)

∀σ ∈ Σ4;

Up to signs, the formula for the differential of these new generators is almost obvious . The

only subtlety is that, if we want ∂2 to induce ∂ as in equation (5), we must consider also binary

graphs of genus 1 satisfying conditions (i), (iii), and (iv), but with only one edge in the wheel.

However, it is easy to check that we need to add each such a graph twice and with opposite signs.

So, they do not affect the result.

Theorem B is therefore proved modulo signs. We leave the sign issue to the reader. �

Acknowledgment. The first two authors would like to express their thanks to I.H.E.S. for a very

stimulating and pleasant atmosphere, and acknowledge the support of the European Commission

through its 6th Framework Programme “Structuring the European Research Area” and the

contract Nr. RITA-CT-2004-505493 for the provision of Transnational Access implemented as

Specific Support.

References

[1] S. Barannikov. Generalized periods and mirror symmetry in dimensions n ≥ 3. Preprint math.AG/9903124.
[2] S. Barannikov. Modular operads and BV geometry, MPIM preprint, 2006.
[3] S. Barannikov and M. Kontsevich. Frobenius manifolds and formality of Lie algebras of polyvector fields,

Internat. Math. Res. Notices, 14 (1988), 201–215.
[4] J. Conant and K. Vogtmann. On a theorem of Kontsevich. Preprint math.QA/0208169.
[5] S. Eilenberg and J.C. Moore. Adjoint functors and triples. Illinois J. Math., 9 (1965), 381–389.
[6] W.L. Gan. Koszul duality for dioperads. Math. Res. Lett., 10 (2003), 109–124.
[7] E. Getzler and J.D.S. Jones. Operads, homotopy algebra, and iterated integrals for double loop spaces. Preprint

hep-th/9403055.
[8] E. Getzler and M.M. Kapranov. Modular operads. Compositio Math., 110 (1998), 65-126.
[9] V. Ginzburg and M.M. Kapranov. Koszul duality for operads. Duke Math. J., 76 (1994), 203-272.



WHEELED PROPS, GRAPH COMPLEXES AND THE MASTER EQUATION 61

[10] A. Hatcher. Algebraic Topology. Cambridge University Press, 2002.
[11] M. Kontsevich. Formal (non)commutative symplectic geometry. In: The Gel’fand mathematics seminars

1990–1992. Birkhäuser, 1993.
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